Enhanced Visible-Light-Assisted Photocatalytic Removal of Tetracycline Using Co/La@g-C3N4 Ternary Nanocomposite and Underlying Reaction Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization
2.2. Degradation Experiment
2.3. Photoelectrochemical Measurements
2.4. Identification of Active Radical Species and Possible Intermediates
3. Results
3.1. Visible-Light Photocatalytic Activity of Photocatalysts
3.2. Mechanism of Enhanced Visible-Light Photocatalytic Activity
3.2.1. Material Property Characterization
3.2.2. Routes of Active Species Formation and Possible Pathways of Degradation
3.3. Effects of Reaction Conditions on Photocatalytic Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.; Sarker, S.D. Antimicrobial Natural Products, in Annual Reports in Medicinal Chemistry, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Chapter 3. [Google Scholar] [CrossRef]
- Yi, X.; Lin, C.; Ong, E.J.L.; Wang, M.; Zhou, Z. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere 2019, 216, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Gopal, G.; Alex, S.A.; Chandrasekaran, N.; Mukherjee, A. A review on tetracycline removal from aqueous systems by advanced treatment techniques. RSC Adv. 2020, 10, 27081–27095. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, D.S.; Pal, D.; Mishra, J.; Thakur, C. Noble metal–free doped graphitic carbon nitride (g-C3N4) for efficient photodegradation of antibiotics: Progress, limitations, and future directions. Environ. Sci. Pollut. Res. 2022, 30, 25546–25558. [Google Scholar] [CrossRef] [PubMed]
- Zedan, M.; Zedan, A.F.; Amin, R.M.; Li, X. Visible-light active metal nanoparticles@carbon nitride for enhanced removal of water organic pollutants. J. Environ. Chem. Eng. 2022, 10, 107780. [Google Scholar] [CrossRef]
- Kumar, K.S.; Vellaichamy, B.; Paulmony, T. Visible light active metal-free photocatalysis: N-doped graphene covalently grafted with g-C3N4 for highly robust degradation of methyl orange. Solid State Sci. 2019, 94, 99–105. [Google Scholar] [CrossRef]
- Li, B.; Peng, W.; Zhang, J.; Lian, J.; Huang, T.; Cheng, N.; Luo, Z.; Huang, W.; Hu, W.; Pan, A.; et al. High-Throughput One-Photon Excitation Pathway in 0D/3D Heterojunctions for Visible-Light Driven Hydrogen Evolution. Adv. Funct. Mater. 2021, 31, 2100816. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Huang, F.; Song, S.; Ai, G.; Xin, X.; Zhao, B.; Zheng, Y.; Zhang, Z. Recent Advances in g-C3N4-Based Materials and Their Application in Energy and Environmental Sustainability. Molecules 2023, 28, 432. [Google Scholar] [CrossRef]
- Bai, Y.; Zheng, Y.; Wang, Z.; Hong, Q.; Liu, S.; Shen, Y.; Zhang, Y. Metal-doped carbon nitrides: Synthesis, structure and applications. New J. Chem. 2021, 45, 11876–11892. [Google Scholar] [CrossRef]
- Bui, T.S.; Bansal, P.; Lee, B.-K.; Mahvelati-Shamsabadi, T.; Soltani, T. Facile fabrication of novel Ba-doped g-C3N4 photocatalyst with remarkably enhanced photocatalytic activity towards tetracycline elimination under visible-light irradiation. Appl. Surf. Sci. 2020, 506, 144184. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Zhang, J.; Wang, R.; Liu, H. Er-doped g-C3N4 for photodegradation of tetracycline and tylosin: High photocatalytic activity and low leaching toxicity. Chem. Eng. J. 2019, 391, 123500. [Google Scholar] [CrossRef]
- Wang, M.; Guo, P.; Zhang, Y.; Lv, C.; Liu, T.; Chai, T.; Xie, Y.; Wang, Y.; Zhu, T. Synthesis of hollow lantern-like Eu(III)-doped g-C3N4 with enhanced visible light photocatalytic performance for organic degradation. J. Hazard. Mater. 2018, 349, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Phoon, B.L.; Ong, C.C.; Lee, K.C.; Pan, G.T.; Leo, B.F.; Chong, S.; Pan, K.L. Co-doped, tri-doped, and rare-earth-doped g-C3N4 for photocatalytic applications: State-of-the-art. Catalysts 2022, 12, 586. [Google Scholar] [CrossRef]
- Chi, X.; Liu, F.; Gao, Y.; Song, J.; Guan, R.; Yuan, H. An efficient B/Na co-doped porous g-C3N4 nanosheets photocatalyst with enhanced photocatalytic hydrogen evolution and degradation of tetracycline under visible light. Appl. Surf. Sci. 2022, 576, 151837. [Google Scholar] [CrossRef]
- Duan, Y.; Li, Y.; Shang, X.; Jia, D.; Li, C. Phosphorus and bismuth co-doped porous g-C3N4 nanosheets as an efficient visible-light-driven photocatalyst. J. Mater. Sci. Mater. Electron. 2020, 31, 1703–1714. [Google Scholar] [CrossRef]
- Wu, K.; Chen, D.; Lu, S.; Fang, J.; Zhu, X.; Yang, F.; Pan, T.; Fang, Z. Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C3N4 with porous structure for highly efficient photocatalytic degradation of organic pollutants. J. Hazard. Mater. 2020, 382, 121027. [Google Scholar] [CrossRef]
- Wang, M.; Guo, P.; Zhang, Y.; Liu, T.; Li, S.; Xie, Y.; Wang, Y.; Zhu, T. Eu doped g-C3N4 nanosheet coated on flower-like BiVO4 powders with enhanced visible light photocatalytic for tetracycline degradation. Appl. Surf. Sci. 2018, 453, 11–22. [Google Scholar] [CrossRef]
- Hu, Y.; Bi, S. Co-doping g-C3N4 to enhance internal electric field for robust photocatalytic degradation and H2 production. Chin. J. Struc. Chem. 2022, 41, 2206069–2206078. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Sun, H.; Zhang, M.; Xia, Z.; Yang, Q. Asymmetric structure awakened n − π* electron transition in sulfur and selenium Co-doped g-C3N4 with efficient photocatalytic performance. Chin. J. Struc. Chem. 2022, 41, 2206055–2206061. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Chen, X.; Wu, Z.; Liang, J.; Zhang, J.; Wang, H.; Wang, H. Phosphorus- and sulfur-codoped g-C3N4: Facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation. ACS Sustain. Chem. Eng. 2017, 5, 5831–5841. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, Y.; Yuai, Z.; Long, H.; He, Q.; Guo, K.; Zhang, Y.; Chen, D.; Xu, X.; Hu, H. Co-doping g-C3N4 with P and Mo for efficient photocatalytic tetracycline degradation under visible light. Ceram. Int. 2022, 48, 24677–24686. [Google Scholar] [CrossRef]
- Starukh, H.; Praus, P. Doping of Graphitic Carbon Nitride with Non-Metal Elements and Its Applications in Photocatalysis. Catalysts 2020, 10, 1119. [Google Scholar] [CrossRef]
- Belousov, A.S.; Suleimanov, E.V.; Fukina, D.G. Pyrochlore oxides as visible light-responsive photocatalysts. New J. Chem. 2021, 45, 22531–22558. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, W.; Liu, X.; Wu, G.; Tang, Y.; Mo, Z.; Yang, D. Study on photoelectric properties of Fe-Co codoped g-C3N4. Chem. Phys. Lett. 2021, 781, 138951. [Google Scholar] [CrossRef]
- Pan, T.; Chen, D.; Fang, J.; Wu, K.; Feng, W.; Zhu, X.; Fang, Z. Facile synthesis of iron and cerium co-doped g-C3N4 with synergistic effect to enhance visible-light photocatalytic performance. Mater. Res. Bull. 2020, 125, 110812. [Google Scholar] [CrossRef]
- Vignesh, S.; Nam, S.; Kim, H. Interfacial engineering of α-Fe2O3 coupled Co3O4 heterostructures anchored on g-C3N4 structure for enhanced electrocatalytic performance in alkaline oxygen evolution reaction. Int. J. Hydrogen Energy 2024, 53, 1445–1456. [Google Scholar] [CrossRef]
- Dou, H.; Chen, L.; Zheng, S.; Zhang, Y.; Xu, G.Q. Band structure engineering of graphitic carbon nitride via Cu2+/Cu+ doping for enhanced visible light photoactivity. Mater. Chem. Phys. 2018, 214, 482–488. [Google Scholar] [CrossRef]
- Wu, Z.; Tong, Z.; Xie, Y.; Sun, H.; Gong, X.; Qin, P.; Liang, Y.; Yuan, X.; Zou, D.; Jiang, L. Efficient degradation of tetracycline by persulfate activation with Fe, Co and O co−doped g−C3N4: Performance, mechanism and toxicity. Chem. Eng. J. 2022, 434, 134732. [Google Scholar] [CrossRef]
- Sun, B.-W.; Li, H.-J.; Yu, H.-Y.; Qian, D.-J.; Chen, M. In situ synthesis of polymetallic Co-doped g-C3N4 photocatalyst with increased defect sites and superior charge carrier properties. Carbon 2017, 117, 1–11. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, J.; Li, G.; Xu, C. Enhanced photocatalytic activity of P-type (K, Fe) co-doped g-C3N4 synthesized in self-generated NH3 atmosphere. Appl. Surf. Sci. 2019, 470, 99–106. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, M.; Mominou, N.; Zuo, N.; Li, S.; Jing, C.; Wang, L. Efficient degradation of tetracycline over Co/La oriented on g-C3N4 with the outstanding oxygen activation property under visible light. J. Environ. Chem. Eng. 2022, 10, 107916. [Google Scholar] [CrossRef]
- Dong, H.; Zuo, Y.; Song, N.; Hong, S.; Xiao, M.; Zhu, D.; Sun, J.; Chen, G.; Li, C. Bimetallic synergetic regulating effect on electronic structure in cobalt/vanadium co-doped carbon nitride for boosting photocatalytic performance. Appl. Catal. B Environ. 2021, 287, 119954. [Google Scholar] [CrossRef]
- Bahadoran, A.; Najafizadeh, M.; Liu, Q.; De Lile, J.R.; Zhang, D.; Masudy-Panah, S.; Ramakrishna, S.; Fakhri, A.; Gupta, V.K. Co-doping silver and iron on graphitic carbon nitride-carrageenan nanocomposite for the photocatalytic process, rapidly colorimetric detection and antibacterial properties. Surf. Interfaces 2021, 26, 101279. [Google Scholar] [CrossRef]
- Tasleem, S.; Tahir, M. Synergistically improved charge separation in bimetallic Co–La modified 3D g-C3N4 for enhanced photocatalytic H2 production under UV–visible light. Int. J. Hydrogen Energy 2021, 46, 20995–21012. [Google Scholar] [CrossRef]
- Xu, J.; Yu, H.; Guo, H. Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light. Mater. Res. Bull. 2018, 105, 342–348. [Google Scholar] [CrossRef]
- Lai, C.; Yan, H.; Wang, D.; Liu, S.; Zhou, X.; Li, X.; Zhang, M.; Li, L.; Fu, Y.; Xu, F.; et al. Facile synthesis of Mn, Ce co-doped g-C3N4 composite for peroxymonosulfate activation towards organic contaminant degradation. Chemosphere 2022, 293, 133472. [Google Scholar] [CrossRef]
- Tan, L.; Tong, Y.; Yang, Y.; Ju, X.; Li, W. Degradation of tetracycline using persulfate activated by Mn, Ce co-doped g-C3N4 composites under visible light. Diam. Relat. Mater. 2023, 140, 110522. [Google Scholar] [CrossRef]
- Wang, L.; Guo, X.; Chen, Y.; Ai, S.; Ding, H. Cobalt-doped g-C3N4 as a heterogeneous catalyst for photo-assisted activation of peroxymonosulfate for the degradation of organic contaminants. Appl. Surf. Sci. 2019, 467–468, 954–962. [Google Scholar] [CrossRef]
- Tang, X.; Shen, W.; Li, D.; Li, B.; Wang, Y.; Song, X.; Zhu, Z.; Huo, P. Research on cobalt-doping sites in g-C3N4 framework and photocatalytic reduction CO2 mechanism insights. J. Alloys Compd. 2023, 954, 170044. [Google Scholar] [CrossRef]
- Tuna, ö.; Simsek, E.B. Synergic contribution of intercalation and electronic modification of g-C3N4 for an efficient visible light-driven catalyst for tetracycline degradation. J. Environ. Chem. Eng. 2020, 8, 104445. [Google Scholar] [CrossRef]
- Zhu, Z.; Xia, H.; Wu, R.; Cao, Y.; Li, H. Fabrication of La2O3/g-C3N4 heterojunction with enhanced photocatalytic performance of tetracycline hydrochloride. Crystals 2021, 11, 1349. [Google Scholar] [CrossRef]
- Velusamy, P.; Liu, S.; Xing, R.; Sathiya, M.; Ahmad, A.; Albaqami, M.D.; Alotabi, R.G.; Elamurugu, E.; Pandian, M.S.; Ramasamy, P. Enhanced photo-electrocatalytic performance of the nano heterostructures based on Pr3+ modified g-C3N4 and BiOI. Int. J. Hydrogen Energy 2022, 47, 32903–32920. [Google Scholar] [CrossRef]
- Van, M.N.; Mai, O.L.T.; Do, C.P.; Thi, H.L.; Manh, C.P.; Manh, H.N.; Thi, D.P.; Danh, B.D. Fe-doped g-C3N4: High-performance photocatalysts in Rhodamine B decomposition. Polymers 2020, 12, 1963. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Lian, X.; Chen, S.; Li, H.; Liu, E.; Xu, K. Kinetic analysis and mechanism study on the photocatalytic degradation of 2,4-dinitrophenylhydrazine over surface plasmonic Ag/Cu/TiO2 composite. React. Kinet. Catal. Lett. 2021, 134, 485–499. [Google Scholar] [CrossRef]
- Premalatha, N.; Rajalakshmi, P.; Miranda, L.R. Photocatalytic degradation of Rhodamine B over TiO2/g-C3N4 and immobilized TiO2/g-C3N4 on stainless steel wire gauze under UV and visible light: A detailed kinetic analysis and mechanism of degradation. React. Kinet. Catal. Lett. 2022, 135, 1031–1046. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Wang, P.; Yin, L.; Tian, Y.; Li, J. Bifunctional copper modified graphitic carbon nitride catalysts for efficient tetracycline removal: Synergy of adsorption and photocatalytic degradation. Chin. Chem. Lett. 2020, 31, 2789–2794. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, F.; Wen, K.; Lu, J. Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light. J. Photochem. Photobiol. A Chem. 2020, 389, 112217. [Google Scholar] [CrossRef]
- Guo, P.; Zhao, F.; Hu, X. Boron- and europium-co-doped g-C3N4 nanosheets: Enhanced photocatalytic activity and reaction mechanism for tetracycline degradation. Ceram. Int. 2021, 47, 16256–16268. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Zhou, S.; Lin, W.; Kong, Y. A Facile One-Step Synthesis of Fe-Doped g-C3N4 Nanosheets and Their Improved Visible-Light Photocatalytic Performance. ChemCatChem 2017, 9, 1708–1715. [Google Scholar] [CrossRef]
- Yan, W.; Yan, L.; Jing, C. Impact of Doped Metals on Urea-derived g-C3N4 for Photocatalytic Degradation of Antibiotics: Structure, Photoactivity and Degradation mechanisms. Appl. Catal. B Environ. 2019, 244, 475–485. [Google Scholar] [CrossRef]
- Xu, R.; Li, J.; Sui, G.; Zhuang, Y.; Guo, D.; Luo, Z.; Liang, S.; Yao, H.; Wang, C.; Chen, S. Constructing supramolecular self-assembled porous g-C3N4 nanosheets containing thiophene-groups for excellent photocatalytic performance under visible light. Appl. Surf. Sci. 2022, 578, 152064. [Google Scholar] [CrossRef]
- Jiang, J.; Cao, S.; Hu, C.; Chen, C. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin. J. Catal. 2017, 38, 1981–1989. [Google Scholar] [CrossRef]
- Jiang, G.-J.; Wang, H.-L.; Huang, H.; Chu, S. Facile synthesis of porous Fe-doped g-C3N4 with highly dispersed Fe sites as robust catalysts for dinitro butyl phenol degradation by peroxymonosulfate activation. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 630, 127598. [Google Scholar] [CrossRef]
- Padervand, M.; Hajiahmadi, S. Ag/AgCl@Tubular g-C3N4 nanostructure as an enhanced visible light photocatalyst for the removal of organic dye compounds and biomedical waste under visible light. J. Photochem. Photobiol. A Chem. 2022, 425, 113700. [Google Scholar] [CrossRef]
- Kang, J.-G.; Kim, Y.-I.; Cho, D.W.; Sohn, Y. Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures. Mater. Sci. Semicond. Process. 2015, 40, 737–743. [Google Scholar] [CrossRef]
- Gopinath, S.; Mayakannan, M.; Vetrivel, S. Structural, optical, morphological properties of silver doped cobalt oxide nanoparticles by microwave irradiation method. Ceram. Int. 2022, 48, 6103–6115. [Google Scholar] [CrossRef]
- Fan, J.; Qin, H.; Jiang, S. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen. Chem. Eng. J. 2018, 359, 723–732. [Google Scholar] [CrossRef]
- Ramanujam, K.; Thirupathi, T. Carbon supported g-C3N4 for electrochemical sensing of hydrazine. Electrochem. Energy Technol. 2019, 4, 21–31. [Google Scholar] [CrossRef]
- Hussien, M.K.; Sabbah, A.; Qorbani, M.; Putikam, R.; Kholimatussadiah, S.; Tzou, D.M.; Elsayed, M.H.; Lu, Y.; Wang, Y.; Lee, X.; et al. Constructing B─N─P Bonds in Ultrathin Holey g-C3N4 for Regulating the Local Chemical Environment in Photocatalytic CO2 Reduction to CO. Small 2024, e2400724, Online ahead of print. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, J.; Jin, B.; Wu, Z.; Yang, S.; Zhang, S.; Tian, Y.; Fang, Y.; Hou, Y.; Zhou, X. Sustainable synthesis of low-cost nitrogen-doped-carbon coated Co3W3C@g-C3N4 composite photocatalyst for efficient hydrogen evolution. Chem. Eng. J. 2021, 426, 131208. [Google Scholar] [CrossRef]
- Lin, H.-P.; Chen, C.-C.; Lee, W.W.; Lai, Y.-Y.; Chen, J.-Y.; Chen, Y.-Q.; Fu, J.-Y. Synthesis of a SrFeO3−x/g-C3N4heterojunction with improved visible-light photocatalytic activities in chloramphenicol and crystal violet degradation. RSC Adv. 2016, 6, 2323–2336. [Google Scholar] [CrossRef]
- Zhang, G.; Zang, S.; Lin, L.; Lan, Z.-A.; Li, G.; Wang, X. Ultrafine Cobalt Catalysts on Covalent Carbon Nitride Frameworks for Oxygenic Photosynthesis. ACS Appl. Mater. Interfaces 2016, 8, 2287–2296. [Google Scholar] [CrossRef]
- Suyana, P.; Ganguly, P.; Nair, B.N.; Mohamed, A.P.; Warrier, K.G.K.; Hareesh, U.S. Co3O4–C3N4p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environ. Sci. Nano 2017, 4, 212–221. [Google Scholar] [CrossRef]
- Jorge, A.B.; Martin, D.J.; Dhanoa, M.T.S.; Rahman, A.S.; Makwana, N.; Tang, J.; Sella, A.; Corà, F.; Firth, S.; Darr, J.A.; et al. H2 and O2 Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. J. Phys. Chem. C 2013, 117, 7178–7185. [Google Scholar] [CrossRef]
- Yi, X.-H.; Ma, S.-Q.; Du, X.-D.; Zhao, C.; Fu, H.; Wang, P.; Wang, C.-C. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light. Chem. Eng. J. 2019, 375, 121944. [Google Scholar] [CrossRef]
- Ahmad, N.; Kuo, C.-F.J.; Mustaqeem, M.; Sangili, A.; Huang, C.-C.; Chang, H.-T. Synthesis of novel Type-II MnNb2O6/g-C3N4 Mott-Schottky heterojunction photocatalyst: Excellent photocatalytic performance and degradation mechanism of fluoroquinolone-based antibiotics. Chemosphere 2023, 321, 138027. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Wang, X.; Liu, K.; Wang, H.; Wang, Y.; Lu, W.; Jiang, D.; Abbasi, H.N.; Guo, Z.; Zhang, W.; et al. Preparation and photocatalytic properties of WSe2/BiVO4 p-n heterojunction photocatalytic materials. Catal. Commun. 2024, 187, 106857. [Google Scholar] [CrossRef]
- He, D.; Yang, H.; Jin, D.; Qu, J.; Yuan, X.; Zhang, Y.-N.; Huo, M.; Peijnenburg, W.J. Rapid water purification using modified graphitic carbon nitride and visible light. Appl. Catal. B Environ. 2021, 285, 119864. [Google Scholar] [CrossRef]
- Jing, J.; Chen, Z.; Feng, C. Dramatically enhanced photoelectrochemical properties and transformed p/n type of g-C3N4 caused by K and I co-doping. Electrochim. Acta 2019, 297, 488–496. [Google Scholar] [CrossRef]
- Chang, X.; Wang, T.; Zhang, P.; Zhang, J.; Li, A.; Gong, J. Enhanced Surface Reaction Kinetics and Charge Separation of p–n Heterojunction Co3O4/BiVO4 Photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Y.; Cui, X.; Yu, H.; Qin, W.; Cui, X.; Huo, M. Synthesis of O-doped C3N4 decorated with C3N4 quantum dots: Construction of a homo junction photocatalyst for the enhanced photocatalytic degradation of tetracycline. J. Taiwan Inst. Chem. Eng. 2022, 138, 104457. [Google Scholar] [CrossRef]
- Zheng, H.; Ji, Y.; Li, S.; Li, W.; Ma, J.; Niu, J. Ecotoxicity and resistance genes induction changing of antibiotic tetracycline degradation products dominated by differential free radicals. Environ. Res. 2023, 227, 115427. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, L.; Tang, Y.; Zhou, J.; Shi, B. Peroxydisulfate activation using Fe, Co co-doped biochar and synergistic effects on tetracycline degradation. Chem. Eng. J. 2023, 452, 139381. [Google Scholar] [CrossRef]
- Zheng, S.; Ding, B.; Qian, X.; Yang, Y.; Mao, L.; Zheng, S.; Zhang, J. High efficiency degradation of tetracycline and rhodamine B using Z-type BaTiO3/γ-Bi2O3 heterojunction. Sep. Purif. Technol. 2022, 278, 119666. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Wang, H.; Luo, H.; Meng, Z.; Liu, X.; Liu, L.; Chen, W.; Jin, B.; Huang, K.; et al. Construction of novel dual Z-scheme g-C3N4/ZnFe2O4/Ag2CO3 heterojunction with enhanced visible-light-driven performance for tetracycline degradation and bacterial inactivation. J. Environ. Chem. Eng. 2023, 11, 111421. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, M.; Yuan, C.; Hu, X.; Bai, J.; Pan, R.; Lu, P.; Tang, M. Study on the degradation of tetracycline in wastewater by micro-nano bubbles activated hydrogen peroxide. Environ. Technol. 2022, 43, 3580–3590. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Pan, F.; Wang, T.; Zhang, Y.; Yao, Q.; Zhu, C.; Zhu, Y.; Ma, H.; Niu, J. Controlled synthesis of water–soluble Pt nanoclusters and their co–catalysis with RuO2–IrO2 for electrochemical degradation of tetracycline. Sep. Purif. Technol. 2022, 295, 121323. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, L.; Liu, C.; Lu, Y.; Wu, Q.; Wang, C.; Hu, Q. 0D/2D/2D ZnFe2O4/Bi2O2CO3/BiOBr double Z-scheme heterojunctions for the removal of tetracycline antibiotics by permonosulfate activation: Photocatalytic and non-photocatalytic mechanisms, radical and non-radical pathways. Sep. Purif. Technol. 2022, 283, 120164. [Google Scholar] [CrossRef]
- Moradi, S.; Isari, A.A.; Hayati, F.; Kalantary, R.R.; Kakavandi, B. Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen. Chem. Eng. J. 2021, 414, 128618. [Google Scholar] [CrossRef]
- Akhter, P.; Nawaz, S.; Shafiq, I.; Nazir, A.; Shafique, S.; Jamil, F.; Park, Y.-K.; Hussain, M. Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites. Mol. Catal. 2023, 535, 112896. [Google Scholar] [CrossRef]
- Wang, X.; Lu, M.; Ma, J.; Ning, P.; Che, L. Synthesis of K-doped g-C3N4/carbon microsphere@graphene composite with high surface area for enhanced adsorption and visible photocatalytic degradation of tetracycline. J. Taiwan Inst. Chem. Eng. 2018, 91, 609–622. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, G.-Q.; Wu, L.-X.; Sun, C.; Long, X.; Long, X.-Q.; Jiao, F.-P. Designing and Fabricating a Vulcanized ZnAl LDH-Modified g-C3N4 Heterojunction for Enhanced Visible-Light-Driven Photocatalytic Degradation Activity. Ind. Eng. Chem. Res. 2022, 61, 15225–15239. [Google Scholar] [CrossRef]
- Rezaei, S.S.; Kakavandi, B.; Noorisepehr, M.; Isari, A.A.; Zabih, S.; Bashardoust, P. Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO2 nanoparticles catalyzed peroxydisulfate: Performance, synergy and reaction mechanism studies. Sep. Purif. Technol. 2021, 258, 117936. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Tang, L.; Feng, C.; Zhu, X.; Yi, Y.; Feng, H.; Yu, J.; Ren, X. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation. Chem. Eng. J. 2022, 430, 132669. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Kim, H. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J. Colloid Interface Sci. 2022, 606, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Divakaran, K.; Baishnisha, A.; Balakumar, V.; Perumal, K.N.; Meenakshi, C.; Kannan, R.S. Photocatalytic degradation of tetracycline under visible light using TiO2@sulfur doped carbon nitride nanocomposite synthesized via in-situ method. J. Environ. Chem. Eng. 2021, 9, 105560. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, G.; Zhang, Y.; Li, D.; Ling, C.; Wang, Q.; Liu, G. Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C3N4 modified graphene oxide hydrogels. J. Hazard. Mater. 2022, 424, 127362. [Google Scholar] [CrossRef] [PubMed]
- Kandi, D.; Behera, A.; Sahoo, S.; Parida, K. CdS QDs modified BiOI/Bi2MoO6 nanocomposite for degradation of quinolone and tetracycline types of antibiotics towards environmental remediation. Sep. Purif. Technol. 2020, 253, 117523. [Google Scholar] [CrossRef]
- Preeyanghaa, M.; Erakulan, E.; Thapa, R.; Ashokkumar, M.; Neppolian, B. Scrutinizing the role of tunable carbon vacancies in g-C3N4 nanosheets for efficient sonophotocatalytic degradation of Tetracycline in diverse water matrices: Experimental study and theoretical calculation. Chem. Eng. J. 2023, 452, 139437. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Q.; You, Q.; Liao, G.; Xia, H.; Wang, D. Porous polyimide framework: A novel versatile adsorbent for highly efficient removals of azo dye and antibiotic. React. Funct. Polym. 2016, 103, 9–16. [Google Scholar] [CrossRef]
Photocatalysts (Synthetic Method) | Dosage (g/L) | TC (mg/L) | Light Source (Wavelength) | Removal (%) within Duration | Ref. |
---|---|---|---|---|---|
Cu-doped g-C3N4 (heating of pre-formed g-C3N4 and Cu) | 0.2 | 50 | 1000 W Xe lamp (λ > 420 nm) | 99 (30 min) | [46] |
Ba-doped g-C3N4 (thermal condensation of Ba(NO3)2 and melamine) | 0.5 | 10 | 150 W Xe lamp (λ > 400 nm) | 70 (120 min) | [10] |
Ag-doped g-C3N4 (photodeposition on pre-formed g-C3N4) | 1.0 | 20 | 300 W Xe lamp (λ > 420 nm) | 76 (120 min) | [47] |
Eu-doped g-C3N4 (thermal treatment of pre-formed g-C3N4 and Eu2O3) | 0.2 | 20 | 300 W Xe lamp (λ > 420 nm) | 82 (50 min) | [12] |
La-doped g-C3N4 (hydrothermal treatment of pre-formed g-C3N4 and La(NO3)3, followed by calcination) | - | 10 | Visible light (λ = 400–800 nm) | 92 (90 min) | [40] |
La2O3/g-C3N4 (mixing of pre-formed g-C3N4 and La2O3, followed by drying and heating) | 2 | 20 | Visible light (λ ≥ 400 nm) | 40 (40 min) | [41] |
B/Na co-doped g-C3N4 (mixing of pre-formed g-C3N4 and sodium borohydride, followed by calcination) | 0.1 | 30 | 300 W Xe lamp (λ > 420 nm) | 78 (30 min) | [14] |
B/Eu co-doped g-C3N4 (thermal treatment of pre-formed g-C3N4, H3BO3 and Eu2O3) | 0.4 | 20 | 400 W Halogen lamp | 91 (50 min) | [48] |
S/Se co-doped g-C3N4 (mixing of pre-formed g-C3N4 and SeS2, followed by heating) | 0.4 | 30 | 500 W Xe lamp (λ > 420 nm) | 78 (60 min) | [19] |
Co/La@g-C3N4 (one-pot synthesis) | 0.4 | 20 | 300 W Xe lamp (λ > 420 nm) | 94 (40 min) | This study |
0.4 | 50 | 300 W Xe lamp (λ > 420 nm) | 88 (40 min) |
Photocatalyst | Crystalline Size (nm) | Pore Diameter (nm) | Pore Volume (cm3 g−1) | Specific Surface Area (m2 g−1) |
---|---|---|---|---|
g-C3N4 | 4.77 | 18.6 | 0.0124 | 41.3 |
La@g-C3N4 | 2.02 | 20.5 | 0.0135 | 45.8 |
Co@g-C3N4 | 2.57 | 20.9 | 0.0241 | 79.8 |
Co/La@g-C3N4 | 2.08 | 19.2 | 0.0192 | 65.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, K.I.; Issa, T.B.; Ho, G.; Nikoloski, A.N.; Li, D. Enhanced Visible-Light-Assisted Photocatalytic Removal of Tetracycline Using Co/La@g-C3N4 Ternary Nanocomposite and Underlying Reaction Mechanisms. Water 2024, 16, 2563. https://doi.org/10.3390/w16182563
John KI, Issa TB, Ho G, Nikoloski AN, Li D. Enhanced Visible-Light-Assisted Photocatalytic Removal of Tetracycline Using Co/La@g-C3N4 Ternary Nanocomposite and Underlying Reaction Mechanisms. Water. 2024; 16(18):2563. https://doi.org/10.3390/w16182563
Chicago/Turabian StyleJohn, Kingsley Igenepo, Touma B. Issa, Goen Ho, Aleksandar N. Nikoloski, and Dan Li. 2024. "Enhanced Visible-Light-Assisted Photocatalytic Removal of Tetracycline Using Co/La@g-C3N4 Ternary Nanocomposite and Underlying Reaction Mechanisms" Water 16, no. 18: 2563. https://doi.org/10.3390/w16182563
APA StyleJohn, K. I., Issa, T. B., Ho, G., Nikoloski, A. N., & Li, D. (2024). Enhanced Visible-Light-Assisted Photocatalytic Removal of Tetracycline Using Co/La@g-C3N4 Ternary Nanocomposite and Underlying Reaction Mechanisms. Water, 16(18), 2563. https://doi.org/10.3390/w16182563