A Review on Recent Developments in the Extraction and Identification of Polycyclic Aromatic Hydrocarbons from Environmental Samples
Abstract
:1. Introduction
2. Chemistry of Polycyclic Aromatic Hydrocarbons
3. Characteristics of Polycyclic Aromatic Hydrocarbons
4. Possible Risks Linked to Polycyclic Aromatic Hydrocarbons
5. Formation of Polycyclic Aromatic Hydrocarbons
6. Sources of Polycyclic Aromatic Hydrocarbons
6.1. Anthropogenic and Natural Sources
6.2. Petrogenic Sources
6.3. Pyrogenic Sources
7. Source Identification and Apportionment of Polycyclic Aromatic Hydrocarbons
8. Polycyclic Aromatic Hydrocarbons as Environmental Pollutants
8.1. Polycyclic Aromatic Hydrocarbons in Water
8.2. Polycyclic Aromatic Hydrocarbons in Sediments
8.3. Polycyclic Aromatic Hydrocarbons in Air
8.4. Polycyclic Aromatic Hydrocarbons in Soil
8.5. Polycyclic Aromatic Hydrocarbons in Plants
8.6. Polycyclic Aromatic Hydrocarbons in Humans
9. Extraction Techniques
9.1. Liquid-Liquid Extraction
9.2. Microwave-Assisted Extraction
9.3. Mechanical Agitation
9.4. Ultrasonication
9.5. Soxhlet Extraction
9.6. Accelerated Solvent Extraction
9.7. Solid-Phase Extraction
9.8. Solid-Phase Microextraction
9.9. Liquid-Phase Microextraction
9.10. QuEChERS Method
9.11. Supercritical Fluid Extraction
9.12. Magnetic Solid-Phase Extraction
9.13. Gas Purge-Microsyringe Extraction
9.14. Sample Preparation and Clean-Up
Extraction Technique | Typical Sample Size and Volume | Matrix | Typical Solvent Volume (mL) | Solvent | Duration of Extraction | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|---|---|
Liquid-liquid extraction | 200–900 mL | Water | 20–200 | n-hexane and dichloromethane | 3–30 min | Removes PAHs from the sample’s suspended particles as well as those that have been adsorbed into the water | Limited selectivity, difficulty of automation and emulsion | [26] |
Microwave-assisted extraction | 1–10 g | Soil/sediment | 10–40 | Hexane and acetone | 3–30 min | High temperatures, several extractions carried out quickly, little solvent used, and no sample or energy loss | The extraction solvent needs to be microwave-active. Purification of the sample is necessary | [1,2] |
Ultrasonication | 1–30 g | Soil/sediment | 20–200 | Acetone, acetonitrile, 2-propanol, cyclohexane, methane and dichloromethane | 10–60 min | High efficiency, minimal solvent volumes, and many extractions | Replicas must be used to prove reproducibility. Co-extracted chemicals must be removed | [8] |
Solid-phase extraction | 1–5 g | Soil/sediment, water | 2–20 | Methanol, cyclohexane | 10–90 min | Quick, selective, low solvent usage, and requires no filtration or clean-up | Sample losses during the elution of impurities from the extract or from irreversible adsorption on solvent material | [102] |
Mechanical agitation | 1–10 g 100 mL | Soil/sediment, water | 1–10 | hexane, acetone, dichloromethane | 30–120 min | Mechanical agitation can provide efficient extraction of PAHs, particularly when optimised for specific sample types and solvents | Similar to other methods, mechanical agitation may not fully extract highly hydrophobic PAHs from complex matrices without optimisation | [6] |
Soxhlet | 1–30 g | Soil/sediment | 100–600 | dichloromethane | 3–48 h | Effective extraction with no need for filtration | Clean-up of samples is required. There is extensive usage of solvent volumes | [15] |
Accelerated solvent extraction | 5–10 g 100 mL | Soil/sediment, water | 15–40 | hexane, acetone, dichloromethane | 15–30 min | ASE significantly reduces extraction time compared to traditional methods | ASE systems can be expensive to purchase and maintain, which may be a barrier for some laboratories | [27] |
Solid-phase microextraction | 1–5 g | Soil/sediment | Solvent-free | Solvent-free | 2–4 h | Fewer steps are required. Least preparation and sample volume | Low selectivity and a finite fibre capacity. Contamination of the SPME needle | [28] |
Liquid-phase microextraction | 10–100 mL 1–2 g | Soil, sediment, water | 0.5–10 | hexane, toluene | 15–60 min | LPME is economical and ecologically benign because it utilises very little solvent | The small volume of extraction solvent may not be sufficient for highly contaminated samples or for extracting large quantities of analytes | [103] |
QuEChERS | 1–10 g 10 mL | Soil/sediment, water | 1–10 | acetonitrile | 1–10 min | The method is quick and straightforward, reducing the overall time and complexity of sample preparation | Incomplete extraction of highly hydrophobic PAHs from complex matrices | [26] |
Supercritical fluid extraction | 5–10 g | Soil, sediment, water | 8–50 | methanol or acetone | 30 min–2 h | SFE offers fast extraction times compared to conventional methods, often completing in less than an hour | SFE systems are expensive to purchase and maintain, which can be a barrier for some laboratories | [42] |
Gas purge-microsyringe extraction | 1–5 mL | Water | 0.1–0.5 mL | n-Hexane | 5–15 min | Extremely low solvent usage, rapid extraction | Limited to volatile compounds, requires precise control | [109,111] |
Magnetic solid-phase extraction | 5–50 mL | Water, soil, sediment | 1–5 mL | acetone, methanol | 10–30 min | High selectivity, reusability of magnetic materials, fast | Requires magnetic particles, may need additional clean-up steps | [105] |
10. Techniques Applied for the Determination of Polycyclic Aromatic Hydrocarbons
10.1. Gas Chromatography
10.2. High-Performance Liquid Chromatography
10.3. Supercritical Fluid Chromatography
10.4. Capillary Electrophoresis and Thin-Layer Chromatography
Analytical Technique | Advantages | Limitations | Time Required | Sample Matrix | Operating Conditions | Selectivity for Size | References |
---|---|---|---|---|---|---|---|
Gas Chromatography-Mass Spectrometry | - Identifies and quantifies multiple PAHs - Widely used | - Requires extensive sample preparation - High cost of equipment and maintenance - Time-consuming analysis | - Sample prep: Hours - Analysis: 30–60 min/sample | - Air, water, soil, sediments | - Requires high-purity gases- Operates at high temperatures (200–300 °C) | - High selectivity for PAHs based on volatility and molecular size | [9,35,64,112] |
High-Performance Liquid Chromatography | - Effective for higher molecular weight PAHs - Good separation efficiency - Less sample prep than GC-MS | - Lower sensitivity than GC-MS - Requires fluorescence or UV detection for PAHs - Can be costly | - Sample prep: Hours - Analysis: 20–30 min/sample | - Water, soil, sediments | - Operates at room to moderate temperatures (20–40 °C) | - Can be tailored with different column phases for size selectivity | [34,78,100,105] |
Fluorescence Spectroscopy | - High sensitivity for specific PAHs - Rapid analysis - Relatively low cost | - Limited to fluorescent PAHs - Requires calibration with standards - Potential for matrix interference | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil | - Operates under ambient conditions with UV/Vis light | - Selective for PAHs with specific ring sizes that fluoresce | [127,128] |
Fourier Transform Infrared Spectroscopy (FTIR) | - Non-destructive - Rapid analysis - Minimal sample preparation | - Limited sensitivity for trace levels - Interference from other compounds | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil, sediments, air | - Operates at room temperature with IR light | - Limited selectivity; depends on molecular vibration modes | [129,130] |
Gas Chromatography with Flame Ionisation Detection | - Good sensitivity and specificity - Lower cost than GC-MS - Reliable and robust | - Lower sensitivity than GC-MS - Cannot identify PAHs without standards - Requires sample clean-up | - Sample prep: Hours - Analysis: 30–60 min/sample | - Air, water, soil, sediments | - Requires high purity gases- Operates at high temperatures (200–300 °C) | - High selectivity for PAHs based on volatility and molecular size | [8,26] |
Surface-Enhanced Raman Spectroscopy (SERS) | - High sensitivity and specificity - Minimal sample preparation - Rapid detection | - Requires specialised substrates - Potential variability in substrate performance | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil | - Operates at room temperature with laser excitation | - Limited selectivity; depends on molecule-surface interactions | [131] |
Electrochemical Methods | - Simple and portable - Rapid and on-site analysis - Low cost | - Lower sensitivity and selectivity compared to chromatographic methods - Requires calibration | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil | - Operates at ambient temperature with applied voltage | - Selectivity can be tuned with specific electrodes or coatings | [51] |
Supercritical Fluid Chromatography | - Fast separation - Lower solvent consumption - High resolution for non-polar compounds | - Requires specialised equipment - Limited availability - Expertise needed for method development | - Sample prep: Hours - Analysis: 10–30 min/sample | - Water, soil, sediments | - Operates with supercritical CO2 at high pressure | - Selective based on molecular weight and polarity | [104] |
Capillary Electrophoresis | - High separation efficiency - Minimal sample volume required - Rapid analysis | - Limited to charged or polar PAHs - Lower sensitivity compared to chromatographic methods - Complex data interpretation | - Sample prep: Hours - Analysis: Minutes/sample | - Water, soil, sediments | - Operates at high voltage- Requires precise pH control | - Selectivity based on charge-to-size ratio | [122] |
Thin-Layer Chromatography | - Simple and inexpensive - Visual detection possible - Rapid screening tool | - Low sensitivity and resolution - Semi-quantitative at best - Requires further analysis for confirmation | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil, sediments, air | - Operates at ambient temperature- Requires solvent | - Limited selectivity; separates based on polarity and size | [124] |
Synchronous Fluorescence Spectrophotometry | - High sensitivity and selectivity - Reduces spectral overlap - Rapid analysis | - Limited to PAHs that fluoresce - Requires specific instruments | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil | - Controlled wavelength settings, typically room temperature | - High, sensitive to specific PAHs due to fluorescence properties | [132] |
Near-Infrared (NIR) Spectroscopy | - Non-destructive - Rapid and simple sample preparation | - Lower sensitivity for PAHs - Requires calibration with standards | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil, sediments | - Requires controlled light source and detector | - Low, better for bulk characterisation | [133] |
Miniaturised Membrane Inlet Mass Spectrometer (mini-MIMS) | - High sensitivity and specificity - Portable and allows on-site analysis | - High initial cost - Requires technical expertise | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil | - Operates under vacuum and controlled temperature | - Moderate, depending on membrane selectivity | [83] |
Polythiophene Sensors | - High sensitivity - Can be used for real-time monitoring - Low cost | - Limited to specific PAHs - Potential for sensor fouling | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, air | - Ambient conditions | - High for certain PAHs due to functionalisation | [134] |
Graphene Nanosensor | - High sensitivity and selectivity - Fast response time - Potential for real-time monitoring | - High development cost - Requires calibration and potential for fouling | - Sample prep: Minimal - Analysis: Minutes/sample | - Water, soil, air | - Ambient conditions | - High, tunable based on functionalisation | [135] |
Liquid Chromatography-Mass Spectrometry | - Capable of identifying and quantifying multiple PAHs simultaneously | - High cost of equipment and maintenance - Requires extensive sample preparation | - Sample prep: Hours - Analysis: 30–60 min/sample | - Water, soil, sediments, air | - Requires precise temperature and pressure control | - Moderate, depending on column and ionisation source | [37] |
11. Application of Hybrid Techniques
12. Challenges and Limitations
13. Future Directions and Emerging Trends
14. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mogashane, T.M.; Mujuru, M.; McCrindle, R.I.; Ambushe, A.A. Quantification, source apportionment and risk assessment of polycyclic aromatic hydrocarbons in sediments from Mokolo and Blood Rivers in Limpopo Province, South Africa. J. Environ. Sci. Health Part A 2019, 55, 71–81. [Google Scholar] [CrossRef]
- Kariyawasam, T.; Doran, G.S.; Howitt, J.A.; Prenzler, P.D. Optimization and Comparison of Microwave-Assisted Ex-traction, Supercritical Fluid Extraction, and Eucalyptus Oil-Assisted Extraction of Polycyclic Aromatic Hydrocarbons from Soil and Sediments. Environ. Toxicol. Chem. 2023, 42, 982–994. [Google Scholar] [CrossRef]
- Mogashane, T.M.; Maree, J.P.; Mokoena, L. Adsorption of Polycyclic Aromatic Hydrocarbons from Wastewater Using Iron Oxide Nanomaterials Recovered from Acid Mine Water: A Review. Minerals 2024, 14, 826. [Google Scholar] [CrossRef]
- Sher, S.; Waseem, M.; Leta, M.K. Review of Techniques for the Removal of Polycyclic Aromatic Hydrocarbons from Produced Water. Environments 2023, 40, 40. [Google Scholar] [CrossRef]
- Das, S.K.; Routh, J.; Roychoudhury, A.N. Sources and historic changes in polycyclic aromatic hydrocarbon input in a shallow lake, Zeekoevlei, South Africa. Org. Geochem. 2008, 39, 1109–1112. [Google Scholar] [CrossRef]
- Chen, B.-H.; Inbaraj, B.S.; Hsu, K.-C. Hsu Recent advances in the analysis of polycyclic aromatic hydrocarbons in food and water. J. Food Drug Anal. 2022, 30, 494. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, B.; Di Carro, M.; Scapuzzi, C.; Magi, E. Solvent-Free Determination of Selected Polycyclic Aromatic Hydrocarbons in Plant Material Used for Food Supplements Preparation: Optimization of a Solid Phase Microextraction Method. Molecules 2023, 28, 5937. [Google Scholar] [CrossRef]
- Mogashane, T.M.; Mujuru, M.; Ambushe, A.A. Comparison and optimization of extraction methods for the determination of polycyclic aromatic hydrocarbons in sediment from Blood River in Limpopo Province. In Proceedings of the 39th JOHANNESBURG International Conference on “Chemical, Biological and Environmental Engineering South Africa”, Johannesburg, South Africa, 16–17 November 2023. [Google Scholar]
- Liu, L.; Chen, X.; Duan, Y.; Wu, Z.; Xu, L. Distribution, sources and health risk assessment of polycyclic aromatic hydro-carbons in urban soils under different landform conditions of Taiyuan, China. Front. Environ. Sci. 2024, 12, 1363297. [Google Scholar] [CrossRef]
- Bai, X.; Song, W.; Guo, L.; Liu, R.; Cao, Y.; Jin, P.; Zhu, B.; Zhang, X. Improvement of Extraction Efficiency and Metabolites of Pollutants from Medium and Low Concentration Organic Polluted Soil. Sci. Energy Environ. 2024, 1, 1–21. [Google Scholar] [CrossRef]
- Ryu, J.Y.; Hong, D.H. Association of mixed polycyclic aromatic hydrocarbons exposure with oxidative stress in Korean adults. Sci. Rep. 2024, 14, 7511. [Google Scholar] [CrossRef]
- Mahgoub, H.A. Extraction Techniques for Determination of Polycyclic Aromatic Hydrocarbons in Water Samples. Int. Natl. J. Sci. Res. 2016, 5, 268–272. [Google Scholar]
- Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021. Atmosphere 2024, 15, 291. [Google Scholar] [CrossRef]
- Roy, D.; Jung, W.; Kim, J.; Lee, M.; Park, J. Cancer Risk Levels for Sediment-and Soil-Bound Polycyclic Aromatic Hydro-carbons in Coastal Areas of South Korea. Front. Environ. Sci. 2021, 9, 719243. [Google Scholar] [CrossRef]
- Parigoridi, I.-E.; Tsoumani, E.; Akrida-Demertzi, K.; Demertzis, P.G. Evaluation of three extraction methods for the isolation of PAHs from recycled paperboard materials intended for food contact applications. Eur. Food Res. Technol. 2022, 249, 665–673. [Google Scholar] [CrossRef]
- Hieu, N.D.; Anh, H.Q.; Minh, T.B.; Tri, T.M.; Giang, D.M.H.; Ngoc, H.B.; Tu, V.V.; Yen, N.T.H.; Takahashi, S. Polycyclic aromatic hydrocarbons (PAHs) in sediment environments in Vietnam: Analytical methods and contamination status. Sci. Tech. Dev. J. 2024, 27, 3269–3327. [Google Scholar]
- Kissoudi, M.; Samanidou, V. Recent advances in applications of ionic liquids in miniaturized microextraction techniques. Molecules 2018, 23, 1437. [Google Scholar] [CrossRef]
- Manousi, N.; Zachariadis, G.A. Recent Advances in the Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Molecules 2020, 25, 2182. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.V.; Gan, S.; Ng, H.K. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils. Int. J. Anal. Chem. 2010, 2010, 398381. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovic, J.S.; Mitic, V.D.; Jovanovic, V.P.S.; Dimitrijevic, M.V.; Petrovic, G.M.; Nikolic-Mandic, S.D.; Stojanovic, G.S. Optimization of the QuEChERS extraction procedure for the determination of polycyclic aromatic hydrocarbons in soil by gas chromatography-mass spectrometry. Anal. Methods 2016, 8, 1711–1720. [Google Scholar] [CrossRef]
- Song, X.; Li, J.; Liao, C.; Chen, L. Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Combined with Low Solvent Consumption for Determination of Polycyclic Aromatic Hydrocarbons in Seawater by GC-MS. Chromatographia 2011, 74, 89–98. [Google Scholar] [CrossRef]
- Ncube, S.; Madikizela, L.; Cukrowska, E.; Chimuka, L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. TrAC-Trends Anal. TrAC-Trends Anal. Chem. 2018, 99, 101–116. [Google Scholar] [CrossRef]
- Gorshkov, A.G.; Izosimova, O.N.; Kustova, O.V. Determination of Priority Polycyclic Aromatic Hydrocarbons in Water at The Trace Level. J. Anal. Chem. 2019, 74, 771–777. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Hosseini, M.-R.M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lawal, A.T.; Fantke, P. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 2017, 3, 1339841. [Google Scholar] [CrossRef]
- Mogashane, T.M.; Mujuru, M.; Ambushe, A.A. Determination and distribution of 16 polycyclic aromatic hydrocarbons in water samples from Blood and Mokolo Rivers in Limpopo Province, South Africa. Phys. Chem. Earth Parts A/B/C 2022, 127, 103165. [Google Scholar] [CrossRef]
- Giergielewicz-Możajska, H.; Dąbrowski, U.; Namieśnik, J. Accelerated Solvent Extraction (ASE) in the Analysis of Environmental Solid Samples Some Aspects of Theory and Practice. Crit. Rev. Anal. Chem. 2001, 33, 149–165. [Google Scholar] [CrossRef]
- Jalili, V.; Barkhordari, A.; Ghiasvand, A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem. J. 2020, 157, 104967. [Google Scholar] [CrossRef]
- Belo, R.F.C.; Figueiredo, J.P.; Nunes, C.M.; Pissinatti, R.; De Souza, S.V.C.; Junqueira, R.G. Accelerated solvent extraction method for the quantification of polycyclic aromatic hydrocarbons in cocoa beans by gas chromatography–mass spectrom-etry. J. Chromatogr. B 2017, 1053, 87–100. [Google Scholar] [CrossRef]
- Hosseini, M.H.; Rezaee, M.; Akbarian, S.; Mizani, F.; Pourjavid, M.R.; Arabieh, M. Homogeneous liquid-liquid microex-traction via flotation assistance for rapid and efficient determination of polycyclic aromatic hydrocarbons in water samples. Anal. Chim. Acta 2013, 762, 54–60. [Google Scholar] [CrossRef]
- Fernández, M.; Clavijo, S.; Forteza, R.; Cerdà, V. Determination of polycyclic aromatic hydrocarbons using lab on valve dispersive liquid-liquid microextraction coupled to high performance chromatography. Talanta 2015, 138, 190–195. [Google Scholar] [CrossRef]
- Sibiya, P.; Cukrowska, E.; Jönsson, J.; Chimuka, L. Hollow-fibre liquid-phase microextraction for the determination of polycyclic aromatic hydrocarbons in Johannesburg Jukskei River, South Africa. Chromatographia 2013, 76, 427–436. [Google Scholar] [CrossRef]
- Ndwabu, S.; Malungana, M.; Mahlambi, P. Efficiency comparison of extraction methods for the determination of 11 of the 16 USEPA priority polycyclic aromatic hydrocarbons in water matrices: Sources of origin and ecological risk assessment. Integr. Environ. Assess. Manag. 2024, 20, 1598–1610. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.M.; Shemirani, F.; Ghorbanian, S.A. Hydrophobic Deep Eutectic Solvents in Developing Microextraction Methods Based on Solidification of Floating Drop: Application to the Trace HPLC/FLD Determination of PAHs. Chroma Tographia 2018, 81, 1201–1211. [Google Scholar] [CrossRef]
- Chen, H.; Gao, G.; Liu, P.; Pan, R.; Liu, X.; Lu, C. Determination of 16 Polycyclic Aromatic Hydrocarbons in Tea by Simultaneous Dispersive Solid-Phase Extraction and Liquid–Liquid Extraction Coupled with gas Chromatography–Tandem Mass Spectrometry. Food Anal. Methods 2016, 4, 2374–2384. [Google Scholar] [CrossRef]
- Guo, W.; He, M.; Yang, Z.; Lin, C.; Quan, X.; Wang, H. Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere 2007, 68, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Hettiyadura, A.P.S.; Laskin, A. Quantitative analysis of polycyclic aromatic hydrocarbons using high-performance liquid chromatography-photodiode array-high-resolution mass spectrometric detection platform coupled to electrospray and atmospheric pressure photoionization sources. J. Mass. Spectrom. 2021, 57, e4804. [Google Scholar] [CrossRef] [PubMed]
- Hanh, D.T.; Trinh, H.T.; Thang, P.Q.; Dung, N.T.; Dien, N.T. Optimization of ultrasonication extraction for determination of 16 polycyclic aromatic hydrocarbons in air particle, Vietnam. Vietnam. J. Sci. Technol. 2018, 56, 324–334. [Google Scholar] [CrossRef]
- Kafilzadeh, F. Distribution and sources of polycyclic aromatic hydrocarbons in water and sediments of the Soltan Abad River, Iran. Egypt. J. Aquat. Res. 2015, 41, 227–231. [Google Scholar] [CrossRef]
- Zhi, H.; Zhao, Z.; Zhang, L. The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China. Chemosphere 2015, 119, 1134–1140. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Prasad, S.; Musorina, T.; Chervonnaya, T.; Arutyunyan, Z. Simultaneous Dispersive Liquid–Liquid Mi-croextraction and Determination of Different Polycyclic Aromatic Hydrocarbons in Surface Water. Molecules 2022, 27, 8586. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Nakano, K.; Shen, Z.; Okuda, T. Optimization of the QuEChERS extraction method to determine Polycyclic Aromatic Hydrocarbons (PAHs) in powder aerosol particles collected by cyclone. Environ. Technol. Innov. 2023, 31, 103141. [Google Scholar] [CrossRef]
- Zaghden, H.; Tedetti, M.; Sayadi, S.; Serbaji, M.M.; Elleuch, B.; Saliot, A. Origin and distribution of hydrocarbons and organic matter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, Southern Mediterranean Sea). Mar. Pollut. Bull. 2017, 117, 70–89. [Google Scholar] [CrossRef]
- Kafilzadeh, F.; Shiva, A.H.; Malekpour, R. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Water and Sediments of the Kor River, Iran. Middle East J. Sci. Res. 2011, 10, 1–7. [Google Scholar]
- Lee, C.-C.; Chen, C.S.; Wang, Z.-X.; Tien, C.-J. Polycyclic Aromatic Hydrocarbons in 30 River Ecosystems, Taiwan: Sources, and Ecological and Human Health Risks. Sci. Total. Environ. 2021, 795, 148867. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Determination and Distribution of Polycyclic Aromatic Hy-drocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 387. [Google Scholar] [CrossRef]
- Carvalho, F.I.M.; Filho, H.A.D.; Dantas, K.D.G.F. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in groundwater by GC-FID after solid-phase extraction. SN Appl. Sci. 2019, 7, 804. [Google Scholar] [CrossRef]
- Tolosa, I.; De Mora, S.; Sheikholeslami, M.R.; Villeneuve, J.-P.; Bartocci, J.; Cattini, C. Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Mar. Pollut. Bull. 2004, 48, 44–60. [Google Scholar] [CrossRef]
- Bayowa, A.V. Levels of Polycyclic Aromatic Hydrocarbons (PAHs) in Marshy Soils and Sediments within Warri and Its Environs, Nigeria. Master’s Thesis, Department of Environmental Science, University of South Africa, Johannesburg, South Africa, 2014. [Google Scholar]
- Mekonnen, K.N.; Chandravanshi, B.S.; Redi-Abshiro, M.; Abayneh, A.A.; McCrindle, R.I.; Moyo, S. Distribution of polycyclic aromatic hydrocarbons in sediments of Akaki River, Lake Awasa, and Lake Ziway, Ethiopia. Environ. Assess. Monit. 2015, 187, 474. [Google Scholar] [CrossRef]
- Soursou, V.; Campo, J.; Picó, Y. Revisiting the analytical determination of PAHs in environmental samples: An update on recent advances. Trends Environ. Anal. Chem. 2023, 37, e00195. [Google Scholar] [CrossRef]
- Daso, A.P.; Akortia, E.; Okonkwo, J.O. Concentration profiles, source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soils from Agbogbloshie e-waste dismantling site, Accra, Ghana. Environ. Sci. Pollut. Res. 2016, 23, 10883–10894. [Google Scholar] [CrossRef]
- Ma, W.-L.; Li, Y.-F.; Qi, H.; Sun, D.-Z.; Liu, L.-Y.; Wang, D.-G. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere 2010, 79, 441–447. [Google Scholar] [CrossRef]
- Moon, H.; Choi, M.; Choi, H. Intake and Potential Health Risk of Polycyclic Aromatic Hydrocarbons Associated with Seafood Consumption in Korea. Arch. Environ. Contam. Toxicol. 2010, 58, 214–221. [Google Scholar] [CrossRef]
- Hussain, J.; Zhao, Z.; Pang, Y.; Xia, L.; Hussain, I.; Jiang, X. Effects of Different Water Seasons on the Residual Characteristics and Ecological Risk of Polycyclic Aromatic Hydrocarbons in Sediments from Changdang Lake, China. J. Chem. 2016, 2016, 8545816. [Google Scholar] [CrossRef]
- Nasher, E.; Heng, L.Y.; Zakaria, Z.; Suri, S. Assessing the Ecological Risk of Polycyclic Aromatic Hydrocarbons in Sediments at Langkawi Island, Malaysia. Sci. World J. 2013, 1, 858309. [Google Scholar] [CrossRef]
- Delgado-Saborit, J.M.; Stark, C.; Harrison, R.M. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ. Int. 2011, 37, 383–392. [Google Scholar] [CrossRef]
- Nikolaou, A.; Kostopoulou, M.; Petsas, A.; Vagi, M.; Lofrano, G.; Meric, S. Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments. Trac Trends Anal. Chem. 2009, 28, 653–664. [Google Scholar] [CrossRef]
- Neff, J.M.; Stout, S.A.; Gunster, D.G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazard. Integr. Environ. Assess. Manag. 2005, 1, 22–33. [Google Scholar] [CrossRef]
- Nemirovskaya, I.A. Hydrocarbons in the water and bottom sediments of a region with continuous petroleum contamination. Geochem. Int. 2007, 45, 638–651. [Google Scholar] [CrossRef]
- Ma, W.; Sun, R.; Wang, X.; Zong, Z.; Zhao, S.; Sun, Z.; Tian, C.; Tang, J.; Cui, S.; Li, J.; et al. Variations of the atmospheric polycyclic aromatic hydrocarbon concentrations, sources, and health risk and the direct medical costs of lung cancer around the Bohai Sea against a background of pollution prevention and control in China. Atmos. Meas. Tech. 2024, 24, 1509–1523. [Google Scholar] [CrossRef]
- Oduntan, A.O. Development and Application of Quenchers Method for Extraction and Analysis of Polycyclic Aromatic Hy-drocarbons (PAHs) in South African Fish Samples. Master’s Thesis, School of chemistry, University of Witwatersrand, Johannesburg, South Africa, 2014. [Google Scholar]
- Mahgoub, H.A. Nanoparticles Used for Extraction of Polycyclic Aromatic Hydrocarbons. J. Chem. 2019, 4816849. [Google Scholar] [CrossRef]
- Seopela, M.P.; McCrindle, R.I.; Combrinck, S.; Regnier, T.T.-C. Hazard assessment of polycyclic aromatic hydrocarbons in water and sediments in the vicinity of coal mines. J. Soil Sediments 2016, 16, 2740–2752. [Google Scholar] [CrossRef]
- Salih, H.; Jazza, A.; Adhub, Y.A.; Hamid, T. Polycyclic aromatic hydrocarbons (PAHs) in sediment of al-Kahlaa River in Missan Province/Iraq. Glob. J. Biol. Agric. Health Sci. 2015, 38, 2319–5584. [Google Scholar]
- Zhang, Y.; Yuan, L.; He, S.; Tao, H.; Xie, W.; Zhang, X.; Ren, X.; Jiang, T.; Li, L.; Zhu, Z. Contemporary Research Progress on the Detection of Polycyclic Aromatic Hydrocarbons. Int. J. Environ. Res. Public Health 2022, 19, 2790. [Google Scholar] [CrossRef]
- Ngubo, A.; Mahlambi, P.N.; Ojwach, S.O. Occurrence of polycyclic aromatic hydrocarbons in water and sediment samples from KwaZulu Natal Province, South Africa. Water Environ. J. 2020, 35, 84–96. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Short, J.W.; Kolak, J.J.; Payne, J.R.; Van Kooten, G.K. An evaluation of petrogenic hydrocarbons in northern Gulf of Alaska continental shelf sediments—The role of coastal oil seep inputs. Org. Geochem. 2007, 38, 643–670. [Google Scholar] [CrossRef]
- Oluseyi, T.; Olayinka, K.O.; Alo, B.; Smith, R.M. Comparison of extraction and clean-up techniques for the determination of polycyclic aromatic hydrocarbons in contaminated soil samples. Afr. J. Environ. Sci. Technol. 2011, 5, 482–493. [Google Scholar]
- Chen, C.-F.; Chen, C.-W.; Dong, C.-D.; Kao, C.-M. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. Sci. Total. Environ. 2013, 463–464, 1174–1181. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Loganathan, P.; Nguyen, T.V.; Vigneswaran, S.; Kandasamy, J.; Slee, D.; Stevenson, G.; Naidu, R. Polycyclic aromatic hydrocarbons in road-deposited sediments, Water sediments and soils in Sydney, Australia: Comparisons of concentration distribution, sources and potential toxicity. Ecotoxicol. Environ. Saf. 2014, 104, 339–348. [Google Scholar] [CrossRef]
- Yan, J.; Wang, L.; Fu, P.P.; Yu, H. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat. Res. Toxicol. Environ. Mutagen. 2003, 557, 99–108. [Google Scholar] [CrossRef]
- Topal, T. Investigation of Extraction Methodologies for Quantitative Determination of Polycyclic Aromatic Hydrocarbons in Sediments. Ph.D. Thesis, School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey, 2011. [Google Scholar]
- Wick, A.F.; Haus, N.W.; Sukkariyah, B.F.; Haering, K.C.; Daniels, L.W. Remediation of PAH-Contaminated Soils and Sediments. J. Appl. Environ. Soil Sci. 2011, 112, 1–102. [Google Scholar]
- Xue, L.D.; Lang, Y.H.; Liu, A.X.; Liu, J. Source apportionment of polycyclic aromatic hydrocarbons in coastal surface sediments from the Yellow Sea. Ecolology Environ. Sci. 2008, 17, 1369–1375. [Google Scholar]
- Li, W.-H.; Tian, Y.-Z.; Shi, G.-L.; Guo, C.-S.; Li, X.; Feng, Y.-C. Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China. Ecotoxicol. Environ. Saf. 2012, 75, 198–206. [Google Scholar] [CrossRef]
- Woźniak, M.; Hoppe, K.; Drzewiecka, K. Determination of Polycyclic Aromatic Hydrocarbon Content in Garden Herbal Plants Using Liquid Chromatographic Analysis (HPLC-FL). Plants 2023, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, S.B.; Grabanski, C.B.; Martin, E.; Miller, D.J. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: Recovery, selectivity and effects on sample matrix. J. Chromatogr. A 2000, 892, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Emoyan, O.; Agbaire, P.O.; Akporido, S.O. Variability in Polycyclic Aromatic Hydrocarbons (PAHs) Isomer Pair Ratio: Source Identification Concern. Int. J. Environ. Monit. Anal. 2015, 3, 111–117. [Google Scholar]
- Doong, R.-A.; Lin, Y.-T. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Res. 2004, 38, 1733–1744. [Google Scholar] [CrossRef]
- Mirsadeghi, S.A.; Zakaria, M.P.; Yap, C.K.; Shahbazi, A. Risk assessment for the daily intake of polycyclic aromatic hy-drocarbons from the ingestion of cockle (Anadara granosa) and exposure to contaminated water and sediments along the west coast of Peninsular Malaysi. J. Environ. Sci. 2011, 23, 336–345. [Google Scholar] [CrossRef]
- Son, C.E.; Choi, S.-S. Influence of smear matrix types on detection behaviors and efficiencies of polycyclic aromatic hydrocarbons using ion mobility spectrometry. Chemosphere 2019, 218, 368–375. [Google Scholar] [CrossRef]
- WHO. Polynuclear aromatic hydrocarbons in drinking and ground water. In Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; WHO Publisher: Geneva, Switzerland, 2003. [Google Scholar]
- Nekhavhambe, T.; Van Ree, T.; Fatoki, O. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff and sediments in and around Thohoyandou, Limpopo Province, South Africa. Water S. Afr. 2014, 40, 415–424. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, V.K.; Gaur, R.; Kumar, S.; Sharma, C.S.; Akolkar, A.B. Validation of HPLC method for determination of priority polycyclic aromatichydrocarbons (PAHS) in waste water and sediments. Adv. Appl. Sci. Res. 2014, 5, 201–209. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Publisher: Geneva, Switzerland, 2011. [Google Scholar]
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef]
- Salem, D.M.S.A.; Morsy, F.A.-E.M.; El Nemr, A.; El-Sikaily, A.; Khaled, A. The monitoring and risk assessment of aliphatic and aromatic hydrocarbons in sediments of the Red Sea, Egypt. Egypt. J. Aquat. Res. 2014, 40, 333–348. [Google Scholar] [CrossRef]
- Gupte, A.; Tripathi, A.; Patel, H.; Rudakiya, D.; Gupte, S. Bioremediation of Polycyclic Aromatic Hydrocarbon (PAHs): A Perspective. Open Biotechnol. J. 2016, 10, 368–378. [Google Scholar] [CrossRef]
- Wang, G.Y.; Tian, H.Q.; Niu, X.L.; Jia, S.M.; Liu, Y.R.; Chen, X.F.; Xie, Z.; Yang, D.Z.; Li, L.; Shi, G.F. Constant-energy synchronous fluorescence spectrum characteristics of 15 polycyclic aromatic hydrocarbons from atmospheric particulate matters. Acta Sci. Circumstantiae 2019, 39, 44–52. [Google Scholar]
- Sun, C.; Zhang, J.; Ma, Q.; Chen, Y.; Ju, H. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: Sediment–water partitioning, source identification and environmental health risk assessment. Environ. Geochem. Health 2016, 39, 63–74. [Google Scholar] [CrossRef]
- Kanchanamayoon, W.; Tatrahun, N. Determination of Polycyclic Aromatic Hydrocarbons in Water Samples by Solid Phase Extraction and Gas Chromatography. World J. Chem. 2008, 3, 51–54. [Google Scholar]
- Jiao, W.; Wang, T.; Khim, J.S.; Luo, W.; Hu, W.; Naile, J.E.; Giesy, J.P.; Lu, Y. PAHs in surface sediments from coastal and estuarine areas of the northern Bohai and Yellow Seas, China. Environ. Geochem. Health 2011, 34, 445–456. [Google Scholar] [CrossRef]
- Marinaite, I.; Penner, I.; Molozhnikova, E.; Shikhovtsev, M.; Khodzher, T. Polycyclic Aromatic Hydrocarbons in the At-mosphere of the Southern Baikal Region (Russia): Sources and Relationship with Meteorological Conditions. Atmosphere 2022, 13, 420. [Google Scholar] [CrossRef]
- Chen, B.; Xuan, X.; Zhu, L.; Wang, J.; Gao, Y.; Yang, K.; Shen, X.; Lou, B. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res. 2004, 38, 3558–3568. [Google Scholar] [CrossRef]
- Samanta, S.K.; Singh, O.V.; Jain, R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 2002, 20, 243–248. [Google Scholar] [CrossRef]
- Zelinkova, Z.; Wenzl, T. The Occurrence of 16 EPA PAHs in Food-A Review. Polycycl. Aromat. Compd. 2015, 35, 248–284. [Google Scholar] [CrossRef]
- Koch, J.; Shiveler, G. Design Principles for Liquid-Liquid Extraction. J. Environ. Chem. Eng. 2015, 60, 22–30. [Google Scholar]
- Harrison, D.M.; Chang, W.-C.; Lin, H.-T. Using QuEChERS and HPLC Method to Monitor the Background Concentration of Polycyclic Aromatic Hydrocarbons in Commercial Black Tea Leaves and Infusions in Taiwan. Toxics 2024, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Ostadgholami, M.; Daraei, B.; Zeeb, M.; Amirahmadi, M. Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS. Foods 2023, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Bejaoui, B.; Nefzi, K.; Bouchmila, I.; Koumba, S.; Joly, N.; M’Hamdi, N.; Martin, P. Solid-Phase extraction of polycyclic aromatic hydrocarbons from water samples using CTAB-TIO2 modified nanotubes. Microchem. J. 2023, 193, 109027. [Google Scholar] [CrossRef]
- Vahid, J.; Abdullah, B.; Alireza, G. Liquid-phase microextraction of polycyclic aromatic hydrocarbons: A review. Rev. Anal. Chem. 2020, 39, 1–19. [Google Scholar]
- Tang, S.; Liu, S.; Frank, B.P. Feasibility of supercritical fluid extraction-supercritical fluid chromatography mass spectrometry for the determination of polycyclic aromatic hydrocarbons in particulate matter samples. J. Sep. Sci. 2021, 44, 3717–3726. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, A.; Zhai, L.; Gao, J.; Lyu, S.; Jiang, Y.; Zhong, T.; Xiao, Y.; Yu, X. Magnetic solid phase extraction coupled to HPLC-UV for highly sensitive analysis of mono-hydroxy polycyclic aromatic hydrocarbons in urine. Anal. Chim. Acta 2024, 1285, 342020. [Google Scholar] [CrossRef]
- Manousi, N.; Rosenberg, E.; Deliyanni, E.; Zachariadis, G.A.; Samanidou, V. Magnetic Solid-Phase Extraction of Organic Compounds Based on Graphene Oxide Nanocomposites. Molecules 2020, 25, 1148. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y. Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. Trac. Trends Anal. Chem. 2019, 118, 652–665. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, H. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine. J. Sep. Sci. 2014, 37, 2591–2598. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yang, Y.; Liu, M.; Yu, Y.; Zhou, J.L.; Li, D. PAH determination based on a rapid and novel gas purge-microsyringe extraction (GP-MSE) technique in road dust of Shanghai, China: Characterization, source apportionment, and health risk assessment. Sci. Total. Environ. 2016, 557–558, 688–696. [Google Scholar] [CrossRef]
- Nan, J.; Wang, J.; Piao, X.; Yang, C.; Wu, X.; Quinto, M.; Li, D. Novel and rapid method for determination of organophosphorus pesticide residues in edible fungus using dirrect gas purge microsyringe extraction coupled on-line with gas chromatography–mass spectrometry. Talanta 2015, 142, 64–71. [Google Scholar] [CrossRef]
- Wang, J.; Yang, C.; Li, H.; Piao, X.; Li, D. Gas purge-microsyringe extraction: A rapid and exhaustive direct microextraction technique of polycyclic aromatic hydrocarbons from plants. Anal. Chim. Acta 2013, 805, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Moradi, V.; Ardabili, S.M.S.; Shakoori, A.; Hoseyni, S.E. Development of a GC-MS Method for Determination of Various Polycyclic Aromatic Hydrocarbons in Iranian Traditional and Semi-industrial Taftoon Bread. Iran J. Pharm. Res. 2020, 19, 183–194. [Google Scholar] [CrossRef]
- Petridis, N.P.; Sakkas, V.A.; Albanis, T.A. Chemometric optimization of dispersive suspended microextraction followed by gas chromatography–mass spectrometry for the determination of polycyclic aromatic hydrocarbons in natural waters. J. Chromatogr. A 2014, 1355, 46–52. [Google Scholar] [CrossRef]
- Poster, D.L.; Schantz, M.M.; Sander, L.C.; Wise, S.A. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. Anal. Bioanal. Chem. 2006, 386, 859–881. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, J.; Carradus, M.; Songin, K.; Pettit, M.; Pettit, K.; Wright, C. Optimized method for determination of 16 FDA polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke by gas chromatography–mass spectrometry. BMC Chem. 2018, 12, 27. [Google Scholar] [CrossRef]
- Vistnes, H.; Sossalla, N.A.; Røsvik, A.; Gonzalez, S.V.; Zhang, J.; Meyn, T.; Asimakopoulos, A.G. The Determination of Polycyclic Aromatic Hydrocarbons (PAHs) with HPLC-DAD-FLD and GC-MS Techniques in the Dissolved and Particulate Phase of Road-Tunnel Wash Water: A Case Study for Cross-Array Comparisons and Applications. Toxics 2022, 19, 399. [Google Scholar] [CrossRef]
- Sereshti, H.; Karimi, M.; Karami, S.; Mahpishanian, S.; Bidhendi, M.E.; Rezania, S.; Mojiri, A.; Kamyab, H.; Rashidi Nodeh, H. Analysis of Polycyclic Aromatic Hydrocarbons Using Magnetic Three-Dimensional Graphene Solid-Phase Extraction Coupled with Gas Chromatography–Mass Spectrometry. Separations 2023, 10, 564. [Google Scholar] [CrossRef]
- Zhang, M.; Li, T.; Wang, H.; Ye, Y.; He, S.H.; Cao, X.C. Rapid determination of 16 polycyclic aromatic hydrocarbons in soil by gas chromatography-mass spectrometry. Environ. Chem. 2020, 39, 2321–2324. [Google Scholar]
- German-Hernandez, M.; Pino, V.; Anderson, J.L.; Afonso, A.M. Use of ionic liquid aggregates of 1-hexadecyl-3-butyl imidazolium bromide in a focused-microwave assisted extraction method followed by HPLC-UV-FLD to determine the 15 + 1 EU priority PAHs in toasted cereals (“gofios”). Talanta 2011, 85, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Viteri, F.; Sánchez, N.E.; Alexandrino, K. Alexandrino Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Leaf and Bark Samples of Sambucus nigra Using High-Performance Liquid Chromatography (HPLC). Methods Protoc. 2023, 6, 17. [Google Scholar] [CrossRef]
- Wang, X.; Feng, J.; Bu, Y.; Tian, Y.; Luo, C.; Sun, M. Mesoporous titanium oxide with high-specific surface area as a coating for in-tube solid-phase microextraction combined with high-performance liquid chromatography for the analysis of polycyclic aromatic hydrocarbons. J. Sep. Sci. 2017, 40, 2474–2481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, W.; Wu, S. Rapid Determination of Oxygenated and Parent Polycyclic Aromatic Hydrocarbons in Milk Using Supercritical Fluid Chromatography-Mass Spectrometry. Foods 2022, 11, 3980. [Google Scholar] [CrossRef]
- Lübeck, J.S.; Malmquist, L.M.V.; Christensen, J.H. Supercritical fluid chromatography for the analysis of oxygenated polycyclic aromatic compounds in unconventional oils. J. Chromatogr. A 2019, 1589, 162–172. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Janoszka, B.; Szumska, M.; Pastuszka, B.; Waligóra, S.; Damasiewicz-Bodzek, A.; Nowak, A.; Tyrpień-Golder, K. Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Marshmallows. Molecules 2024, 29, 3119. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, B.; Wahid, F.; Feng, W.; Chen, X. Intelligent Detection and Analysis of Polycyclic Aromatic Hydrocarbons Based on Surface-Enhanced Raman Scattering Spectroscopy. Comput. Intell. Neurosci. 2022, 2022, 8330702. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ni, X.J.; Zhang, J.Y.; Liu, Y.; Cao, Y.H. Detection of polycyclic aromatic hydrocarbons in cosmetics by reverse microemulsion capillary electrophoresis. Chin. J. Anal. Chem. 2015, 43, 81–86. [Google Scholar]
- Krupadam, R.J.; Bhagat, B.; Wate, S.R.; Bodhe, G.L.; Sellergren, B.; Anjaneyulu, Y. Fluorescence Spectrophotometer Analysis of Polycyclic Aromatic Hydrocarbons in Environmental Samples Based on Solid Phase Extraction Using Molecularly Imprinted Polymer. Environ. Sci. Technol. 2009, 43, 2871–2877. [Google Scholar] [CrossRef]
- Huizenga, J.M.; Semprini, L. Fluorescent spectroscopy paired with parallel factor analysis for quantitative monitoring of phenanthrene biodegradation and metabolite formation. Chemosphere 2023, 316, 137771. [Google Scholar] [CrossRef] [PubMed]
- Obinaju, B.E.; Martin, F.L. ATR-FTIR spectroscopy reveals polycyclic aromatic hydrocarbon contamination despite relatively pristine site characteristics: Results of a field study in the Niger Delta. Environ. Int. 2016, 89, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Weigel, S.; Wetekam, J.; Mollenhauer, K. Identification and classification of PAH in asphalt binders with FTIR spectroscopy and multivariate analysis methods. Fuel 2023, 337, 126845. [Google Scholar] [CrossRef]
- Guo, M.; Li, M.; Fu, H.; Zhang, Y.; Chen, T.; Tang, H.; Zhang, T.; Li, H. Quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in water by surface-enhanced Raman spectroscopy (SERS) combined with Random Forest. Mol. Biomol. Spectrosc. 2023, 287, 122057. [Google Scholar] [CrossRef] [PubMed]
- Lorenzoni, W.C.; Nascimento, P.C.D.; Bohrer, D.; de Carvalho, L.M.; Kunz, S.N.; Dognini, J.; Crestani, I. Synchronous Fluorescence Spectrometry (SFS) with Multivariate Calibration for the Determination of Polycyclic Aromatic Hydrocarbons (PAHs) and Their Oxgen Analogs in Printer Toner. Anal. Lett. 2024, 1–16. [Google Scholar] [CrossRef]
- Douglas, R.K.; Nawar, S.; Alamar, M.C.; Coulon, F.; Mouazen, A.M. Rapid detection of alkanes and polycyclic aromatic hydrocarbons in oil-contaminated soil with visible near-infrared spectroscopy. Eur. J. Soil Sci. 2019, 70, 140–150. [Google Scholar] [CrossRef]
- Tiu, B.D.B.; Krupadam, R.J.; Advincula, R.C. Pyrene-imprinted polythiophene sensors for detection of polycyclic aromatic hydrocarbons. Sens. Actuators B Chem. 2016, 228, 693–701. [Google Scholar] [CrossRef]
- Church, J.; Wang, X.; Calderon, J.; Lee, W.H.; Cho, H.J.; Zhai, L. A Graphene-Based Nanosensor for In Situ Monitoring of Polycyclic Aromatic Hydrocarbons (PAHs). J. Nanosci. Nanotechnol. 2016, 16, 1620–1623. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, S.; Zhang, L.; Du, Z.; Zhuang, J.; Pan, J. Determination of 16 polycyclic aromatic hydrocarbons in tire rubber by ultra-high performance supercritical fluid chromatography combined with atmospheric pressure photoionization-tandem mass spectrometry. Anal. Methods 2018, 10, 4902. [Google Scholar] [CrossRef]
- Sulej-Suchomska, A.M.; Polkowska, Ż.; Chmiel, T.; Dymerski, T.M.; Kokot, Z.J.; Namieśnik, J. Solid phase microextraction–comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry: A new tool for determining PAHs in airport runoff water samples. Anal. Methods 2016, 8, 4509–4520. [Google Scholar] [CrossRef]
PAH | Molecular Weight (g/mol) | Water Solubility (mg/L) | Vapour Pressure (Pa) | Octanol/Water Partition Coefficient (log P Kow) | Half-Life (Days) |
---|---|---|---|---|---|
Naphthalene | 128.17 | 31.7 | 11.0 | 3.37 | 1–3 |
Acenaphthylene | 152.20 | 3.93 | 0.6 | 4.00 | 3–10 |
Acenaphthene | 154.21 | 3.8 | 0.3 | 3.92 | 3–10 |
Fluorene | 166.23 | 1.9 | 0.03 | 4.18 | 3–10 |
Phenanthrene | 178.24 | 1.1 | 0.01 | 4.57 | 16–126 |
Anthracene | 178.24 | 0.045 | 0.01 | 4.54 | 16–126 |
Fluoranthene | 202.26 | 0.26 | 0.001 | 5.22 | 16–126 |
Pyrene | 202.26 | 0.135 | 0.001 | 5.18 | 16–126 |
Benz[a]anthracene | 228.29 | 0.014 | 0.0002 | 5.91 | 16–126 |
Chrysene | 228.29 | 0.002 | 0.00009 | 5.91 | 16–126 |
Benzo[b]fluoranthene | 252.31 | 0.0015 | 0.0001 | 5.80 | 16–126 |
Benzo[k]fluoranthene | 252.31 | 0.0008 | 0.00008 | 6.00 | 16–126 |
Benzo[a]pyrene | 252.31 | 0.0038 | 0.00005 | 6.04 | 16–126 |
Indeno [1,2,3-cd]pyrene | 276.34 | 0.062 | 0.000001 | 6.58 | 16–126 |
Dibenz[a,h]anthracene | 278.35 | 0.0005 | 0.000005 | 6.75 | 16–126 |
Benzo[g,h,i]perylene | 276.34 | 0.00026 | 0.00001 | 6.50 | 16–126 |
PAHs | ATSDR Soil (mg/kg) | ATSDR Water (mg/L) | USEPA Water (mg/L) |
---|---|---|---|
Naphthalene | 1.0 | 3.0 | _ |
Acenaphthene | 3.0 | 3.0 | _ |
Acenaphthylene | 3.0 | 3.0 | _ |
Fluorene | 3.0 | 0.005 | _ |
Phenanthrene | 3.0 | 3.0 | _ |
Anthracene | 3.0 | 3.0 | _ |
Fluoranthene | 3.0 | 3.0 | _ |
Pyrene | 3.0 | 3.0 | _ |
Benzo (a) anthracene | 0.15 | 0.005 | 0.001 |
Chrysene | _ | _ | 0.002 |
Benzo (b) fluoranthene | 0.3 | 0.005 | 0.004 |
Benzo (k) fluoranthene | _ | _ | 0.002 |
Benzo(a) pyrene | 0.3 | 0.005 | _ |
Indeno[1,2,3-ghi]pyrene | 0.3 | 0.005 | 0.004 |
Dibenzo (a) anthracene | 0.3 | 3.0 | 0.004 |
Benzo[hgi]perylene | 3.0 | 3.0 | _ |
(LMW PAHs) /(HMW PAHs) | Ant /(Phe + Ant) | Fln /(Fln + Pyr) | |
---|---|---|---|
Petrogenic origin | >1 | <0.1 | <0.4 |
Pyrolytic origin | <1 | >0.1 | >0.4 |
Location | Type of Sample | No. of PAHs | Percentage Recovery | Extraction Method | Analysis Technique | PAHs Concentrations Range | Reference |
---|---|---|---|---|---|---|---|
Tehran (northern Iran) | Water | 13 | 71–110% | SPE | GC-MS | 0–43.45 ng mL−1 | [117] |
Yanco, New South Wales (NSW), Australia | Soil & sediment | 4 | 32.6–116.7% | SFE, MAE, eucalyptus oil-assisted extraction | GC-MS | 4–3500 µg/kg | [2] |
Polokwane, South Africa | Water | 16 | 67.6–115% | LLE | GC-FID | 0.0121–1.53 μg/L | [26] |
Vietnam | Tea leaves | 4 | 98–112% | QuEChERS | HPLC-FLD | 2.88–218.21 µg/kg | [100] |
Norway | Water | 16 | 57–104% | ASE, SPE | HPLC-DAD-FLD | 0.020–2.0 µg/g | [116] |
Spain | Toasted cereals | 15 | 70.1–109% | MAE | HPLC-UV-FLD | Not detected | [119] |
Кarasun Lake, Azov Sea, Black Sea, Russia | Lake Water, Sea Water, Tap Water (Krasnodar) | 20 | 74–111% | DLLME | GC-MS, HPLC-FD/PDA | 0.1–20 ng/L | [41] |
Polokwane, South Africa | Sediment | 16 | 23.1–125% | MAE, ultrasonication, mechanical shaking | GC-FID | 0.016–10.8 mg/kg | [8] |
North Dakota, United States | Soil | 17 | _ | Soxhlet, pressurised liquid extraction, SFE | GC-FID | 2–502 mg/kg | [79] |
Turin, Italy | Plants | 16 | 88–105% | SPME | GC-MS | 3.4–42 ng/g | [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogashane, T.M.; Mokoena, L.; Tshilongo, J. A Review on Recent Developments in the Extraction and Identification of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Water 2024, 16, 2520. https://doi.org/10.3390/w16172520
Mogashane TM, Mokoena L, Tshilongo J. A Review on Recent Developments in the Extraction and Identification of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Water. 2024; 16(17):2520. https://doi.org/10.3390/w16172520
Chicago/Turabian StyleMogashane, Tumelo Monty, Lebohang Mokoena, and James Tshilongo. 2024. "A Review on Recent Developments in the Extraction and Identification of Polycyclic Aromatic Hydrocarbons from Environmental Samples" Water 16, no. 17: 2520. https://doi.org/10.3390/w16172520
APA StyleMogashane, T. M., Mokoena, L., & Tshilongo, J. (2024). A Review on Recent Developments in the Extraction and Identification of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Water, 16(17), 2520. https://doi.org/10.3390/w16172520