Variations and Trends in 115 Years of Graded Daily Precipitation Records at Three Hydrometeorological Stations in Finland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Used
2.2. Intensity and Frequency Indices
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Variability and Trends in Graded Daily Precipitation Characteristics
4.2. Influential Climate Teleconnections
5. Conclusions
- In general, more intense but less frequent very light daily precipitation events were recorded in Finland during the period 1909–2023. The Sodnakylä (Kaisaniemi) station in northern (southern) Finland experienced the highest (lowest) rates of such decreases and increases in the intensity and frequency of historical very light precipitation events. At Kajaani in central Finland, however, the intensities of light daily precipitation events showed a significant decreasing trend during the period 1909–2023. At this station, statistically significant trends were also detected in both the intensity and frequency of heavy daily precipitation events over time.
- The SCAND (EA) pattern was the strongest climate teleconnection positively (negatively) influencing the variability in both the intensity and frequency of very light daily events in northern and central (southern) Finland during the period 1951–2023. At all three stations of Sodankylä, Kajaani, and Kaisaniemi, however, both the intensity and frequency of light daily precipitation events showed substantial negative relationships with the NAO in the last 70 years. The SCAND and NAO also influenced the variations in both the intensity and frequency of historical moderate daily precipitation events at all three stations studied. The intensities and frequencies of all heavy (very heavy and extreme) daily precipitation events in Finland, however, were mainly controlled by variations in the EA/WR (SCAND) pattern over time. Hence, the SCAND was the most influential climate teleconnection for variations in both the intensities and frequencies of all daily graded precipitation events in Finland, except for light daily precipitation records significantly associated with the NAO over time.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC; Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021. [Google Scholar]
- Iz, H.B. Is the Global Sea Surface Temperature Rise Accelerating? Geod. Geodyn. 2018, 9, 432–438. [Google Scholar] [CrossRef]
- Ali, H.; Mishra, V. Contrasting Response of Rainfall Extremes to Increase in Surface Air and Dewpoint Temperatures at Urban Locations in India. Sci. Rep. 2017, 7, 1228. [Google Scholar] [CrossRef] [PubMed]
- Kirchmeier-Young, M.C.; Zhang, X. Human Influence Has Intensified Extreme Precipitation in North America. Proc. Natl. Acad. Sci. USA 2020, 117, 13308–13313. [Google Scholar] [CrossRef] [PubMed]
- Tabari, H.; Madani, K.; Willems, P. The Contribution of Anthropogenic Influence to More Anomalous Extreme Precipitation in Europe. Environ. Res. Lett. 2020, 15, 104077. [Google Scholar] [CrossRef]
- Irannezhad, M.; Liu, J.; Chen, D. Extreme Precipitation Variability across the Lancang-Mekong River Basin during 1952–2015 in Relation to Teleconnections and Summer Monsoons. Int. J. Climatol. 2022, 42, 2614–2638. [Google Scholar] [CrossRef]
- Liu, A.; Soneja, S.I.; Jiang, C.; Huang, C.; Kerns, T.; Beck, K.; Mitchell, C.; Sapkota, A. Frequency of Extreme Weather Events and Increased Risk of Motor Vehicle Collision in Maryland. Sci. Total Environ. 2017, 580, 550–555. [Google Scholar] [CrossRef]
- Ohba, M.; Sugimoto, S. Differences in Climate Change Impacts between Weather Patterns: Possible Effects on Spatial Heterogeneous Changes in Future Extreme Rainfall. Clim. Dyn. 2019, 52, 4177–4191. [Google Scholar] [CrossRef]
- Rummukainen, M. Changes in Climate and Weather Extremes in the 21st Century. WIREs Clim. Chang. 2012, 3, 115–129. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated Analyses of Temperature and Precipitation Extreme Indices since the Beginning of the Twentieth Century: The HadEX2 Dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Liu, B.; Tan, X.; Gan, T.Y.; Chen, X.; Lin, K.; Lu, M.; Liu, Z. Global Atmospheric Moisture Transport Associated with Precipitation Extremes: Mechanisms and Climate Change Impacts. WIREs Water 2020, 7, e1412. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data. WIREs Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. Stationarity Is Undead: Uncertainty Dominates the Distribution of Extremes. Adv. Water Resour. 2015, 77, 17–36. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Shin, H.; Heo, J.-H. Appropriate Model Selection Methods for Nonstationary Generalized Extreme Value Models. J. Hydrol. 2017, 547, 557–574. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Huang, Q.; Xie, Y.; Leng, G.; Luan, J.; Song, X.; Wei, X.; Li, X. Identification of the Non-Stationarity of Extreme Precipitation Events and Correlations with Large-Scale Ocean-Atmospheric Circulation Patterns: A Case Study in the Wei River Basin, China. J. Hydrol. 2017, 548, 184–195. [Google Scholar] [CrossRef]
- Fu, J.; Qian, W.; Lin, X.; Chen, D. Trends in Graded Precipitation in China from 1961 to 2000. Adv. Atmos. Sci. 2008, 25, 267–278. [Google Scholar] [CrossRef]
- Hu, M.; Dong, M.; Tian, X.; Wang, L.; Jiang, Y. Trends in Different Grades of Precipitation over the Yangtze River Basin from 1960 to 2017. Atmosphere 2021, 12, 413. [Google Scholar] [CrossRef]
- Xie, M.; Ren, Z.; Li, Z.; Zhang, X.; Ma, X.; Li, P.; Shen, Z. Evolution of the Precipitation–Stream Runoff Relationship in Different Precipitation Scenarios in the Yellow River Basin. Urban Clim. 2023, 51, 101609. [Google Scholar] [CrossRef]
- Irannezhad, M.; Chen, D.; Kløve, B.; Moradkhani, H. Analysing the Variability and Trends of Precipitation Extremes in Finland and Their Connection to Atmospheric Circulation Patterns. Int. J. Climatol. 2017, 37, 1053–1066. [Google Scholar] [CrossRef]
- Pedretti, D.; Irannezhad, M. Non-Stationary Peaks-over-Threshold Analysis of Extreme Precipitation Events in Finland, 1961–2016. Int. J. Climatol. 2019, 39, 1128–1143. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Tang, Q.; Hosseini-Moghari, S.-M.; Haile, G.G.; Li, L.; Li, W.; Yang, K.; van der Ent, R.J.; Chen, D. Moisture Source Variations for Summer Rainfall in Different Intensity Classes over Huaihe River Valley, China. Clim. Dyn. 2021, 57, 1121–1133. [Google Scholar] [CrossRef]
- Pathak, A.; Ghosh, S.; Martinez, J.A.; Dominguez, F.; Kumar, P. Role of Oceanic and Land Moisture Sources and Transport in the Seasonal and Interannual Variability of Summer Monsoon in India. J. Clim. 2017, 30, 1839–1859. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, S.; Shi, Y.; Liu, Z.; Li, W.; Li, L. Impact of Moisture Source Variation on Decadal-Scale Changes of Precipitation in North China from 1951 to 2010. J. Geophys. Res. Atmos. 2017, 122, 600–613. [Google Scholar] [CrossRef]
- Zhu, Y.; Sang, Y.-F.; Chen, D.; Sivakumar, B.; Li, D. Effects of the South Asian Summer Monsoon Anomaly on Interannual Variations in Precipitation over the South-Central Tibetan Plateau. Environ. Res. Lett. 2020, 15, 124067. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y. Association between Winter Temperature in China and Upper Air Circulation over East Asia Revealed by Canonical Correlation Analysis. Glob. Planet. Change 2003, 37, 315–325. [Google Scholar] [CrossRef]
- Glantz, M.H.; Katz, R.; Nicholls, N. (Eds.) Teleconnections Linking Worldwide Climate Anomalies: Scientific Basis and Societal Impact; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521106849, 0521106842. [Google Scholar]
- Wang, B.; Lee, M.-Y.; Xie, Z.; Lu, M.; Pan, M. A New Asian/North American Teleconnection Linking Clustered Extreme Precipitation from Indian to Canada. NPJ Clim. Atmos. Sci. 2022, 5, 90. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Fang, G.; Li, Y.; Li, Z.; Wang, F.; Xia, Z. Observed Changes in Extreme Precipitation over the Tienshan Mountains and Associated Large-Scale Climate Teleconnections. J. Hydrol. 2022, 606, 127457. [Google Scholar] [CrossRef]
- Kang, X.; Min, R.; Dai, J.; Gu, X. The Role of Teleconnection in the Occurrence Probability of Extreme Precipitation over China Based on Extreme Value Theory. Front. Environ. Sci. 2022, 10, 1013636. [Google Scholar] [CrossRef]
- Biswas, J. Unravelling the Influence of Teleconnection Patterns on Monsoon Extreme Precipitation Indices over the Sikkim Himalayas and West Bengal. J. Hydrol. 2023, 618, 129148. [Google Scholar] [CrossRef]
- Ghasemifar, E.; Irannezhad, M.; Minaei, F.; Minaei, M. The Role of ENSO in Atmospheric Water Vapor Variability during Cold Months over Iran. Theor. Appl. Climatol. 2022, 148, 795–817. [Google Scholar] [CrossRef]
- Irannezhad, M.; Ahmadi, B.; Liu, J.; Chen, D.; Matthews, J.H. Global Water Security: A Shining Star in the Dark Sky of Achieving the Sustainable Development Goals. Sustain. Horiz. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Nations, United. About the Sustainable Development Goals—United Nations Sustainable Development; United Nations Development Programme: New York, NY, USA, 2015. [Google Scholar]
- Chen, D.; Chen, H.W. Using the Köppen Classification to Quantify Climate Variation and Change: An Example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Käyhkö, J. Muuttuuko Pohjolan Ilmasto? (Fennoscandian Climate in Change?). Publ. Geogr. Dep. Univ. Turku 2004, 168, 19–35. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Irannezhad, M.; Chen, D.; Kløve, B. Interannual Variations and Trends in Surface Air Temperature in Finland in Relation to Atmospheric Circulation Patterns, 1961–2011. Int. J. Climatol. 2015, 35, 3078–3092. [Google Scholar] [CrossRef]
- Irannezhad, M.; Marttila, H.; Kløve, B. Long-Term Variations and Trends in Precipitation in Finland. Int. J. Climatol. 2014, 34, 3139–3153. [Google Scholar] [CrossRef]
- Jokinen, P.; Kaukoranta, J.-P.; Kangas, A.; Alenius, P.; Eriksson, P.; Johansson, M.; Wilkman, S. Tilastoja Suomen Ilmastosta ja Merestä 1991–2020; Finnish Meteorological Institute: Helsinki, Finland, 2021. [Google Scholar]
- Irannezhad, M.; Ronkanen, A.K.; Kløve, B. Effects of Climate Variability and Change on Snowpack Hydrological Processes in Finland. Cold Reg. Sci. Technol. 2015, 118, 14–29. [Google Scholar] [CrossRef]
- Irannezhad, M.; Marttila, H.; Chen, D.; Kløve, B. Century-Long Variability and Trends in Daily Precipitation Characteristics at Three Finnish Stations. Adv. Clim. Chang. Res. 2016, 7, 54–69. [Google Scholar] [CrossRef]
- Irannezhad, M.; Ronkanen, A.-K.; Kløve, B. Wintertime Climate Factors Controlling Snow Resource Decline in Finland. Int. J. Climatol. 2016, 36, 110–131. [Google Scholar] [CrossRef]
- Solantie, R.; Junila, P. Sademäärien Korjaaminen Tretjakovin Ja Wildin Sademittarien Vertailumittausten Avulla, Summary in English: The Correction of Precipitation Measurements Based on Comparisons between Tretyakov and Wild Gauges; Finnish Meteorological Institute: Helsinki, Finland, 1995. [Google Scholar]
- Irannezhad, M.; Torabi Haghighi, A.; Chen, D.; Kløve, B. Variability in Dryness and Wetness in Central Finland and the Role of Teleconnection Patterns. Theor. Appl. Climatol. 2015, 122, 471–486. [Google Scholar] [CrossRef]
- Irannezhad, M.; Chen, D.; Kløve, B. The Role of Atmospheric Circulation Patterns in Agroclimate Variability in Finland, 1961–2011. Geogr. Ann. Ser. A, Phys. Geogr. 2016, 98, 287–301. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Lim, Y.K.; Kim, H.D. Impact of the Dominant Large-Scale Teleconnections on Winter Temperature Variability over East Asia. J. Geophys. Res. Atmos. 2013, 118, 7835–7848. [Google Scholar] [CrossRef]
- Bueh, C.; Nakamura, H. Scandinavian Pattern and Its Climatic Impact. Q. J. R. Meteorol. Soc. 2007, 133, 2117–2131. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Oxford University Press: Oxford, UK, 1948. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; U.S. Geological Survey: Reston, VA, USA, 1992. [Google Scholar]
- Park, E.; Lee, Y.J. Estimates of Standard Deviation of Spearman’s Rank Correlation Coefficients with Dependent Observations. Commun. Stat. Part B Simul. Comput. 2001, 30, 129–142. [Google Scholar] [CrossRef]
- Irannezhad, M.; Kløve, B. Do Atmospheric Teleconnection Patterns Explain Variations and Trends in Thermal Growing Season Parameters in Finland? Int. J. Climatol. 2015, 35, 4619–4630. [Google Scholar] [CrossRef]
- Kiani, S.; Irannezhad, M.; Ronkanen, A.-K.; Moradkhani, H.; Kløve, B. Effects of Recent Temperature Variability and Warming on the Oulu-Hailuoto Ice Road Season in the Northern Baltic Sea. Cold Reg. Sci. Technol. 2018, 151, 1–8. [Google Scholar] [CrossRef]
- Irannezhad, M.; Liu, J.; Chen, D. Influential Climate Teleconnections for Spatiotemporal Precipitation Variability in the Lancang-Mekong River Basin from 1952 to 2015. J. Geophys. Res. Atmos 2020, 125, e2020JD033331. [Google Scholar] [CrossRef]
- Irannezhad, M.; Abdullah Abdulghafour, Z.; Marttila, H. Annual and Seasonal Mean Daily Discharge in Natural and Regulated Rivers in Northern Finland: Variability, Trends, and Links to Climate Teleconnections. Hydrol. Res. 2024, nh2024041. [Google Scholar] [CrossRef]
- Irannezhad, M.; Abdulghafour, Z.; Sadeqi, A. Climate Teleconnections Influencing Historical Variations, Trends, and Shifts in Snow Cover Days in Finland. In Earth Systems and Environment; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Venäläinen, A.; Jylhä, K.; Kilpeläinen, T.; Saku, S.; Tuomenvirta, H.; Vajda, A.; Ruosteenoja, K. Recurrence of Heavy Precipitation, Dry Spells and Deep Snow Cover in Finland Based on Observations. Boreal Environ. Res. 2009, 14, 166–172. [Google Scholar]
- Wen, G.; Huang, G.; Hu, K.; Qu, X.; Tao, W.; Gong, H. Changes in the Characteristics of Precipitation over Northern Eurasia. Theor. Appl. Climatol. 2015, 119, 653–665. [Google Scholar] [CrossRef]
- Heino, R.; Brázdil, R.; Førland, E.; Tuomenvirta, H.; Alexandersson, H.; Beniston, M.; Pfister, C.; Rebetez, M.; Rosenhagen, G.; Rösner, S.; et al. Progress in the Study of Climatic Extremes in Northern and Central Europe. Clim. Change 1999, 42, 151–181. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C.; Razuvaev, V.N. Trends in Intense Precipitation in the Climate Record. J. Clim. 2005, 18, 1326–1350. [Google Scholar] [CrossRef]
- Krichak, S.O.; Kishcha, P.; Alpert, P. Decadal Trends of Main Eurasian Oscillations and the Eastern Mediterranean Precipitation. Theor. Appl. Climatol. 2002, 72, 209–220. [Google Scholar] [CrossRef]
- Gormsen, A.K.; Hense, A.; Toldam-Andersen, T.B.; Braun, P. Large-Scale Climate Variability and Its Effects on Mean Temperature and Flowering Time of Prunus and Betula in Denmark. Theor. Appl. Climatol. 2005, 82, 41–50. [Google Scholar] [CrossRef]
- Jaagus, J. Climatic Changes in Estonia during the Second Half of the 20th Century in Relationship with Changes in Large-Scale Atmospheric Circulation. Theor. Appl. Climatol. 2006, 83, 77–88. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Yang, X.; Lu, J. Winter Northern Hemisphere Surface Air Temperature Variability Associated with the Arctic Oscillation and North Atlantic Oscillation. Geophys. Res. Lett. 2005, 32, L16706.1–L16706.4. [Google Scholar] [CrossRef]
No. | ID | Climate Teleconnection | Source | References |
---|---|---|---|---|
1 | AO | Arctic Oscillation | CPC | [47] |
2 | EA | East Atlantic | CPC | [48] |
3 | EA/WR | East Atlantic/West Russia | CPC | [48,49] |
4 | NAO | North Atlantic Oscillation | CPC | [48] |
5 | POL | Polar/Eurasia pattern | CPC | [48] |
6 | SCAND | Scandinavia pattern | CPC | [48,50] |
Characteristic | ID | Description | Units |
---|---|---|---|
Intensity | iVLPt | 0 mm < Daily precipitation ≤ 1 mm | mm day−1 |
iLPt | 1 mm < Daily precipitation ≤ 5 mm | ||
iMPt | 5 mm < Daily precipitation ≤ 10 mm | ||
iHPt | 10 mm < Daily precipitation ≤ 15 mm | ||
iVHPt | 15 mm < Daily precipitation ≤ 20 mm | ||
iEPt | Daily precipitation ≥ 20 mm | ||
Frequency | fVLPt | 0 mm < Number of daily precipitation events ≤ 1 mm | days year−1 |
fLPt | 1 mm < Number of daily precipitation events ≤ 5 mm | ||
fMPt | 5 mm < Number of daily precipitation events ≤ 10 mm | ||
fHPt | 10 mm < Number of daily precipitation events ≤ 15 mm | ||
fVHPt | 15 mm < Number of daily precipitation events ≤ 20 mm | ||
fEPt | Number of daily precipitation events ≥ 20 mm |
Characteristic | ID | Description | Units |
---|---|---|---|
Intensity | iAAVLPt | Ratio of annual total precipitation for (0 mm < daily precipitation ≤ 1 mm) to number of occurrences for each year | mm day−1 year−1 |
iAALPt | Ratio of annual total precipitation for (1 mm < daily precipitation ≤ 5 mm) to number of occurrences for each year | ||
iAAMPt | Ratio of annual total precipitation for (5 mm < daily precipitation ≤ 10 mm) to number of occurrences for each year | ||
iAAHPt | Ratio of annual total precipitation for (10 mm < daily precipitation ≤ 15 mm) to number of occurrences for each year | ||
iAAVHPt | Ratio of annual total precipitation for (15 mm < daily precipitation ≤ 20 mm) to number of occurrences for each year | ||
iAAEPt | Ratio of annual total precipitation for (daily precipitation ≥ 20 mm) to number of occurrences for each year | ||
Frequency | fACVLPEt | Number of events (0 mm < daily precipitation ≤ 1 mm) for each year | days year−1 |
fACLPEt | Number of events (1 mm < daily precipitation ≤ 5 mm) for each year | ||
fACMPEt | Number of events (5 mm < daily precipitation ≤ 10 mm) for each year | ||
fACHPEt | Number of events (10 mm < daily precipitation ≤ 15 mm) for each year | ||
fACVHPEt | Number of events (15 mm < daily precipitation ≤ 20 mm) for each year | ||
fACEPEt | Number of days with precipitation ≥ 20 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irannezhad, M.; Abdulghafour, Z.; AlQallaf, R.; Abdulreda, F.; Shamsah, G.; Alshammari, H. Variations and Trends in 115 Years of Graded Daily Precipitation Records at Three Hydrometeorological Stations in Finland. Water 2024, 16, 2684. https://doi.org/10.3390/w16182684
Irannezhad M, Abdulghafour Z, AlQallaf R, Abdulreda F, Shamsah G, Alshammari H. Variations and Trends in 115 Years of Graded Daily Precipitation Records at Three Hydrometeorological Stations in Finland. Water. 2024; 16(18):2684. https://doi.org/10.3390/w16182684
Chicago/Turabian StyleIrannezhad, Masoud, Zahrah Abdulghafour, Retaj AlQallaf, Fadak Abdulreda, Ghadeer Shamsah, and Hajar Alshammari. 2024. "Variations and Trends in 115 Years of Graded Daily Precipitation Records at Three Hydrometeorological Stations in Finland" Water 16, no. 18: 2684. https://doi.org/10.3390/w16182684
APA StyleIrannezhad, M., Abdulghafour, Z., AlQallaf, R., Abdulreda, F., Shamsah, G., & Alshammari, H. (2024). Variations and Trends in 115 Years of Graded Daily Precipitation Records at Three Hydrometeorological Stations in Finland. Water, 16(18), 2684. https://doi.org/10.3390/w16182684