Impacts of Wildfires on Groundwater Recharge: A Comprehensive Analysis of Processes, Methodological Challenges, and Research Opportunities
Abstract
:1. Introduction
2. Examining the Influence of Wildfires on Water Budget and Groundwater Recharge
3. Soil-Water-Balance Components and Their Post-Fire Response: An Overview
3.1. Exploring the Complexity of Post-Fire Precipitation and Its Implications for Water-Balance Management
3.2. Fire-Induced Albedo Alterations and Evapotranspiration: Analyzing Recovery Patterns and Vegetation Response
3.3. Impacts of Fire on Soil Infiltrability and Runoff Generation
4. The Feasibility of Incorporating Changes in Post-Fire Recharge Simulations: Lessons Learned from Past Studies
4.1. Fire Severity and Post-Fire Metrics
4.2. Long-Term Interception and Evapotranspiration Estimates Focused on Continuous Water-Balance Models
4.3. Post-Fire Runoff and Infiltration Dynamics: Approaches from Peak Flow Model Studies
5. Modeling the Impacts of Wildfires on Groundwater Recharge: Challenges and Opportunities
5.1. Challenges and Advances in Measuring Wind Speed for Improved Post-Fire Evapotranspiration Estimation
5.2. Impacts of Wildfires on Surface Temperatures and Evapotranspiration in Forest Ecosystems
5.3. Harnessing Opportunities: Validation Alternatives with Satellite Insights and Neighboring Basin Analyses
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of Climate Change on Fire Activity and Fire Management in the Circumboreal Forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.S.; Kloster, S.; Mahowald, N.M.; Rogers, B.M.; Randerson, J.T.; Hess, P.G. The Changing Radiative Forcing of Fires: Global Model Estimates for Past, Present and Future. Atmos. Chem. Phys. 2012, 12, 10857–10886. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.H.S.; Silins, U.; Spencer, S.A.; Wagner, M.J.; Stone, M.; Emelko, M.B.; Williams, C.H.S.; Silins, U.; Spencer, S.A.; Wagner, M.J.; et al. Net Precipitation in Burned and Unburned Subalpine Forest Stands after Wildfire in the Northern Rocky Mountains. Int. J. Wildland Fire 2019, 28, 750–760. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Liu, Z.; Ma, J.; Yang, F.; Guo, H.; Fu, Q. How Human Activities Affect Groundwater Storage. Research 2024, 7, 0369. [Google Scholar] [CrossRef]
- Gillett, N.P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the Effect of Climate Change on Canadian Forest Fires. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Brando, P.M.; Soares-Filho, B.; Rodrigues, L.; Assunção, A.; Morton, D.; Tuchschneider, D.; Fernandes, E.C.M.; Macedo, M.N.; Oliveira, U.; Coe, M.T. The Gathering Firestorm in Southern Amazonia. Sci. Adv. 2020, 6, eaay1632. [Google Scholar] [CrossRef]
- Bustillo Sánchez, M.; Tonini, M.; Mapelli, A.; Fiorucci, P. Spatial Assessment of Wildfires Susceptibility in Santa Cruz (Bolivia) Using Random Forest. Geosciences 2021, 11, 224. [Google Scholar] [CrossRef]
- Maillard, O.; Vides-Almonacid, R.; Flores-Valencia, M.; Coronado, R.; Vogt, P.; Vicente-Serrano, S.M.; Azurduy, H.; Anívarro, R.; Cuellar, R.L. Relationship of Forest Cover Fragmentation and Drought with the Occurrence of Forest Fires in the Department of Santa Cruz, Bolivia. Forests 2020, 11, 910. [Google Scholar] [CrossRef]
- Adams, M.A. Mega-Fires, Tipping Points and Ecosystem Services: Managing Forests and Woodlands in an Uncertain Future. For. Ecol. Manag. 2013, 294, 250–261. [Google Scholar] [CrossRef]
- Dudley, N.; Stolton, S. Running Pure the Importance of Forest Protected Areas to Drinking Water; World Bank/WWF Alliance for Forest Conservation and Sustainable Use: Washington, DC, USA, 2013; ISBN 978-2-88085-262-7. [Google Scholar]
- Fienen, M.N.; Arshad, M. The International Scale of the Groundwater Issue. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–48. ISBN 978-3-319-23576-9. [Google Scholar]
- Foster, S.; Chilton, J.; Moencg, M.; Cardy, F.; Schiffler, M. Groundwater in Rural Development; The World Bank: Washington, DC, USA, 2000; ISBN 978-0-8213-4703-4. [Google Scholar]
- MacDonald, A.; Calow, R. Developing Groundwater for Secure Rural Water Supplies in Africa. Desalination 2008, 248, 546–556. [Google Scholar] [CrossRef]
- Chaminé, H.I.; Carvalho, J.M.; Freitas, L. Sustainable Groundwater Management in Rural Communities in Developed Countries: Some Thoughts and Outlook. Mediterr. Geosci. Rev. 2021, 3, 389–398. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground Water and Climate Change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Shahid, S.; Alamgir, M.; Wang, X.; Eslamian, S. Climate Change Impacts on and Adaptation to Groundwater. In Handbook of Drought and Water Scarcity; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-22678-1. [Google Scholar]
- Adane, Z.; Zlotnik, V.A.; Rossman, N.R.; Wang, T.; Nasta, P. Sensitivity of Potential Groundwater Recharge to Projected Climate Change Scenarios: A Site-Specific Study in the Nebraska Sand Hills, USA. Water 2019, 11, 950. [Google Scholar] [CrossRef]
- Han, Q.; Qi, T.; Khanaum, M.M. Evaluation of the Offsets of Artificial Recharge on the Extra Run-Off Induced by Urbanization and Extreme Storms Based on an Enhanced Semi-Distributed Hydrologic Model with an Infiltration Basin Module. Water 2024, 16, 1032. [Google Scholar] [CrossRef]
- Cartwright, J.; Johnson, H.M. Springs as Hydrologic Refugia in a Changing Climate? A Remote-Sensing Approach. Ecosphere 2018, 9, e02155. [Google Scholar] [CrossRef]
- Fan, L.; Wang, J.; Zhao, Y.; Wang, X.; Mo, K.; Li, M. Reconstructing 273 Years of Potential Groundwater Recharge Dynamics in a Near-Humid Monsoon Loess Unsaturated Zone Using Chloride Profiling. Water 2024, 16, 2147. [Google Scholar] [CrossRef]
- Barry, R.; Barbecot, F.; Rodriguez, M.; Mattéi, A.; Djongon, A. Estimating Climate Change’s Impacts on the Recharge of an Ungauged Tropical Aquifer (Togolese Coastal Sedimentary Basin). Water 2024, 16, 731. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Coelho, C.O.A.; Ritsema, C.J.; Boulet, A.K.; Keizer, J.J. Soil and Water Degradation Processes in Burned Areas: Lessons Learned from a Nested Approach. Catena 2008, 74, 273–285. [Google Scholar] [CrossRef]
- Mansilha, C.; Carvalho, A.; Guimarães, P.; Espinha Marques, J. Effects of Forest Fires on Groundwater Contamination. In Proceedings of the IWA World Water Congress & Exhibition, Lisbon, Portugal, 21–26 September 2014. [Google Scholar]
- Li, J.; Pang, Z.; Liu, Y.; Hu, S.; Jiang, W.; Tian, L.; Yang, G.; Jiang, Y.; Jiao, X.; Tian, J. Changes in Groundwater Dynamics and Geochemical Evolution Induced by Drainage Reorganization: Evidence from 81Kr and 36Cl Dating of Geothermal Water in the Weihe Basin of China. Earth Planet. Sci. Lett. 2023, 623, 118425. [Google Scholar] [CrossRef]
- Kazakis, N.; Karakatsanis, D.; Ntona, M.M.; Polydoropoulos, K.; Zavridou, E.; Voudouri, K.A.; Busico, G.; Kalaitzidou, K.; Patsialis, T.; Perdikaki, M.; et al. Groundwater Depletion. Are Environmentally Friendly Energy Recharge Dams a Solution? Water 2024, 16, 1541. [Google Scholar] [CrossRef]
- Emelko, M.B.; Silins, U.; Bladon, K.D.; Stone, M. Implications of Land Disturbance on Drinking Water Treatability in a Changing Climate: Demonstrating the Need for “Source Water Supply and Protection” Strategies. Water Res. 2011, 45, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Morales García, R.; Ruiz Hernández, J.M.; Orden Gómez, J.A.d.l.; Gómez Gómez, J.d.D.; Moreno Merino, L.; Domínguez Sánchez, J.A.; García Bravo, N.; Durán Valsero, J.J. Incendios Forestales y Aguas Subterráneas: Un Análisis de los Efectos Ambientales y Económicos Sobre los Acuíferos; CSIC—Instituto Geológico y Minero de España (IGME): Madrid, Spain, 2020. [Google Scholar]
- Xu, Z.; Zhang, Y.; Zhang, X.; Ma, N.; Tian, J.; Kong, D.; Post, D. Bushfire-Induced Water Balance Changes Detected by a Modified Paired Catchment Method. Water Resour. Res. 2022, 58, e2021WR031013. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a Hydrological and Geomorphological Agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Rodrigues, E.L.; Jacobi, C.M.; Figueira, J.E.C. Wildfires and Their Impact on the Water Supply of a Large Neotropical Metropolis: A Simulation Approach. Sci. Total Environ. 2019, 651, 1261–1271. [Google Scholar] [CrossRef]
- Johnk, B.T.; Mays, D.C. Wildfire Impacts on Groundwater Aquifers: A Case Study of the 1996 Honey Boy Fire in Beaver County, Utah, USA. Water 2021, 13, 2279. [Google Scholar] [CrossRef]
- Wine, M.L.; Cadol, D. Hydrologic Effects of Large Southwestern USA Wildfires Significantly Increase Regional Water Supply: Fact or Fiction? Environ. Res. Lett. 2016, 11, 085006. [Google Scholar] [CrossRef]
- Williams, A.P.; Seager, R.; Berkelhammer, M.; Macalady, A.K.; Crimmins, M.A.; Swetnam, T.W.; Trugman, A.T.; Buenning, N.; Hryniw, N.; McDowell, N.G.; et al. Causes and Implications of Extreme Atmospheric Moisture Demand during the Record-Breaking 2011 Wildfire Season in the Southwestern United States. J. Appl. Meteorol. Climatol. 2014, 53, 2671–2684. [Google Scholar] [CrossRef]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. (Eds.) Wildland Fire in Ecosystems: Effects of Fire on Soils and Water. In General Technical Report RMRS-GTR-42. Volume 4; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005; 250p. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire Effects on Water Quality in Forest Catchments: A Review with Implications for Water Supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Dahm, C.N.; Candelaria-Ley, R.I.; Reale, C.S.; Reale, J.K.; Horn, D.J.V. Extreme Water Quality Degradation Following a Catastrophic Forest Fire. Freshw. Biol. 2015, 60, 2584–2599. [Google Scholar] [CrossRef]
- Reale, J.K.; Van Horn, D.J.; Condon, K.E.; Dahm, C.N. The Effects of Catastrophic Wildfire on Water Quality along a River Continuum. Freshw. Sci. 2015, 34, 1426–1442. [Google Scholar] [CrossRef]
- Emmerton, C.A.; Cooke, C.A.; Hustins, S.; Silins, U.; Emelko, M.B.; Lewis, T.; Kruk, M.K.; Taube, N.; Zhu, D.; Jackson, B.; et al. Severe Western Canadian Wildfire Affects Water Quality Even at Large Basin Scales. Water Res. 2020, 183, 116071. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, D.A.; Haire, S.L.; Kinner, D.A. Linking Runoff Response to Burn Severity after a Wildfire. Hydrol. Process. 2008, 22, 2063–2074. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Rethinking Infiltration in Wildfire-Affected Soils. Hydrol. Process. 2013, 27, 1510–1514. [Google Scholar] [CrossRef]
- Poon, P.K.; Kinoshita, A.M. Estimating Evapotranspiration in a Post-Fire Environment Using Remote Sensing and Machine Learning. Remote Sens. 2018, 10, 1728. [Google Scholar] [CrossRef]
- Williams, A.P.; Livneh, B.; McKinnon, K.A.; Hansen, W.D.; Mankin, J.S.; Cook, B.I.; Smerdon, J.E.; Varuolo-Clarke, A.M.; Bjarke, N.R.; Juang, C.S.; et al. Growing Impact of Wildfire on Western US Water Supply. Proc. Natl. Acad. Sci. USA 2022, 119, e2114069119. [Google Scholar] [CrossRef]
- Ryan, S.E. Impacts of Wildfire on Runoff and Sediment Loads at Little Granite Creek, Western Wyoming. Geomorphology 2011, 129, 113–130. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Ebel, B.A.; Rengers, F.K.; Tucker, G.E. Observed and Simulated Hydrologic Response for a First-Order Catchment during Extreme Rainfall 3 Years after Wildfire Disturbance. Water Resour. Res. 2016, 52, 9367–9389. [Google Scholar] [CrossRef]
- Cole, R.P.; Bladon, K.D.; Wagenbrenner, J.W.; Coe, D.B.R. Hillslope Sediment Production after Wildfire and Post-Fire Forest Management in Northern California. Hydrol. Process. 2020, 34, 5242–5259. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Carey, S.K.; McNamara, J.P.; Laudon, H.; Soulsby, C. The Essential Value of Long-Term Experimental Data for Hydrology and Water Management. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef]
- Atchley, A.L.; Kinoshita, A.M.; Lopez, S.R.; Trader, L.; Middleton, R. Simulating Surface and Subsurface Water Balance Changes Due to Burn Severity. Vadose Zone J. 2018, 17, 180099. [Google Scholar] [CrossRef]
- Batelis, S.-C.; Nalbantis, I. Potential Effects of Forest Fires on Streamflow in the Enipeas River Basin, Thessaly, Greece. Environ. Process. 2014, 1, 73–85. [Google Scholar] [CrossRef]
- Soulis, K.X. Estimation of SCS Curve Number Variation Following Forest Fires. Hydrol. Sci. J. 2018, 63, 1332–1346. [Google Scholar] [CrossRef]
- Venkatesh, K.; Preethi, K.; Ramesh, H. Evaluating the Effects of Forest Fire on Water Balance Using Fire Susceptibility Maps. Ecol. Indic. 2020, 110, 105856. [Google Scholar] [CrossRef]
- Soto, B.; Diaz-Fierros, F. Soil Water Balance as Affected by Throughfall in Gorse (Ulex europaeus, L.) Shrubland after Burning. J. Hydrol. 1997, 195, 218–231. [Google Scholar] [CrossRef]
- Silva, J.S.; Vaz, P.; Moreira, F.; Catry, F.; Rego, F.C. Wildfires as a Major Driver of Landscape Dynamics in Three Fire-Prone Areas of Portugal. Landsc. Urban Plan. 2011, 101, 349–358. [Google Scholar] [CrossRef]
- Bellot, J.; Bonet, A.; Sanchez, J.R.; Chirino, E. Likely Effects of Land Use Changes on the Runoff and Aquifer Recharge in a Semiarid Landscape Using a Hydrological Model. Landsc. Urban Plan. 2001, 55, 41–53. [Google Scholar] [CrossRef]
- Cardenas, M.B. Soil Moisture Variation and Dynamics across a Wildfire Burn Boundary in a Loblolly Pine (Pinus taeda) Forest. J. Hydrol. 2014, 519, 490–502. [Google Scholar] [CrossRef]
- Ebel, B.A. Simulated Unsaturated Flow Processes after Wildfire and Interactions with Slope Aspect. Water Resour. Res. 2013, 49, 8090–8107. [Google Scholar] [CrossRef]
- Batelaan, O.; De Smedt, F. GIS-Based Recharge Estimation by Coupling Surface–Subsurface Water Balances. J. Hydrol. 2007, 337, 337–355. [Google Scholar] [CrossRef]
- Griebler, C.; Avramov, M. Groundwater Ecosystem Services: A Review. Freshw. Sci. 2015, 34, 355–367. [Google Scholar] [CrossRef]
- Singh, A.; Panda, S.N.; Uzokwe, V.N.E.; Krause, P. An Assessment of Groundwater Recharge Estimation Techniques for Sustainable Resource Management. Groundw. Sustain. Dev. 2019, 9, 100218. [Google Scholar] [CrossRef]
- Fernandez, J.; Maillard, O.; Uyuni, G.; Guzmán Rojo, M.X.; Escobar, M. Multi-Criteria Prioritization of Watersheds for Post-Fire Restoration Using GIS Tools and Google Earth Engine: A Case Study from the Department of Santa Cruz, Bolivia. Water 2023, 15, 3545. [Google Scholar] [CrossRef]
- Jost, G.; Schume, H.; Hager, H. Factors Controlling Soil Water-Recharge in a Mixed European Beech (Fagus sylvatica L.)–Norway Spruce [Picea abies (L.) Karst.] Stand. Eur. J. For. Res. 2004, 123, 93–104. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Costa, M.H.; Foley, J.A. Water Balance of the Amazon Basin: Dependence on Vegetation Cover and Canopy Conductance. J. Geophys. Res. Atmos. 1997, 102, 23973–23989. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration Estimation Based on the SEBAL Model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 54, 1086–1092. [Google Scholar] [CrossRef]
- Hornbeck, J.W.; Adams, M.B.; Corbett, E.S.; Verry, E.S.; Lynch, J.A. Long-Term Impacts of Forest Treatments on Water Yield: A Summary for Northeastern USA. J. Hydrol. 1993, 150, 323–344. [Google Scholar] [CrossRef]
- Stednick, J.D. Monitoring the Effects of Timber Harvest on Annual Water Yield. J. Hydrol. 1996, 176, 79–95. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the Forest Cover–Water Yield Debate: From Demand- to Supply-Side Thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Miralles, D.G.; Teuling, A.J.; van Heerwaarden, C.C.; Vilà-Guerau de Arellano, J. Mega-Heatwave Temperatures Due to Combined Soil Desiccation and Atmospheric Heat Accumulation. Nat. Geosci. 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Konings, A.G.; Trugman, A.T.; Yu, K.; Bowling, D.R.; Gabbitas, R.; Karp, D.S.; Pacala, S.; Sperry, J.S.; Sulman, B.N.; et al. Hydraulic Diversity of Forests Regulates Ecosystem Resilience during Drought. Nature 2018, 561, 538–541. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, K.; Chang, T.; Shaghaleh, H.; Qi, Z.; Zhang, J.; Ye, H.; Hamoud, Y.A. Interactive Effects of Microbial Fertilizer and Soil Salinity on the Hydraulic Properties of Salt-Affected Soil. Plants 2024, 13, 473. [Google Scholar] [CrossRef]
- Bladon, K.D.; Emelko, M.B.; Silins, U.; Stone, M. Wildfire and the Future of Water Supply. Environ. Sci. Technol. 2014, 48, 8936–8943. [Google Scholar] [CrossRef]
- Mills, A.J.; Fey, M.V. Frequent Fires Intensify Soil Crusting: Physicochemical Feedback in the Pedoderm of Long-Term Burn Experiments in South Africa. Geoderma 2004, 121, 45–64. [Google Scholar] [CrossRef]
- Scott, D.F.; Van Wyk, D.B. The Effects of Wildfire on Soil Wettability and Hydrological Behaviour of an Afforested Catchment. J. Hydrol. 1990, 121, 239–256. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. The Temporal Dimension of Differenced Normalized Burn Ratio (dNBR) Fire/Burn Severity Studies: The Case of the Large 2007 Peloponnese Wildfires in Greece. Remote Sens. Environ. 2010, 114, 2548–2563. [Google Scholar] [CrossRef]
- Hallema, D.W.; Robinne, F.-N.; Bladon, K.D. Reframing the Challenge of Global Wildfire Threats to Water Supplies. Earths Future 2018, 6, 772–776. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between Climate and Macroscale Area Burned in the Western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Boisramé, G.; Thompson, S.; Collins, B.; Stephens, S. Managed Wildfire Effects on Forest Resilience and Water in the Sierra Nevada. Ecosystems 2017, 20, 717–732. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current Research Issues Related to Post-Wildfire Runoff and Erosion Processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Chen, F.; Warner, T.T.; Manning, K. Sensitivity of Orographic Moist Convection to Landscape Variability: A Study of the Buffalo Creek, Colorado, Flash Flood Case of 1996. J. Atmos. Sci. 2001, 58, 3204–3223. [Google Scholar] [CrossRef]
- Moody, J.A.; Ebel, B.A. Hyper-Dry Conditions Provide New Insights into the Cause of Extreme Floods after Wildfire. Catena 2012, 93, 58–63. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Hogue, T.S. Increased Dry Season Water Yield in Burned Watersheds in Southern California. Environ. Res. Lett. 2015, 10, 014003. [Google Scholar] [CrossRef]
- Wagenbrenner, J.W.; Ebel, B.A.; Bladon, K.D.; Kinoshita, A.M. Post-Wildfire Hydrologic Recovery in Mediterranean Climates: A Systematic Review and Case Study to Identify Current Knowledge and Opportunities. J. Hydrol. 2021, 602, 126772. [Google Scholar] [CrossRef]
- de Groen, M.M. Modelling Interception and Transpiration at Monthly Time Steps: IHE Dissertation 31; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-90-5809-378-3. [Google Scholar]
- Cerdà, A.; Bodí, M.B.; Lasanta, T.; Mataix-Solera, J.; Doerr, S. Efectos de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. In Cátedra de Divulgación de la Ciencia; Universitat de Valencia: Valencia, Spain, 2009; pp. 355–383. ISBN 978-84-370-7653-9. [Google Scholar]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Kerchove, R.V.D.; Goossens, R.; Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Kerchove, R.V.D.; Goossens, R. Assessment of Post-Fire Changes in Land Surface Temperature and Surface Albedo, and Their Relation with Fire–Burn Severity Using Multitemporal MODIS Imagery. Int. J. Wildland Fire 2012, 21, 243–256. [Google Scholar] [CrossRef]
- Bremer, D.J.; Ham, J.M. Effect of Spring Burning on the Surface Energy Balance in a Tallgrass Prairie. Agric. For. Meteorol. 1999, 97, 43–54. [Google Scholar] [CrossRef]
- Beringer, J.; Hutley, L.B.; Tapper, N.J.; Coutts, A.; Kerley, A.; O’Grady, A.P. Fire Impacts on Surface Heat, Moisture and Carbon Fluxes from a Tropical Savanna in Northern Australia. Int. J. Wildland Fire 2003, 12, 333–340. [Google Scholar] [CrossRef]
- Amiro, B.D.; Orchansky, A.L.; Barr, A.G.; Black, T.A.; Chambers, S.D.; Chapin, F.S., III; Goulden, M.L.; Litvak, M.; Liu, H.P.; McCaughey, J.H.; et al. The Effect of Post-Fire Stand Age on the Boreal Forest Energy Balance. Agric. For. Meteorol. 2006, 140, 41–50. [Google Scholar] [CrossRef]
- Wendt, C.K.; Beringer, J.; Tapper, N.J.; Hutley, L.B. Local Boundary-Layer Development over Burnt and Unburnt Tropical Savanna: An Observational Study. Bound.-Layer Meteorol. 2007, 124, 291–304. [Google Scholar] [CrossRef]
- Tsuyuzaki, S.; Kushida, K.; Kodama, Y. Recovery of Surface Albedo and Plant Cover after Wildfire in a Picea Mariana Forest in Interior Alaska. Clim. Chang. 2008, 93, 517–525. [Google Scholar] [CrossRef]
- FAO The State of Food and Agriculture 2020: Overcoming Water Challenges in Agriculture; The State of Food and Agriculture (SOFA); FAO: Rome, Italy, 2020; ISBN 978-92-5-133441-6.
- Zema, D.A. Postfire Management Impacts on Soil Hydrology. Curr. Opin. Environ. Sci. Health 2021, 21, 100252. [Google Scholar] [CrossRef]
- Ichoku, C.; Ellison, L.T.; Willmot, K.E.; Matsui, T.; Dezfuli, A.K.; Gatebe, C.K.; Wang, J.; Wilcox, E.M.; Lee, J.; Adegoke, J.; et al. Biomass Burning, Land-Cover Change, and the Hydrological Cycle in Northern Sub-Saharan Africa. Environ. Res. Lett. 2016, 11, 095005. [Google Scholar] [CrossRef]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. The Effect of Ash and Needle Cover on Surface Runoff and Erosion in the Immediate Post-Fire Period. Catena 2008, 74, 256–263. [Google Scholar] [CrossRef]
- Larsen, I.J.; MacDonald, L.H.; Brown, E.; Rough, D.; Welsh, M.J.; Pietraszek, J.H.; Libohova, Z.; de Dios Benavides-Solorio, J.; Schaffrath, K. Causes of Post-Fire Runoff and Erosion: Water Repellency, Cover, or Soil Sealing? Soil Sci. Soc. Am. J. 2009, 73, 1393–1407. [Google Scholar] [CrossRef]
- Balfour, V.N.; Doerr, S.H.; Robichaud, P.R. The Temporal Evolution of Wildfire Ash and Implications for Post-Fire Infiltration. Int. J. Wildland Fire 2014, 23, 733–745. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-Fire Soil Management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Sheridan, G.J.; Lane, P.N.J.; Noske, P.J. Quantification of Hillslope Runoff and Erosion Processes before and after Wildfire in a Wet Eucalyptus Forest. J. Hydrol. 2007, 343, 12–28. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Effects of Fire Severity and Burn Patchiness on Hillslope-Scale Surface Runoff, Erosion and Hydrologic Connectivity in a Prescribed Burn. For. Ecol. Manag. 2013, 310, 219–233. [Google Scholar] [CrossRef]
- Stoof, C.R.; Ferreira, A.J.D.; Mol, W.; Van den Berg, J.; De Kort, A.; Drooger, S.; Slingerland, E.C.; Mansholt, A.U.; Ferreira, C.S.S.; Ritsema, C.J. Soil Surface Changes Increase Runoff and Erosion Risk after a Low–Moderate Severity Fire. Geoderma 2015, 239–240, 58–67. [Google Scholar] [CrossRef]
- DeBano, L.F. The Role of Fire and Soil Heating on Water Repellency in Wildland Environments: A Review. J. Hydrol. 2000, 231–232, 195–206. [Google Scholar] [CrossRef]
- Smith, J.L.; Halvorson, J.J.; Bolton, H. Soil Properties and Microbial Activity across a 500m Elevation Gradient in a Semi-Arid Environment. Soil Biol. Biochem. 2002, 34, 1749–1757. [Google Scholar] [CrossRef]
- Balfour, V.N.; Woods, S.W. The Hydrological Properties and the Effects of Hydration on Vegetative Ash from the Northern Rockies, USA. Catena 2013, 111, 9–24. [Google Scholar] [CrossRef]
- Moody, J.A.; Ebel, B.A.; Nyman, P.; Martin, D.A.; Stoof, C.; McKinley, R.; Moody, J.A.; Ebel, B.A.; Nyman, P.; Martin, D.A.; et al. Relations between Soil Hydraulic Properties and Burn Severity. Int. J. Wildland Fire 2015, 25, 279–293. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Parameter Estimation for Multiple Post-Wildfire Hydrologic Models. Hydrol. Process. 2020, 34, 4049–4066. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Synthesis of Soil-Hydraulic Properties and Infiltration Timescales in Wildfire-Affected Soils. Hydrol. Process. 2017, 31, 324–340. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 1–55. [Google Scholar]
- Salem, A.M.M. A Fully Distributed Integrated Hydrologic Model for Integrated Water Resources Management in a Highly Regulated River Floodplain. Ph.D. Thesis, University of Pecs, Pecs, Hungary, 2022. [Google Scholar]
- Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Manoli, G.; Parajka, J.; Rigon, R.; Szeles, B.; Bottazzi, M.; Hadjidoukas, P.; et al. More Green and Less Blue Water in the Alps during Warmer Summers. Nat. Clim. Chang. 2020, 10, 155–161. [Google Scholar] [CrossRef]
- Finch, J.W. Estimating Change in Direct Groundwater Recharge Using a Spatially Distributed Soil Water Balance Model. Q. J. Eng. Geol. Hydrogeol. 2001, 34, 71–83. [Google Scholar] [CrossRef]
- van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ Detection Capabilities for Burn Severity. Remote Sens. Environ. 2004, 92, 397–408. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C.; Lentile, L.B.; et al. Remote Sensing Techniques to Assess Active Fire Characteristics and Post-Fire Effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Heward, H.; Smith, A.M.S.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.; Lannom, K.O.; Heward, H.; Smith, A.M.S.; Roy, D.P.; et al. Is Burn Severity Related to Fire Intensity? Observations from Landscape Scale Remote Sensing. Int. J. Wildland Fire 2013, 22, 910–918. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Panunto, M.H.; Jolly, W.M.; Dobrowski, S.Z.; Dillon, G.K. High-Severity Fire: Evaluating Its Key Drivers and Mapping Its Probability across Western US Forests. Environ. Res. Lett. 2018, 13, 044037. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Wooster, M.J.; Smith, A.M.S.; Wooster, M.J. Remote Classification of Head and Backfire Types from MODIS Fire Radiative Power and Smoke Plume Observations. Int. J. Wildland Fire 2005, 14, 249–254. [Google Scholar] [CrossRef]
- Keeley, J.E.; Brennan, T.; Pfaff, A.H. Fire Severity and Ecosytem Responses Following Crown Fires in California Shrublands. Ecol. Appl. 2008, 18, 1530–1546. [Google Scholar] [CrossRef]
- Adams, H.D.; Luce, C.H.; Breshears, D.D.; Allen, C.D.; Weiler, M.; Hale, V.C.; Smith, A.M.S.; Huxman, T.E. Ecohydrological Consequences of Drought- and Infestation- Triggered Tree Die-off: Insights and Hypotheses. Ecohydrology 2012, 5, 145–159. [Google Scholar] [CrossRef]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of Burn Severity Assessments Using Differenced Normalized Burn Ratio and Ground Data. Int. J. Wildland Fire 2005, 14, 189–198. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of Remotely Sensed Indices for Assessing Burn Severity in Interior Alaska Using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L.; French, N.H.F.; Kasischke, E.S.; Hall, R.J.; et al. Using Landsat Data to Assess Fire and Burn Severity in the North American Boreal Forest Region: An Overview and Summary of Results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Wells, C.G. Effects of Fire on Soil: A State-of-Knowledge Review; Department of Agriculture, Forest Service: Washington, DC, USA, 1979.
- Holden, Z.A.; Morgan, P.; Evans, J.S. A Predictive Model of Burn Severity Based on 20-Year Satellite-Inferred Burn Severity Data in a Large Southwestern US Wilderness Area. For. Ecol. Manag. 2009, 258, 2399–2406. [Google Scholar] [CrossRef]
- de Benavides-Solorio, J.D.; MacDonald, L.H. Measurement and Prediction of Post-Fire Erosion at the Hillslope Scale, Colorado Front Range. Int. J. Wildland Fire 2005, 14, 457–474. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Fernández, C.; Vega, J.A.; Keizer, J.J. Does Soil Burn Severity Affect the Post-Fire Runoff and Interrill Erosion Response? A Review Based on Meta-Analysis of Field Rainfall Simulation Data. J. Hydrol. 2015, 523, 452–464. [Google Scholar] [CrossRef]
- Asner, G.P.; Scurlock, J.M.O.; Hicke, J.A. Global Synthesis of Leaf Area Index Observations: Implications for Ecological and Remote Sensing Studies. Glob. Ecol. Biogeogr. 2003, 12, 191–205. [Google Scholar] [CrossRef]
- Pereira, A.R. Adaptation of the Thornthwaite Scheme for Estimating Daily Reference Evapotranspiration. Agric. Water Manag. 2004, 66, 251–257. [Google Scholar] [CrossRef]
- Masmoudi-Charfi, C.; Habaieb, H. Rainfall Distribution Functions for Irrigation Scheduling: Calculation Procedures Following Site of Olive (Olea europaea L.) Cultivation and Growing Periods. Am. J. Plant Sci. 2014, 5, 2094–2133. [Google Scholar] [CrossRef]
- Boer, M.M.; Macfarlane, C.; Norris, J.; Sadler, R.J.; Wallace, J.; Grierson, P.F. Mapping Burned Areas and Burn Severity Patterns in SW Australian Eucalypt Forest Using Remotely-Sensed Changes in Leaf Area Index. Remote Sens. Environ. 2008, 112, 4358–4369. [Google Scholar] [CrossRef]
- Ashby, S.F.; Falgout, R.D. A Parallel Multigrid Preconditioned Conjugate Gradient Algorithm for Groundwater Flow Simulations. Nucl. Sci. Eng. 1996, 124, 145–159. [Google Scholar] [CrossRef]
- Maxwell, R.M. A Terrain-Following Grid Transform and Preconditioner for Parallel, Large-Scale, Integrated Hydrologic Modeling. Adv. Water Resour. 2013, 53, 109–117. [Google Scholar] [CrossRef]
- Bréda, N.; Granier, A. Intra- and Interannual Variations of Transpiration, Leaf Area Index and Radial Growth of a Sessile Oak Stand (Quercus petraea). Ann. Sci. For. 1996, 53, 521–536. [Google Scholar] [CrossRef]
- Chambers, S.D.; Beringer, J.; Randerson, J.T.; Chapin, F.S., III. Fire Effects on Net Radiation and Energy Partitioning: Contrasting Responses of Tundra and Boreal Forest Ecosystems. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998. [Google Scholar]
- Lopez-Urrea, R.; de Santa Olalla, F.M.; Fabeiro, C.; Moratalla, A. An Evaluation of Two Hourly Reference Evapotranspiration Equations for Semiarid Conditions. Agric. Water Manag. 2006, 86, 277–282. [Google Scholar] [CrossRef]
- Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An Update for the Definition of Reference Evapotranspiration. ICID Bull. 1994, 43, 1–35. [Google Scholar]
- Niccoli, F.; Pacheco-Solana, A.; Delzon, S.; Kabala, J.P.; Asgharinia, S.; Castaldi, S.; Valentini, R.; Battipaglia, G. Effects of Wildfire on Growth, Transpiration and Hydraulic Properties of Pinus pinaster Aiton Forest. Dendrochronologia 2023, 79, 126086. [Google Scholar] [CrossRef]
- Jin, Y.; Randerson, J.T.; Goetz, S.J.; Beck, P.S.A.; Loranty, M.M.; Goulden, M.L. The Influence of Burn Severity on Postfire Vegetation Recovery and Albedo Change during Early Succession in North American Boreal Forests. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Khaledi, J.; Lane, P.N.J.; Nitschke, C.R.; Nyman, P. Wildfire Contribution to Streamflow Variability across Australian Temperate Zone. J. Hydrol. 2022, 609, 127728. [Google Scholar] [CrossRef]
- Cronshey, R. Urban Hydrology for Small Watersheds, 2nd ed.; U.S. Department of Agriculture, Soil Conservation Service, Engineering Division: Washington, DC, USA, 1986.
- Woodward, D.E.; Hawkins, R.H.; Jiang, R.; Hjelmfelt, J.; Van Mullem, J.A.; Quan, Q.D. Runoff Curve Number Method: Examination of the Initial Abstraction Ratio. In Proceedings of the World Water & Environmental Resources Congress 2003, Philadelphia, PA, USA, 23–26 June 2003; pp. 1–10. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Sediment Yield. In Soil Conservation Service Curve Number (SCS-CN) Methodology; Mishra, S.K., Singh, V.P., Eds.; Water Science and Technology Library; Springer Netherlands: Dordrecht, The Netherlands, 2003; pp. 436–456. ISBN 978-94-017-0147-1. [Google Scholar]
- Kim, N.W.; Lee, J. Temporally Weighted Average Curve Number Method for Daily Runoff Simulation. Hydrol. Process. 2008, 22, 4936–4948. [Google Scholar] [CrossRef]
- de Groen, M.M.; Savenije, H.H.G. A Monthly Interception Equation Based on the Statistical Characteristics of Daily Rainfall. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Jarvis, P.G.; Monteith, J.L.; Weatherley, P.E. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Corbari, C.; Ravazzani, G.; Galvagno, M.; Cremonese, E.; Mancini, M. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. Sensors 2017, 17, 2664. [Google Scholar] [CrossRef] [PubMed]
- Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O. Spatial Distribution of Groundwater Recharge and Base Flow: Assessment of Controlling Factors. J. Hydrol. Reg. Stud. 2015, 4, 349–368. [Google Scholar] [CrossRef]
- Ellison, D. Trees, Forests and Water: Cool Insights for a Hot World. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Ilstedt, U. Intermediate Tree Cover Can Maximize Groundwater Recharge in the Seasonally Dry Tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef]
- de Oliveira, J.V.; Ferreira, D.B.; Sahoo, P.K.; Sodré, G.R.C.; de Souza, E.B.; Queiroz, J.C.B. Differences in Precipitation and Evapotranspiration between Forested and Deforested Areas in the Amazon Rainforest Using Remote Sensing Data. Environ. Earth Sci. 2018, 77, 239. [Google Scholar] [CrossRef]
- Byram, G.M.; Jemison, G.M. Solar Radiation and Forest Fuel Moisture. J. Agric. Res. 1943, 67, 149. [Google Scholar]
- Belcher, S.E.; Harman, I.N.; Finnigan, J.J. The Wind in the Willows: Flows in Forest Canopies in Complex Terrain. Annu. Rev. Fluid Mech. 2012, 44, 479–504. [Google Scholar] [CrossRef]
- Montes-Helu, M.C.; Montes-Helu, M.C. Persistent Effects of Fire-Induced Vegetation Change on Energy Partitioning and Evapotranspiration in Ponderosa Pine Forests. Agric. For. Meteorol. 2009, 149, 491–500. [Google Scholar] [CrossRef]
- Suggitt, A.J. Habitat Microclimates Drive Fine-scale Variation in Extreme Temperatures. Oikos 2011, 120, 1–8. [Google Scholar] [CrossRef]
- von Arx, G.; Graf Pannatier, E.; Thimonier, A.; Rebetez, M. Microclimate in Forests with Varying Leaf Area Index and Soil Moisture: Potential Implications for Seedling Establishment in a Changing Climate. J. Ecol. 2013, 101, 1201–1213. [Google Scholar] [CrossRef]
- De Frenne, P.; Zellweger, F.; Rodríguez-Sánchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M.; Vellend, M.; Verheyen, K.; Lenoir, J. Global Buffering of Temperatures under Forest Canopies. Nat. Ecol. Evol. 2019, 3, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.T. Microclimatic Buffering in Forests of the Future: The Role of Local Water Balance. Ecography 2019, 42, 1–11. [Google Scholar] [CrossRef]
- Wolf, K.D. Wildfire Impacts on Forest Microclimate Vary with Biophysical Context. Ecosphere 2021, 12, e03467. [Google Scholar] [CrossRef]
- Ripley, E.A.; Archibold, O.W. Effects of Burning on Prairie Aspen Grove Microclimate. Agric. Ecosyst. Environ. 1999, 72, 227–237. [Google Scholar] [CrossRef]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Biophysical Feedback of Global Forest Fires on Surface Temperature. Nat. Commun. 2019, 10, 214. [Google Scholar] [CrossRef]
- Arcenegui, V.; Guerrero, C.; Mataix-Solera, J.; Mataix-Beneyto, J.; Zornoza, R.; Morales, J.; Mayoral, A.M. The Presence of Ash as an Interference Factor in the Estimation of the Maximum Temperature Reached in Burned Soils Using Near-Infrared Spectroscopy (NIR). Catena 2008, 74, 177–184. [Google Scholar] [CrossRef]
- Chiodi, A.M.; Potter, B.E.; Larkin, N.K. Multi-Decadal Change in Western US Nighttime Vapor Pressure Deficit. Geophys. Res. Lett. 2021, 48, e2021GL092830. [Google Scholar] [CrossRef]
- Jódar, J.; Carpintero, E.; Martos-Rosillo, S.; Ruiz-Constán, A.; Marín-Lechado, C.; Cabrera-Arrabal, J.A.; Navarrete-Mazariegos, E.; González-Ramón, A.; Lambán, L.J.; Herrera, C.; et al. Combination of Lumped Hydrological and Remote-Sensing Models to Evaluate Water Resources in a Semi-Arid High Altitude Ungauged Watershed of Sierra Nevada (Southern Spain). Sci. Total Environ. 2018, 625, 285–300. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Longuevergne, L.; Long, D. Ground Referencing GRACE Satellite Estimates of Groundwater Storage Changes in the California Central Valley, USA. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, J.; Huang, Y.; Zhou, K.; Ding, X.; Fu, J. The Review of GRACE Data Applications in Terrestrial Hydrology Monitoring. Adv. Meteorol. 2014, 2014, 725131. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- He, L.; Valocchi, A.J.; Duarte, C.A. An Adaptive Global–Local Generalized FEM for Multiscale Advection–Diffusion Problems. Comput. Methods Appl. Mech. Eng. 2024, 418, 116548. [Google Scholar] [CrossRef]
- Davis Todd, C.E.; Goss, A.M.; Tripathy, D.; Harbor, J.M. The Effects of Landscape Transformation in a Changing Climate on Local Water Resources. Phys. Geogr. 2007, 28, 21–36. [Google Scholar] [CrossRef]
- Akay, H.; Baduna Koçyiğit, M.; Yanmaz, A.M. Effect of Using Multiple Stream Gauging Stations on Calibration of Hydrologic Parameters and Estimation of Hydrograph of Ungauged Neighboring Basin. Arab. J. Geosci. 2018, 11, 282. [Google Scholar] [CrossRef]
Component | Approximate Relationship with ΔNBR | Initial Change in the Component Relative to Unburned Value | Post-Fire Timeline | Context and Study Reference | Relevance to Long-Term Groundwater Recharge |
---|---|---|---|---|---|
Leaf Area Index (LAI) | Linear (↓) | Decreases by approximately 34.0% (low severity) to 96.5% (high severity). Recovery to 90–108% of pre-fire levels during regeneration. | Estimated for a mixed conifer vegetation community in New Mexico [51] and for deciduous grasses and shrubs in Canada [141]. | Moderate, indirect impact; applicable only when regeneration is absent since severe crown damage could negatively affect the survival of burned trees [140]. | |
Albedo () | Linear (↑) after the first year | High-severity wildfires cause a 52% spring albedo increase, rising to 76% after 5–7 years, significantly larger than the 16% summer albedo decrease (26% later). The severity gap reaches 60%. | Estimated for 4 Canadian ecozones dominated by needleleaf forests, broadleaf/mixed forests, and closed and open shrublands [141]. | Low, indirect impact; it does revert to its original value; however, special attention should be paid to the spring albedo. | |
Curve number for normal moisture conditions (CN II) | Inferred through burn patch formation (↑) associated with soil-based characteristics | Ash patch values range from 77 (sand) to 94 (clay), representing an increase between 71% and 13% of their pre-fire values in a broad-leaved forest. These values persist for at least the following 1.5 years [128]. | Distinct ash patch values suggested by Batellis and Nalbantis [52] for various soil types (A, B, C, and D). | High; it does not revert to its original value and is directly linked to recharge. | |
Saturated hydraulic conductivity (KST) | Exponential decrease (↓) for low severity wildfires; no changes observed | Variability ranges up to 93% in soil with 4 cm pre-fire litter-duff depth consumed after a high-severity fire. | Adjusted for sandy loams () based on Atchley et al. [51], in reference to Moody et al. [108]. | High; it does not revert to its original value and is directly linked to recharge. |
Component\Wildfire Severity Scenario ΔNBR | 70 < Low < 315 | 315 < Moderate < 640 | 640 < High | Guidelines for Its Application and References | |||
---|---|---|---|---|---|---|---|
P | |||||||
I | |||||||
↓ | Leaf Area Index (LAI) | unburned value | unburned value | unburned value | Estimated for mixed conifer vegetation community [51]. | ||
↓ | Daily interception threshold ID = F (LAI) | Equation introduced by De Groen and Savenije [147] to estimate the average monthly interception. | |||||
Sr | |||||||
↑↑ | Curve number for normal moisture conditions (CN II) | Unique values for ash patches proposed by Batellis and Nalbantis [52] for different types of soil (A, B, C, and D) through a modified version of the SCS-CN method on a daily basis. | |||||
↓ ↓ | Saturated hydraulic conductivity (KST) | = constant = unburned value | a b | a Estimated for sandy loams () for 420 < ΔNBRr < 886 [108]. b Adjusted for less permeable sandy loams () [51]. | |||
ET | |||||||
↓ | Albedo () | + unburned value | + unburned value | + unburned value | For spring albedo in four Canadian ecozones with needleleaf forest, broadleaf/mixed forest, and closed and open shrublands [141]. | ||
↑ | Surface resistance = F (LAI) | Estimation used by most methods [148]. | |||||
↓ | Crop coefficient KcFAO = F (LAI) | Crop coefficient for natural vegetation proposed by Monteith [149]. | |||||
R | |||||||
Water-balance equation (R) | R = P − I (↓) − ET (↑↓) − Sr (↑) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-Rojo, M.; Fernandez, J.; d’Abzac, P.; Huysmans, M. Impacts of Wildfires on Groundwater Recharge: A Comprehensive Analysis of Processes, Methodological Challenges, and Research Opportunities. Water 2024, 16, 2562. https://doi.org/10.3390/w16182562
Guzmán-Rojo M, Fernandez J, d’Abzac P, Huysmans M. Impacts of Wildfires on Groundwater Recharge: A Comprehensive Analysis of Processes, Methodological Challenges, and Research Opportunities. Water. 2024; 16(18):2562. https://doi.org/10.3390/w16182562
Chicago/Turabian StyleGuzmán-Rojo, Mónica, Jeanne Fernandez, Paul d’Abzac, and Marijke Huysmans. 2024. "Impacts of Wildfires on Groundwater Recharge: A Comprehensive Analysis of Processes, Methodological Challenges, and Research Opportunities" Water 16, no. 18: 2562. https://doi.org/10.3390/w16182562
APA StyleGuzmán-Rojo, M., Fernandez, J., d’Abzac, P., & Huysmans, M. (2024). Impacts of Wildfires on Groundwater Recharge: A Comprehensive Analysis of Processes, Methodological Challenges, and Research Opportunities. Water, 16(18), 2562. https://doi.org/10.3390/w16182562