Beyond Bioremediation: The Untapped Potential of Microalgae in Wastewater Treatment
Abstract
:1. Introduction
2. Wastewater Composition and Conventional Treatment
Wastewater Treatment
3. Emergent Pollutants
- Priority Substances Directive (2000/60/EC PSD): identifies an index of priority compounds that need to be surveilled and controlled in European waters. Some emerging pollutants, like pharmaceuticals and personal care products, may be included in this list [86]. However, as our understanding of environmental risks evolves, new substances of concern are identified and added to the list if they meet certain criteria regarding their persistence, bioaccumulation, toxicity, and potential for widespread environmental exposure. Once included in the list, these substances are subjected to monitoring, assessment, and control measures to mitigate their impacts on water quality and safeguard ecosystems and public health.
- Pharmaceuticals in the Environment (EMEA/CHMP/SWP/4447/00): The European Medicines Agency (EMA) has issued guidelines on the environmental risk assessment of pharmaceuticals, ensuring that pharmaceutical companies consider the environmental impact of their products [87].
- Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH Regulation; 1999/45/EC) addresses the registration, evaluation, and authorization of chemicals. It plays a role in managing and controlling industrial chemicals, some of which may be considered EPs [88].
- Biocidal Products Regulation (528/2012/EU; BPR): regulates the use of biocidal products, which include chemicals used for disinfection and pest control. Some of these products may be considered EPs when they find their way into the environment [89].
- Wastewater Treatment and Discharge Regulations (91/271/EEC): European nations have specific regulations for WWT and discharge. These regulations often include standards for the removal of EPs, particularly in urban areas [3].
- European Pharmacopoeia: This reference work contains quality standards for medicines in Europe and includes guidelines on the environmental risk assessment of pharmaceuticals [90].
4. Microalgae as a Promising Solution
4.1. How Do Microalgae Work?
4.1.1. Bioconversion
4.1.2. Bioadsorption
4.1.3. Bioaccumulation
4.1.4. Temperature, pH, and Hydraulic Retention Time
4.1.5. Particle Size and Adsorbent Dose
4.1.6. Light Exposure and Redox Potential
4.2. Microalgae-Based Wastewater Treatment
Drawbacks
5. Biomass Utilization
6. Final Considerations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Madhav, S.; Ahamad, A.; Singh, A.K.; Kushawaha, J.; Chauhan, J.S.; Sharma, S.; Singh, P. Water Pollutants: Sources and Impact on the Environment and Human Health. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Berlin/Heidelberg, Germany, 2020; pp. 43–62. [Google Scholar]
- Johnstone, D.W.M.; Ilg, S.S.N. Effluent Discharge Standards. In Handbook of Water and Wastewater Microbiology; Elsevier: Amsterdam, The Netherlands, 2003; Volume 299. [Google Scholar]
- Bird, P. The Urban Waste Water Treatment Directive. Inst. Water Off. J. 1992, 28, 14–15. [Google Scholar]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Mondal, M.; Halder, G.; Oinam, G.; Indrama, T.; Tiwari, O.N. Bioremediation of Organic and Inorganic Pollutants Using Microalgae. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 223–235. [Google Scholar]
- Zhou, G.-J.; Ying, G.-G.; Liu, S.; Zhou, L.-J.; Chen, Z.-F.; Peng, F.-Q. Simultaneous Removal of Inorganic and Organic Compounds in Wastewater by Freshwater Green Microalgae. Environ. Sci. Process. Impacts 2014, 16, 2018–2027. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razek, M.A.; Abozeid, A.M.; Eltholth, M.M.; Abouelenien, F.A.; El-Midany, S.A.; Moustafa, N.Y.; Mohamed, R.A. Bioremediation of a Pesticide and Selected Heavy Metals in Wastewater from Various Sources Using a Consortium of Microalgae and Cyanobacteria. Slov. Vet. Res. 2019, 56, 61–73. [Google Scholar] [CrossRef]
- Hena, S.; Gutierrez, L.; Croué, J.-P. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef]
- Henze, M.; Comeau, Y. Wastewater Characterization. In Biological Wastewater Treatment: Principles, Modelling and Design; Iwa Pub: London, UK, 2008; pp. 33–52. [Google Scholar]
- Hussain, I.; Raschid, L.; Hanjra, M.A.; Marikar, F.; Van Der Hoek, W. Wastewater Use in Agriculture: Review of Impacts and Methodological Issues in Valuing Impacts; International Water Management Institute: Sri Lanka, Colombo, 2002. [Google Scholar]
- Gupta, P.L.; Lee, S.-M.; Choi, H.-J. Integration of Microalgal Cultivation System for Wastewater Remediation and Sustainable Biomass Production. World J. Microbiol. Biotechnol. 2016, 32, 139. [Google Scholar] [CrossRef] [PubMed]
- Berlin, M.; Kumar, G.S.; Nambi, I.M. Numerical Modelling on Transport of Nitrogen from Wastewater and Fertilizer Applied on Paddy Fields. Ecol. Modell. 2014, 278, 85–99. [Google Scholar] [CrossRef]
- Kantawanichkul, S.; Somprasert, S. Using a Compact Combined Constructed Wetland System to Treat Agricultural Wastewater with High Nitrogen. Water Sci. Technol. 2005, 51, 47–53. [Google Scholar] [CrossRef]
- Guo, Y.; Sanjaya, E.H.; Wang, T.; Rong, C.; Luo, Z.; Xue, Y.; Chen, H.; Li, Y.-Y. The Phosphorus Harvest from Low-Temperature Mainstream Wastewater through Iron Phosphate Crystallization in a Pilot-Scale Partial Nitritation/Anammox Reactor. Sci. Total Environ. 2023, 862, 160750. [Google Scholar] [CrossRef]
- Köck-Schulmeyer, M.; Villagrasa, M.; de Alda, M.L.; Céspedes-Sánchez, R.; Ventura, F.; Barceló, D. Occurrence and Behavior of Pesticides in Wastewater Treatment Plants and Their Environmental Impact. Sci. Total Environ. 2013, 458, 466–476. [Google Scholar] [CrossRef]
- Westlund, P.; Yargeau, V. Investigation of the Presence and Endocrine Activities of Pesticides Found in Wastewater Effluent Using Yeast-Based Bioassays. Sci. Total Environ. 2017, 607, 744–751. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, Impacts and General Aspects of Pesticides in Surface Water: A Review. Process Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Gavala, H.N.; Skiadas, I.V.; Bozinis, N.A.; Lyberatos, G. Anaerobic Codigestion of Agricultural Industries’ Wastewaters. Water Sci. Technol. 1996, 34, 67–75. [Google Scholar] [CrossRef]
- Wei, Y.-S.; Yu, D.-W.; Cao, L. Anaerobic Membrane Bioreactors for Treating Agricultural and Food Processing Wastewater at High Strength. Huan Jing ke Xue = Huanjing Kexue 2014, 35, 1613–1622. [Google Scholar] [PubMed]
- Iliopoulou, A.; Zkeri, E.; Panara, A.; Dasenaki, M.; Fountoulakis, M.S.; Thomaidis, N.S.; Stasinakis, A.S. Treatment of Different Dairy Wastewater with Chlorella Sorokiniana: Removal of Pollutants and Biomass Characterization. J. Chem. Technol. Biotechnol. 2022, 97, 3193–3201. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Charalambous, P.; Vyrides, I. Dairy Wastewater Management in EU: Produced Amounts, Existing Legislation, Applied Treatment Processes and Future Challenges. J. Environ. Manag. 2022, 303, 114152. [Google Scholar] [CrossRef]
- Queiroz, R. de C.S. de; Andrade, R.S.; Dantas, I.R.; Ribeiro, V. de S.; Neto, L.B.R.; Almeida Neto, J.A. de Use of Native Aquatic Macrophytes in the Reduction of Organic Matter from Dairy Effluents. Int. J. Phytoremed. 2017, 19, 781–788. [Google Scholar] [CrossRef]
- Guillen-Jimenez, E.; Alvarez-Mateos, P.; Romero-Guzman, F.; Pereda-Marin, J. Bio-Mineralization of Organic Matter in Dairy Wastewater, as Affected by PH. The Evolution of Ammonium and Phosphates. Water Res. 2000, 34, 1215–1224. [Google Scholar] [CrossRef]
- Ashekuzzaman, S.M.; Forrestal, P.; Richards, K.; Fenton, O. Dairy Industry Derived Wastewater Treatment Sludge: Generation, Type and Characterization of Nutrients and Metals for Agricultural Reuse. J. Clean. Prod. 2019, 230, 1266–1275. [Google Scholar] [CrossRef]
- Huang, M.; Li, Y.; Gu, G. Chemical Composition of Organic Matters in Domestic Wastewater. Desalination 2010, 262, 36–42. [Google Scholar] [CrossRef]
- Selvarajan, R.; Sibanda, T.; Pandian, J.; Mearns, K. Taxonomic and Functional Distribution of Bacterial Communities in Domestic and Hospital Wastewater System: Implications for Public and Environmental Health. Antibiotics 2021, 10, 1059. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, H.; Klaus, D.; Irmgard, F.; Annette, H.; Juan, L.-P.; Regine, S. Microbiological Investigations for Sanitary Assessment of Wastewater Treated in Constructed Wetlands. Water Res. 2005, 39, 4849–4858. [Google Scholar] [CrossRef] [PubMed]
- Subedi, B.; Balakrishna, K.; Joshua, D.I.; Kannan, K. Mass Loading and Removal of Pharmaceuticals and Personal Care Products Including Psychoactives, Antihypertensives, and Antibiotics in Two Sewage Treatment Plants in Southern India. Chemosphere 2017, 167, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, B.G.; Patil, S. Anaerobic Digestion of Domestic Wastewater. Int. J. Res. Eng. Technol. 2013, 2, 283–287. [Google Scholar] [CrossRef]
- Aderibigbe, D.O.; Giwa, A.-R.A.; Bello, I.A. Characterization and Treatment of Wastewater from Food Processing Industry: A Review. Imam J. Appl. Sci. 2017, 2, 27–36. [Google Scholar]
- Germirli, F.; Orhon, D.; Artan, N. Assessment of the Initial Inert Soluble COD in Industrial Wastewaters. Water Sci. Technol. 1991, 23, 1077–1086. [Google Scholar] [CrossRef]
- Choi, Y.-B.; Kwon, J.-H.; Rim, J.-M. Effect of Salt Concentration on the Aerobic Biodegradability of Sea Food Wastewater. J. Korean Soc. Environ. Eng. 2010, 32, 256–263. [Google Scholar]
- Van Ginkel, S.W.; Oh, S.-E.; Logan, B.E. Biohydrogen Gas Production from Food Processing and Domestic Wastewaters. Int. J. Hydrogen Energy 2005, 30, 1535–1542. [Google Scholar] [CrossRef]
- Liu, V.L.; Nakhla, G.; Bassi, A. Treatability and Kinetics Studies of Mesophilic Aerobic Biodegradation of High Oil and Grease Pet Food Wastewater. J. Hazard. Mater. 2004, 112, 87–94. [Google Scholar] [CrossRef]
- Bartolomeu, M.; Neves, M.; Faustino, M.A.F.; Almeida, A. Wastewater Chemical Contaminants: Remediation by Advanced Oxidation Processes. Photochem. Photobiol. Sci. 2018, 17, 1573–1598. [Google Scholar] [CrossRef]
- Khan, A.A.; Gul, J.; Naqvi, S.R.; Ali, I.; Farooq, W.; Liaqat, R.; AlMohamadi, H.; Štěpanec, L.; Juchelková, D. Recent Progress in Microalgae-Derived Biochar for the Treatment of Textile Industry Wastewater. Chemosphere 2022, 36, 135565. [Google Scholar] [CrossRef] [PubMed]
- García, V.; Pongrácz, E.; Phillips, P.S.; Keiski, R.L. From Waste Treatment to Resource Efficiency in the Chemical Industry: Recovery of Organic Solvents from Waters Containing Electrolytes by Pervaporation. J. Clean. Prod. 2013, 39, 146–153. [Google Scholar] [CrossRef]
- Patil, P.B.; Bhandari, V.M.; Ranade, V. V Wastewater Treatment and Process Intensification for Degradation of Solvents Using Hydrodynamic Cavitation. Chem. Eng. Process. Intensif. 2021, 166, 108485. [Google Scholar] [CrossRef]
- Abadi, S.R.H.; Sebzari, M.R.; Hemati, M.; Rekabdar, F.; Mohammadi, T. Ceramic Membrane Performance in Microfiltration of Oily Wastewater. Desalination 2011, 265, 222–228. [Google Scholar] [CrossRef]
- Diez, V.; Ramos, C.; Cabezas, J.L. Treating Wastewater with High Oil and Grease Content Using an Anaerobic Membrane Bioreactor (AnMBR). Filtration and Cleaning Assays. Water Sci. Technol. 2012, 65, 1847–1853. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Y.; Gao, Y.; Zheng, G.; Yang, M.; Wu, S.; Hu, J. Occurrences and Behaviors of Naphthenic Acids in a Petroleum Refinery Wastewater Treatment Plant. Environ. Sci. Technol. 2015, 49, 5796–5804. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, L.; Omil, F.; Mendez, R.; Lema, J.M. Protein Recovery during the Overall Treatment of Wastewaters from Fish-Meal Factories. Bioresour. Technol. 1998, 63, 221–229. [Google Scholar] [CrossRef]
- Momeni, M.M.; Kahforoushan, D.; Abbasi, F.; Ghanbarian, S. Using Chitosan/CHPATC as Coagulant to Remove Color and Turbidity of Industrial Wastewater: Optimization through RSM Design. J. Environ. Manag. 2018, 211, 347–355. [Google Scholar] [CrossRef]
- Khan, M.T.; Shah, I.A.; Ihsanullah, I.; Naushad, M.; Ali, S.; Shah, S.H.A.; Mohammad, A.W. Hospital Wastewater as a Source of Environmental Contamination: An Overview of Management Practices, Environmental Risks, and Treatment Processes. J. Water Process Eng. 2021, 41, 101990. [Google Scholar] [CrossRef]
- Yao, S.; Ye, J.; Yang, Q.; Hu, Y.; Zhang, T.; Jiang, L.; Munezero, S.; Lin, K.; Cui, C. Occurrence and Removal of Antibiotics, Antibiotic Resistance Genes, and Bacterial Communities in Hospital Wastewater. Environ. Sci. Pollut. Res. 2021, 28, 57321–57333. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.; Yang, W.; Li, X.; Wang, J.; Zhang, L.; Pan, L. Disinfection Technology of Hospital Wastes and Wastewater: Suggestions for Disinfection Strategy during Coronavirus Disease 2019 (COVID-19) Pandemic in China. Environ. Pollut. 2020, 262, 114665. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.F.; Souza, D.M.; Martins, A.F. Antipsychotic Drugs in Hospital Wastewater and a Preliminary Risk Assessment. Ecotoxicol. Environ. Saf. 2019, 170, 559–567. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, M.E.; Ulvi, A.; Kilic, H. Antibiotics in Hospital Effluents: Occurrence, Contribution to Urban Wastewater, Removal in a Wastewater Treatment Plant, and Environmental Risk Assessment. Environ. Sci. Pollut. Res. 2019, 26, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Cherni, Y.; Botta, C.; Kasmi, M.; Franciosa, I.; Cocolin, L.; Chatti, A.; Trabelsi, I.; Elleuch, L. Mixed Culture of Lactococcus Lactis and Kluyveromyces Marxianus Isolated from Kefir Grains for Pollutants Load Removal from Jebel Chakir Leachate. Water Environ. Res. 2020, 92, 2041–2048. [Google Scholar] [CrossRef]
- Chen, P.H.; Oswald, W.J.; Marsolek, M.D.; Kendall, E.; Thompson, P.L.; Shuman, T.R.; Prajapati, S.K.; Kaushik, P.; Malik, A.; Vijay, V.K.; et al. Algae Biorefinery—Concepts Microalgae—Microscopic Small “Plants”. Bioresour. Technol. 2013, 44, 471–474. [Google Scholar]
- Yang, Z.; Zhou, S. The Biological Treatment of Landfill Leachate Using a Simultaneous Aerobic and Anaerobic (SAA) Bio-Reactor System. Chemosphere 2008, 72, 1751–1756. [Google Scholar] [CrossRef] [PubMed]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. Performance Evaluation of Reverse Osmosis Process in the Post-Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia. J. Water Process Eng. 2020, 34, 101116. [Google Scholar] [CrossRef]
- González-Muñoz, M.J.; Rodríguez, M.A.; Luque, S.; Álvarez, J.R. Recovery of Heavy Metals from Metal Industry Waste Waters by Chemical Precipitation and Nanofiltration. Desalination 2006, 200, 742–744. [Google Scholar] [CrossRef]
- Acheampong, M.A.; Meulepas, R.J.W.; Lens, P.N.L. Removal of Heavy Metals and Cyanide from Gold Mine Wastewater. J. Chem. Technol. Biotechnol. 2010, 85, 590–613. [Google Scholar] [CrossRef]
- Agarwal, S.; Darbar, S.; Saha, S. Challenges in Management of Domestic Wastewater for Sustainable Development. In Current Directions in Water Scarcity Research; Elsevier: Amsterdam, The Netherlands, 2022; Volume 6, pp. 531–552. ISBN 2542-7946. [Google Scholar]
- Badar, S.; Farooqi, I.H. Pulp and Paper Industry—Manufacturing Process, Wastewater Generation and Treatment. In Environmental Protection Strategies for Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2012; pp. 397–436. [Google Scholar]
- Sharma, P.; Purchase, D.; Chandra, R. Residual Pollutants in Treated Pulp Paper Mill Wastewater and Their Phytotoxicity and Cytotoxicity in Allium Cepa. Environ. Geochem. Health 2021, 43, 2143–2164. [Google Scholar] [CrossRef]
- Devi, N.L.; Yadav, I.C.; Shihua, Q.I.; Singh, S.; Belagali, S.L. Physicochemical Characteristics of Paper Industry Effluents—A Case Study of South India Paper Mill (SIPM). Environ. Monit. Assess. 2011, 177, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Kornboonraksa, T. Preliminary Study of Rapid Enhanced Effective Micro-Organisms (REEM) in Oil and Grease Trap from Canteen Wastewater. In Trends in Asian Water Environmental Science and Technology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 71–80. [Google Scholar]
- Brown, J.N.; Peake, B.M. Sources of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Urban Stormwater Runoff. Sci. Total Environ. 2006, 359, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, D.J.; Elliott, S.M.; Kiesling, R.L.; Schoenfuss, H.L.; Ferrey, M.L.; Westerhoff, B.M. Contaminants of Emerging Concern in Urban Stormwater: Spatiotemporal Patterns and Removal by Iron-Enhanced Sand Filters (IESFs). Water Res. 2018, 145, 332–345. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, W. A Review for Tannery Wastewater Treatment: Some Thoughts under Stricter Discharge Requirements. Environ. Sci. Pollut. Res. 2019, 26, 26102–26111. [Google Scholar] [CrossRef]
- Haroun, M.; Idris, A.; Omar, S.R.S. A Study of Heavy Metals and Their Fate in the Composting of Tannery Sludge. Waste Manag. 2007, 27, 1541–1550. [Google Scholar] [CrossRef]
- Ali, Z.; Malik, R.N.; Qadir, A. Heavy Metals Distribution and Risk Assessment in Soils Affected by Tannery Effluents. Chem. Ecol. 2013, 29, 676–692. [Google Scholar] [CrossRef]
- Vo, T.-D.-H.; Bui, X.-T.; Dang, B.-T.; Nguyen, T.-T.; Nguyen, V.-T.; Tran, D.P.H.; Nguyen, P.-T.; Boller, M.; Lin, K.-Y.A.; Varjani, S.; et al. Influence of Organic Loading Rates on Treatment Performance of Membrane Bioreactor Treating Tannery Wastewater. Environ. Technol. Innov. 2021, 24, 101810. [Google Scholar] [CrossRef]
- Hasegawa, M.C.; Daniel, J.F.d.S.; Takashima, K.; Batista, G.A.; da Silva, S.M.C.P. COD Removal and Toxicity Decrease from Tannery Wastewater by Zinc Oxide-Assisted Photocatalysis: A Case Study. Environ. Technol. 2014, 35, 1589–1595. [Google Scholar] [CrossRef]
- Jahan, M.A.A.; Akhtar, N.; Khan, N.M.S.; Roy, C.K.; Islam, R.; Nurunnabi, M. Characterization of Tannery Wastewater and Its Treatment by Aquatic Macrophytes and Algae. Bangladesh J. Sci. Ind. Res. 2015, 49, 233–242. [Google Scholar] [CrossRef]
- Arti; Mehra, R. Analysis of heavy metals and toxicity level in the tannery effluent and the environs. Environ. Monit. Assess. 2023, 195, 554. [Google Scholar] [CrossRef] [PubMed]
- Chatzisymeon, E.; Xekoukoulotakis, N.P.; Coz, A.; Kalogerakis, N.; Mantzavinos, D. Electrochemical Treatment of Textile Dyes and Dyehouse Effluents. J. Hazard. Mater. 2006, 137, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Sarker, M.R.; Chowdhury, M.; Deb, A.K. Reduction of Color Intensity from Textile Dye Wastewater Using Microorganisms: A Review. Int. J. Curr. Microbiol. Appl. Sci 2019, 8, 3407–3415. [Google Scholar] [CrossRef]
- Sarker, B.C.; Baten, M.A.; Eqram, M.; Haque, U.; Das, A.K.; Hossain, A.; Hasan, M.Z. Heavy Metals Concentration in Textile and Garments Industries’ Wastewater of Bhaluka Industrial Area, Mymensingh, Bangladesh. Curr. World Environ. 2015, 10, 61–66. [Google Scholar] [CrossRef]
- Nicolaou, M.; Hadjivassilis, I. Treatment of Wastewater from the Textile Industry. Water Sci. Technol. 1992, 25, 31–35. [Google Scholar] [CrossRef]
- Roy, R.; Fakhruddin, A.N.M.; Khatun, R.; Islam, M.S.; Ahsan, M.A.; Neger, A. Characterization of Textile Industrial Effluents and Its Effects on Aquatic Macrophytes and Algae. Bangladesh J. Sci. Ind. Res. 2010, 45, 79–84. [Google Scholar] [CrossRef]
- Alvim, C.B.; Bes-Piá, M.A.; Mendoza-Roca, J.A. Separation and Identification of Microplastics from Primary and Secondary Effluents and Activated Sludge from Wastewater Treatment Plants. Chem. Eng. J. 2020, 402, 126293. [Google Scholar] [CrossRef]
- Brown, A.K.; Wong, C.S. Distribution and Fate of Pharmaceuticals and Their Metabolite Conjugates in a Municipal Wastewater Treatment Plant. Water Res. 2018, 144, 774–783. [Google Scholar] [CrossRef]
- Raju, S.; Carbery, M.; Kuttykattil, A.; Senthirajah, K.; Lundmark, A.; Rogers, Z.; Suresh, S.C.B.; Evans, G.; Palanisami, T. Improved Methodology to Determine the Fate and Transport of Microplastics in a Secondary Wastewater Treatment Plant. Water Res. 2020, 173, 115549. [Google Scholar] [CrossRef]
- Kumar, R.; Sarmah, A.K.; Padhye, L.P. Fate of Pharmaceuticals and Personal Care Products in a Wastewater Treatment Plant with Parallel Secondary Wastewater Treatment Train. J. Environ. Manag. 2019, 233, 649–659. [Google Scholar] [CrossRef]
- Azuma, T.; Hayashi, T. On-Site Chlorination Responsible for Effective Disinfection of Wastewater from Hospital. Sci. Total Environ. 2021, 776, 145951. [Google Scholar] [CrossRef]
- Martin Ruel, S.; Choubert, J.-M.; Budzinski, H.; Miege, C.; Esperanza, M.; Coquery, M. Occurrence and Fate of Relevant Substances in Wastewater Treatment Plants Regarding Water Framework Directive and Future Legislations. Water Sci. Technol. 2012, 65, 1179–1189. [Google Scholar] [CrossRef]
- Salthammer, T. Emerging Indoor Pollutants. Int. J. Hyg. Environ. Health 2020, 224, 113423. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Yadav, D.; Rangabhashiyam, S.; Verma, P.; Singh, P.; Devi, P.; Kumar, P.; Hussain, C.M.; Gaurav, G.K.; Kumar, K.S. Environmental and Health Impacts of Contaminants of Emerging Concerns: Recent Treatment Challenges and Approaches. Chemosphere 2021, 272, 129492. [Google Scholar] [CrossRef]
- Wiering, M.; Boezeman, D.; Crabbé, A. The Water Framework Directive and Agricultural Diffuse Pollution: Fighting a Running Battle? Water 2020, 12, 1447. [Google Scholar] [CrossRef]
- Basis, L. Procedure File. Reading 2010, 2160, 8–10. [Google Scholar]
- Council, O.F.T.H.E. Directive 2013/11/EU of the European Parliament and of the Council. Fundam. Texts Eur. Priv. Law 2020, 2013, 1–17. [Google Scholar] [CrossRef]
- Ågerstrand, M.; Berg, C.; Björlenius, B.; Breitholtz, M.; Brunström, B.; Fick, J.; Gunnarsson, L.; Larsson, D.G.J.; Sumpter, J.P.; Tysklind, M. Improving Environmental Risk Assessment of Human Pharmaceuticals. Environ. Sci. Technol. 2015, 49, 5336–5345. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1907 (accessed on 15 June 2024).
- Council, O.F.T.H.E. Regulation (EU) No 524/2013 of the European Parliament and of the Council. In Fundamental Texts on European Private Law; Hart Publishing: London, UK, 2020; pp. 1–123. [Google Scholar] [CrossRef]
- EMA. Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. Eur. Med. Agency 2006, 44, 1–48. [Google Scholar]
- Lapworth, D.J.; Lopez, B.; Laabs, V.; Kozel, R.; Wolter, R.; Ward, R.; Vargas Amelin, E.; Besien, T.; Claessens, J.; Delloye, F. Developing a Groundwater Watch List for Substances of Emerging Concern: A European Perspective. Environ. Res. Lett. 2019, 14, 35004. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging Contaminants of High Concern for the Environment: Current Trends and Future Research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; FAO: Rome, Italy, 2018; ISBN 9789251301586. [Google Scholar]
- Nizami, A.-S.; Rehan, M.; Waqas, M.; Naqvi, M.; Ouda, O.K.M.; Shahzad, K.; Miandad, R.; Khan, M.Z.; Syamsiro, M.; Ismail, I.M.I. Waste Biorefineries: Enabling Circular Economies in Developing Countries. Bioresour. Technol. 2017, 241, 1101–1117. [Google Scholar] [CrossRef]
- Chaudry, S. Integrating Microalgae Cultivation with Wastewater Treatment: A Peek into Economics. Appl. Biochem. Biotechnol. 2021, 193, 3395–3406. [Google Scholar] [CrossRef] [PubMed]
- Mehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies 2021, 14, 2282. [Google Scholar] [CrossRef]
- El-Sheekh, M.; Abdel-Daim, M.M.; Okba, M.; Gharib, S.; Soliman, A.; El-Kassas, H. Green Technology for Bioremediation of the Eutrophication Phenomenon in Aquatic Ecosystems: A Review. Afr. J. Aquat. Sci. 2021, 46, 274–292. [Google Scholar] [CrossRef]
- Laraib, N.; Hussain, A.; Javid, A.; Hafeez-ur-Rehman, M.; Bukhari, S.M.; Rashid, M.; Ali, W. Recent Advancements in Microalgal-Induced Remediation of Wastewaters. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 205–217. [Google Scholar]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Aswathnarayana Gokare, R.; Ambati, R.R. Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview. Cells 2021, 10, 393. [Google Scholar] [CrossRef]
- Fazal, T.; Mushtaq, A.; Rehman, F.; Khan, A.U.; Rashid, N.; Farooq, W.; Rehman, M.S.U.; Xu, J. Bioremediation of Textile Wastewater and Successive Biodiesel Production Using Microalgae. Renew. Sustain. Energy Rev. 2018, 82, 3107–3126. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Ralph, P.J. Microalgal Bioremediation of Emerging Contaminants-Opportunities and Challenges. Water Res. 2019, 164, 114921. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kurade, M.B.; Jeon, B.-H. Biodegradation of Levofloxacin by an Acclimated Freshwater Microalga, Chlorella Vulgaris. Chem. Eng. J. 2017, 313, 1251–1257. [Google Scholar] [CrossRef]
- Leng, L.; Wei, L.; Xiong, Q.; Xu, S.; Li, W.; Lv, S.; Lu, Q.; Wan, L.; Wen, Z.; Zhou, W. Use of Microalgae Based Technology for the Removal of Antibiotics from Wastewater: A Review. Chemosphere 2020, 238, 124680. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Yang, M.; Zhang, J.; Yang, B.; Lin, K.; Li, J.; Gan, J. Toxicity, Degradation and Metabolic Fate of Ibuprofen on Freshwater Diatom Navicula Sp. J. Hazard. Mater. 2017, 330, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Brasil, B.d.S.A.F.; de Siqueira, F.G.; Salum, T.F.C.; Zanette, C.M.; Spier, M.R. Microalgae and Cyanobacteria as Enzyme Biofactories. Algal Res. 2017, 25, 76–89. [Google Scholar] [CrossRef]
- Priyadharshini, S.D.; Babu, P.S.; Manikandan, S.; Subbaiya, R.; Govarthanan, M.; Karmegam, N. Phycoremediation of Wastewater for Pollutant Removal: A Green Approach to Environmental Protection and Long-Term Remediation. Environ. Pollut. 2021, 290, 117989. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kim, S.-J.; Kurade, M.B.; Govindwar, S.; Abou-Shanab, R.A.I.; Kim, J.-R.; Roh, H.-S.; Khan, M.A.; Jeon, B.-H. Combined Effects of Sulfamethazine and Sulfamethoxazole on a Freshwater Microalga, Scenedesmus Obliquus: Toxicity, Biodegradation, and Metabolic Fate. J. Hazard. Mater. 2019, 370, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Liu, Y.-S.; Hu, L.-X.; Shi, Z.-Q.; Cai, W.-W.; He, L.-Y.; Ying, G.-G. Co-Metabolism of Sulfamethoxazole by a Freshwater Microalga Chlorella Pyrenoidosa. Water Res. 2020, 175, 115656. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Ngo, H.H.; Guo, W.; Nguyen, K.H.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Liu, Y.; Ding, A.; Bui, X.T. Micropollutants Cometabolism of Microalgae for Wastewater Remediation: Effect of Carbon Sources to Cometabolism and Degradation Products. Water Res. 2020, 183, 115974. [Google Scholar] [CrossRef]
- Mustafa, S.; Bhatti, H.N.; Maqbool, M.; Iqbal, M. Microalgae Biosorption, Bioaccumulation and Biodegradation Efficiency for the Remediation of Wastewater and Carbon Dioxide Mitigation: Prospects, Challenges and Opportunities. J. Water Process Eng. 2021, 41, 102009. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Metwally, M.A.; Allam, N.; Hemdan, H.E. Simulation Treatment of Industrial Wastewater Using Microbiological Cell Immobilization Technique. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 595–604. [Google Scholar] [CrossRef]
- Chia, W.Y.; Tang, D.Y.Y.; Khoo, K.S.; Lup, A.N.K.; Chew, K.W. Nature’s Fight against Plastic Pollution: Algae for Plastic Biodegradation and Bioplastics Production. Environ. Sci. Ecotechnol. 2020, 4, 100065. [Google Scholar] [CrossRef]
- Shanab, S.; Essa, A.; Shalaby, E. Bioremoval Capacity of Three Heavy Metals by Some Microalgae Species (Egyptian Isolates). Plant Signal. Behav. 2012, 7, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Gunasundari, E. Adsorption Isotherm, Kinetics and Thermodynamic Analysis of Cu (II) Ions onto the Dried Algal Biomass (Spirulina Platensis). J. Ind. Eng. Chem. 2017, 56, 129–144. [Google Scholar]
- Wang, J.; Chen, C. Biosorbents for Heavy Metals Removal and Their Future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Neff, J.M. Bioaccumulation in Marine Organisms: Effect of Contaminants from Oil Well Produced Water; Elsevier: Amsterdam, The Netherlands, 2002; ISBN 0080527841. [Google Scholar]
- Mota, R.; Rossi, F.; Andrenelli, L.; Pereira, S.B.; De Philippis, R.; Tamagnini, P. Released Polysaccharides (RPS) from Cyanothece Sp. CCY 0110 as Biosorbent for Heavy Metals Bioremediation: Interactions between Metals and RPS Binding Sites. Appl. Microbiol. Biotechnol. 2016, 100, 7765–7775. [Google Scholar] [CrossRef]
- Rempel, A.; Gutkoski, J.P.; Nazari, M.T.; Biolchi, G.N.; Cavanhi, V.A.F.; Treichel, H.; Colla, L.M. Current Advances in Microalgae-Based Bioremediation and Other Technologies for Emerging Contaminants Treatment. Sci. Total Environ. 2021, 772, 144918. [Google Scholar] [CrossRef]
- Premaratne, M.; Nishshanka, G.; Liyanaarachchi, V.C.; Nimarshana, P.H.V.; Ariyadasa, T.U. Bioremediation of Textile Dye Wastewater Using Microalgae: Current Trends and Future Perspectives. J. Chem. Technol. Biotechnol. 2021, 96, 3249–3258. [Google Scholar] [CrossRef]
- Tamma, G.; Valenti, G.; Grossini, E.; Donnini, S.; Marino, A.; Marinelli, R.A.; Calamita, G. Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. Oxid. Med. Cell. Longev. 2018, 2018, 1501847. [Google Scholar] [CrossRef]
- Song, C.; Wei, Y.; Qiu, Y.; Qi, Y.; Li, Y.; Kitamura, Y. Biodegradability and Mechanism of Florfenicol via Chlorella Sp. UTEX1602 and L38: Experimental Study. Bioresour. Technol. 2019, 272, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Rodea-Palomares, I.; Makowski, M.; Gonzalo, S.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F. Effect of PFOA/PFOS Pre-Exposure on the Toxicity of the Herbicides 2, 4-D, Atrazine, Diuron and Paraquat to a Model Aquatic Photosynthetic Microorganism. Chemosphere 2015, 139, 65–72. [Google Scholar] [CrossRef]
- Saavedra, R.; Muñoz, R.; Taboada, M.E.; Bolado, S. Influence of Organic Matter and CO2 Supply on Bioremediation of Heavy Metals by Chlorella Vulgaris and Scenedesmus Almeriensis in a Multimetallic Matrix. Ecotoxicol. Environ. Saf. 2019, 182, 109393. [Google Scholar] [CrossRef]
- Su, Y. Revisiting Carbon, Nitrogen, and Phosphorus Metabolisms in Microalgae for Wastewater Treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.E.; Dang, Y.; Smith, J.A. Nitrogen Cycling during Wastewater Treatment. Adv. Appl. Microbiol. 2019, 106, 113–192. [Google Scholar] [PubMed]
- Raychaudhuric, S.; Simsekb, H.; Kumar, S. Algae-and Bacteria-Driven Technologies for Pharmaceutical Remediation in Wastewater. In Removal of Toxic Pollutants Through Microbiological and Tertiary Treatment; New Perspect; Elsevier: Amsterdam, The Netherlands, 2020; Volume 373. [Google Scholar]
- Mujtaba, G.; Lee, K. Advanced Treatment of Wastewater Using Symbiotic Co-Culture of Microalgae and Bacteria. Appl. Chem. Eng. 2016, 27, 1–9. [Google Scholar] [CrossRef]
- USEPA. Wastewater Management Fact Sheet; USEPA: Washington, DC, USA, 2007; pp. 1–7. [Google Scholar]
- Shah, M.P. Development in Wastewater Treatment Research and Processes: Advances in Industrial Wastewater Treatment Technologies: Removal of Contaminants and Recovery of Resources; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 0323956858. [Google Scholar]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Moheimani, N.R. Pilot-Scale Self-Cooling Microalgal Closed Photobioreactor for Biomass Production and Electricity Generation. Algal Res. 2020, 45, 101731. [Google Scholar] [CrossRef]
- Saeed, M.U.; Hussain, N.; Sumrin, A.; Shahbaz, A.; Noor, S.; Bilal, M.; Aleya, L.; Iqbal, H.M.N. Microbial Bioremediation Strategies with Wastewater Treatment Potentialities—A Review. Sci. Total Environ. 2022, 818, 151754. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Mathew, A.K.; Pandey, A.; Sukumaran, R.K. Harvesting of Microalgal Biomass: Efficient Method for Flocculation through PH Modulation. Bioresour. Technol. 2016, 213, 216–221. [Google Scholar] [CrossRef]
- Chakraborty, M.; Miao, C.; McDonald, A.; Chen, S. Concomitant Extraction of Bio-Oil and Value Added Polysaccharides from Chlorella Sorokiniana Using a Unique Sequential Hydrothermal Extraction Technology. Fuel 2012, 95, 63–70. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Howard-Williams, C.; Turnbull, M.H.; Broady, P.A.; Craggs, R.J. The Effects of CO2 Addition along a PH Gradient on Wastewater Microalgal Photo-Physiology, Biomass Production and Nutrient Removal. Water Res. 2015, 70, 9–26. [Google Scholar] [CrossRef] [PubMed]
- De-Bashan, L.E.; Bashan, Y. Immobilized Microalgae for Removing Pollutants: Review of Practical Aspects. Bioresour. Technol. 2010, 101, 1611–1627. [Google Scholar] [CrossRef]
- Wang, Z.; Xiu, G.; Qiao, T.; Zhao, K.; Zhang, D. Coupling Ozone and Hollow Fibers Membrane Bioreactor for Enhanced Treatment of Gaseous Xylene Mixture. Bioresour. Technol. 2013, 130, 52–58. [Google Scholar] [CrossRef]
- Hlongwane, G.N.; Sekoai, P.T.; Meyyappan, M.; Moothi, K. Simultaneous Removal of Pollutants from Water Using Nanoparticles: A Shift from Single Pollutant Control to Multiple Pollutant Control. Sci. Total Environ. 2019, 656, 808–833. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Dey, A. Phycoremediation–an Emerging Technique for Dye Abatement: An Overview. Process Saf. Environ. Prot. 2021, 147, 214–225. [Google Scholar] [CrossRef]
- Frascaroli, G.; Hunter, C.; Roberts, J.; Escudero, A. Antibiotic Removal by Three Promising Microalgae Strains: Biotic, Abiotic Routes, and Response Mechanisms. Water, Air, Soil Pollut. 2024, 235, 600. [Google Scholar] [CrossRef]
- Hom-Diaz, A.; Jaén-Gil, A.; Rodríguez-Mozaz, S.; Barceló, D.; Vicent, T.; Blánquez, P. Insights into Removal of Antibiotics by Selected Microalgae (Chlamydomonas Reinhardtii, Chlorella Sorokiniana, Dunaliella Tertiolecta and Pseudokirchneriella Subcapitata). Algal Res. 2022, 61, 102560. [Google Scholar] [CrossRef]
- Lu, W.; Alam, M.A.; Liu, S.; Xu, J.; Saldivar, R.P. Critical Processes and Variables in Microalgae Biomass Production Coupled with Bioremediation of Nutrients and CO2 from Livestock Farms: A Review. Sci. Total Environ. 2020, 716, 135247. [Google Scholar] [CrossRef]
- Touliabah, H.E.-S.; El-Sheekh, M.M.; Ismail, M.M.; El-Kassas, H. A Review of Microalgae-and Cyanobacteria-Based Biodegradation of Organic Pollutants. Molecules 2022, 27, 1141. [Google Scholar] [CrossRef]
- Chan, S.S.; Khoo, K.S.; Chew, K.W.; Ling, T.C.; Show, P.L. Recent Advances Biodegradation and Biosorption of Organic Compounds from Wastewater: Microalgae-Bacteria Consortium-A Review. Bioresour. Technol. 2022, 344, 126159. [Google Scholar] [CrossRef]
- Campanella, L.; Cubadda, F.; Sammartino, M.P.; Saoncella, A. An Algal Biosensor for the Monitoring of Water Toxicity in Estuarine Environments. Water Res. 2001, 35, 69–76. [Google Scholar] [CrossRef]
- Vu, C.H.T.; Lee, H.-G.; Chang, Y.K.; Oh, H.-M. Axenic Cultures for Microalgal Biotechnology: Establishment, Assessment, Maintenance, and Applications. Biotechnol. Adv. 2018, 36, 380–396. [Google Scholar] [CrossRef]
- di Cicco, M.R.; Palmieri, M.; Altieri, S.; Ciniglia, C.; Lubritto, C. Cultivation of the Acidophilic Microalgae Galdieria Phlegrea with Wastewater: Process Yields. Int. J. Environ. Res. Public Health 2021, 18, 2291. [Google Scholar] [CrossRef] [PubMed]
- Spennati, E.; Casazza, A.A.; Converti, A. Winery Wastewater Treatment by Microalgae to Produce Low-Cost Biomass for Energy Production Purposes. Energies 2020, 13, 2490. [Google Scholar] [CrossRef]
- Ajayan, K.V.; Selvaraju, M.; Unnikannan, P.; Sruthi, P. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species. Int. J. Phytoremed. 2015, 17, 907–916. [Google Scholar] [CrossRef]
- Daneshvar, E.; Zarrinmehr, M.J.; Hashtjin, A.M.; Farhadian, O.; Bhatnagar, A. Versatile Applications of Freshwater and Marine Water Microalgae in Dairy Wastewater Treatment, Lipid Extraction and Tetracycline Biosorption. Bioresour. Technol. 2018, 268, 523–530. [Google Scholar] [CrossRef]
- Blanco-Vieites, M.; Suárez-Montes, D.; Hernández Battez, A.; Rodríguez, E. Enhancement of Arthrospira Sp. Culturing for Sulfate Removal and Mining Wastewater Bioremediation. Int. J. Phytoremed. 2023, 25, 1116–1126. [Google Scholar] [CrossRef]
- Salgado, E.M.; Gonçalves, A.L.; Sánchez-Soberón, F.; Ratola, N.; Pires, J.C.M. Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes. Int. J. Environ. Res. Public Health 2022, 19, 2634. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Economou, C.N.; Tekerlekopoulou, A.G.; Vayenas, D. V Two-Step Treatment of Brewery Wastewater Using Electrocoagulation and Cyanobacteria-Based Cultivation. J. Environ. Manag. 2020, 265, 110543. [Google Scholar] [CrossRef] [PubMed]
- Sayara, T.; Khayat, S.; Saleh, J.; Van Der Steen, P. Bioremediation of Nutrients from Municipal Wastewater Using Algal-Bacterial Photobioreactor: Real Field Scale Demonstration for Improving Effluent Quality. J. Water Chem. Technol. 2021, 43, 261–268. [Google Scholar] [CrossRef]
- Mubashar, M.; Naveed, M.; Mustafa, A.; Ashraf, S.; Shehzad Baig, K.; Alamri, S.; Siddiqui, M.H.; Zabochnicka-Świątek, M.; Szota, M.; Kalaji, H.M. Experimental Investigation of Chlorella Vulgaris and Enterobacter Sp. MN17 for Decolorization and Removal of Heavy Metals from Textile Wastewater. Water 2020, 12, 3034. [Google Scholar] [CrossRef]
- Lima, S.; Villanova, V.; Grisafi, F.; Caputo, G.; Brucato, A.; Scargiali, F. Autochthonous Microalgae Grown in Municipal Wastewaters as a Tool for Effectively Removing Nitrogen and Phosphorous. J. Water Process Eng. 2020, 38, 101647. [Google Scholar] [CrossRef]
- Serrà, A.; Artal, R.; García-Amorós, J.; Gómez, E.; Philippe, L. Circular Zero-Residue Process Using Microalgae for Efficient Water Decontamination, Biofuel Production, and Carbon Dioxide Fixation. Chem. Eng. J. 2020, 388, 124278. [Google Scholar] [CrossRef]
- Encarnação, T.; Palito, C.; Pais, A.A.C.C.; Valente, A.J.M.; Burrows, H.D. Removal of Pharmaceuticals from Water by Free and Imobilised Microalgae. Molecules 2020, 25, 3639. [Google Scholar] [CrossRef]
- El-Kassas, H.Y.; Mohamed, L.A. Bioremediation of the Textile Waste Effluent by Chlorella Vulgaris. Egypt. J. Aquat. Res. 2014, 40, 301–308. [Google Scholar] [CrossRef]
- Chisti, Y. Raceways-Based Production of Algal Crude Oil. Green 2013, 3, 195–216. [Google Scholar] [CrossRef]
- Fernández, F.G.A.; Sevilla, J.M.F.; Grima, E.M. Costs Analysis of Microalgae Production. In Biofuels from Algae; Elsevier: Amsterdam, The Netherlands, 2019; pp. 551–566. [Google Scholar]
- Moreno-Garcia, L.; Adjallé, K.; Barnabé, S.; Raghavan, G.S. V Microalgae Biomass Production for a Biorefinery System: Recent Advances and the Way towards Sustainability. Renew. Sustain. Energy Rev. 2017, 76, 493–506. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I. Microalgae and Wastewater Treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef]
- Borowitzka, M.A. High-Value Products from Microalgae-Their Development and Commercialisation. J. Appl. Phycol. 2013, 25, 743–756. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M. Microalgae-Based Wastewater Treatment: Mechanisms, Challenges, Recent Advances, and Future Prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef]
- Kensa, V.M. Bioremediation-an Overview. J. Ind. Pollut. Control 2011, 27, 161–168. [Google Scholar]
- Withers, P.J.A.; Elser, J.J.; Hilton, J.; Ohtake, H.; Schipper, W.J.; Van Dijk, K.C. Greening the Global Phosphorus Cycle: How Green Chemistry Can Help Achieve Planetary P Sustainability. Green Chem. 2015, 17, 2087–2099. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for Biodiesel Production and Other Applications: A Review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Ruiz, J.; Olivieri, G.; De Vree, J.; Bosma, R.; Willems, P.; Reith, J.H.; Eppink, M.H.M.; Kleinegris, D.M.M.; Wijffels, R.H.; Barbosa, M.J. Towards Industrial Products from Microalgae. Energy Environ. Sci. 2016, 9, 3036–3043. [Google Scholar] [CrossRef]
- Montégut, L.; de Cabo, R.; Zitvogel, L.; Kroemer, G. Science-Driven Nutritional Interventions for the Prevention and Treatment of Cancer. Cancer Discov. 2022, 12, 2258–2279. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Mulbry, W.; Westhead, E.K.; Pizarro, C.; Sikora, L. Recycling of Manure Nutrients: Use of Algal Biomass from Dairy Manure Treatment as a Slow Release Fertilizer. Bioresour. Technol. 2005, 96, 451–458. [Google Scholar] [CrossRef]
- Gondi, R.; Kavitha, S.; Yukesh Kannah, R.; Parthiba Karthikeyan, O.; Kumar, G.; Kumar Tyagi, V.; Rajesh Banu, J. Algal-Based System for Removal of Emerging Pollutants from Wastewater: A Review. Bioresour. Technol. 2022, 344, 126245. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.M.R.; Das, P.; Wu, J.C. Microalgae (Nannochloropsis Salina) Biomass to Lactic Acid and Lipid. Biochem. Eng. J. 2012, 68, 109–113. [Google Scholar] [CrossRef]
- Rocha, C.J.L.; Álvarez-Castillo, E.; Yáñez, M.R.E.; Bengoechea, C.; Guerrero, A.; Ledesma, M.T.O. Development of Bioplastics from a Microalgae Consortium from Wastewater. J. Environ. Manag. 2020, 263, 110353. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, N.T. Production of Phycocyanin—A Pigment with Applications in Biology, Biotechnology, Foods and Medicine. Appl. Microbiol. Biotechnol. 2008, 80, 1–14. [Google Scholar] [CrossRef]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal Biofactories: A Promising Approach towards Sustainable Omega-3 Fatty Acid Production. Microb. Cell Fact. 2012, 11, 96. [Google Scholar] [CrossRef]
- Del Campo, J.A.; García-González, M.; Guerrero, M.G. Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Nwoba, E.G.; Ogbonna, C.N.; Ishika, T.; Vadiveloo, A. Microalgal Pigments: A Source of Natural Food Colors. In Microalgae Biotechnology for Food, Health and High Value Products; Springer: Berlin/Heidelberg, Germany, 2020; pp. 81–123. [Google Scholar]
- Delrue, F.; Setier, P.-A.; Sahut, C.; Cournac, L.; Roubaud, A.; Peltier, G.; Froment, A.-K. An Economic, Sustainability, and Energetic Model of Biodiesel Production from Microalgae. Bioresour. Technol. 2012, 111, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Chaput, G.; Charmanski, K.; Farag, I. Sustainable Production of Microalgae Oil Feedstock Using Municipal Wastewater and CO2 Fertilization. Int. J. Eng. Sci. Technol. 2012, 4, 3489–3499. [Google Scholar]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The Potential of Sustainable Algal Biofuel Production Using Wastewater Resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.K.; Craggs, R.J.; Shilton, A.N. Wastewater Treatment High Rate Algal Ponds for Biofuel Production. Bioresour. Technol. 2011, 102, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Acién, F.G.; Fernández, J.M.; Magán, J.J.; Molina, E. Production Cost of a Real Microalgae Production Plant and Strategies to Reduce It. Biotechnol. Adv. 2012, 30, 1344–1353. [Google Scholar] [CrossRef]
- Oostlander, P.C.; van Houcke, J.; Wijffels, R.H.; Barbosa, M.J. Microalgae Production Cost in Aquaculture Hatcheries. Aquaculture 2020, 525, 735310. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels. J. Renew. Sustain. Energy 2010, 2, 012701. [Google Scholar] [CrossRef]
- Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of Oil from Microalgae for Biodiesel Production: A Review. Biotechnol. Adv. 2012, 30, 709–732. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from Microalgae-A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Abdelaziz, A.E.M.; Leite, G.B.; Belhaj, M.A.; Hallenbeck, P.C. Screening Microalgae Native to Quebec for Wastewater Treatment and Biodiesel Production. Bioresour. Technol. 2014, 157, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.H.; Tao, L. Economic Perspectives of Biogas Production via Anaerobic Digestion. Bioengineering 2020, 7, 74. [Google Scholar] [CrossRef]
- Borazjani, Z.; Bayat Mastalinezhad, F.; Azin, R.; Osfouri, S. Global Perspective of Hydrothermal Liquefaction of Algae: A Review of the Process, Kinetics, and Economics Analysis. BioEnergy Res. 2023, 16, 1493–1511. [Google Scholar] [CrossRef]
- Biller, P.; Ross, A.B.; Skill, S.C.; Lea-Langton, A.; Balasundaram, B.; Hall, C.; Riley, R.; Llewellyn, C.A. Nutrient Recycling of Aqueous Phase for Microalgae Cultivation from the Hydrothermal Liquefaction Process. Algal Res. 2012, 1, 70–76. [Google Scholar] [CrossRef]
- Garcia Alba, L.; Torri, C.; Samorì, C.; Van Der Spek, J.; Fabbri, D.; Kersten, S.R.A.; Brilman, D.W.F. Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process as Conversion Method in an Algae Biorefinery Concept. Energy Fuels 2012, 26, 642–657. [Google Scholar] [CrossRef]
- Hognon, C.; Delrue, F.; Texier, J.; Grateau, M.; Thiery, S.; Miller, H.; Roubaud, A. Comparison of Pyrolysis and Hydrothermal Liquefaction of Chlamydomonas Reinhardtii. Growth Studies on the Recovered Hydrothermal Aqueous Phase. Biomass Bioenergy 2015, 73, 23–31. [Google Scholar] [CrossRef]
- Mathimani, T.; Mallick, N. A Comprehensive Review on Harvesting of Microalgae for Biodiesel–Key Challenges and Future Directions. Renew. Sustain. Energy Rev. 2018, 91, 1103–1120. [Google Scholar] [CrossRef]
- Bird, M.I.; Wurster, C.M.; de Paula Silva, P.H.; Paul, N.A.; De Nys, R. Algal Biochar: Effects and Applications. Gcb Bioenergy 2012, 4, 61–69. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar Production by Sewage Sludge Pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J. Potential of Industrial Biotechnology with Cyanobacteria and Eukaryotic Microalgae. Curr. Opin. Biotechnol. 2013, 24, 405–413. [Google Scholar] [CrossRef]
- Milledge, J.J. Commercial Application of Microalgae Other than as Biofuels: A Brief Review. Rev. Environ. Sci. Bio/Technol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- de la Noüe, J.; Laliberté, G.; Proulx, D. Algae and Waste Water. J. Appl. Phycol. 1992, 4, 247–254. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Freitas, B.C.B.; Rosa, G.M.; Moraes, L.; Morais, M.G.; Mitchell, B.G. Operational and Economic Aspects of Spirulina-Based Biorefinery. Bioresour. Technol. 2019, 292, 121946. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, C.; Zhang, D. Lipid Production of Chlorella Vulgaris Cultured in Artificial Wastewater Medium. Bioresour. Technol. 2011, 102, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, K.G.; Kumar, P.S.; Jaikumar, V.; Vardhan, K.H.; SundarRajan, P. Microalgae for Biofuel Production and Removal of Heavy Metals: A Review. Environ. Chem. Lett. 2020, 18, 1905–1923. [Google Scholar] [CrossRef]
- Corominas, L.; Garrido-Baserba, M.; Villez, K.; Olsson, G.; Cortés, U.; Poch, M. Transforming Data into Knowledge for Improved Wastewater Treatment Operation: A Critical Review of Techniques. Environ. Model. Softw. 2018, 106, 89–103. [Google Scholar] [CrossRef]
- Yellapu, S.K.; Klai, N.; Kaur, R.; Tyagi, R.D.; Surampalli, R.Y. Oleaginous Yeast Biomass Flocculation Using Bioflocculant Produced in Wastewater Sludge and Transesterification Using Petroleum Diesel as a Co-Solvent. Renew. Energy 2019, 131, 217–228. [Google Scholar] [CrossRef]
Wastewater | Description | Main Pollutants | Amount | Ref. | |
---|---|---|---|---|---|
Agricultural | Wastewater resulting from agricultural activities | Nutrients | Nitrogen | ≈18–448 mg/L | [10,11,12,13,14,15,16,17,18,19] |
Phosphorus | ≈5.4–7.1 mg/L | ||||
Pesticides and herbicides | Fluconazole, diazinon, diuron, atrazine, simazine, and malathion, metalochlor, tebuconazole tebuconazole and carbendazim | ≈3 ng/L–27 μg/L | |||
Organic matter | Chemical Oxygen Demand (COD) | ≈1–30 g/L | |||
Dairy | Wastewater generated from dairy farms and processing facilities | Organic matter | COD | ≈1–7.5 g/L | [20,21,22,23,24] |
Nutrients | Nitrogen | ≈19.5–57.2 g/kg | |||
Phosphorous | ≈20–65.9 g/kg | ||||
Potassium | ≈2.9–7.3 g/kg | ||||
Domestic | Wastewater generated from households, including sewage and waterborne wastes from kitchens, bathrooms, and toilets | Biodegradable and non-biodegradable organic matter | Fibers | ≈20.6% | [9,25,26,27,28,29] |
Sugars | ≈10.7% | ||||
Proteins | ≈12.4% | ||||
Soap and detergents | Alkylbenzene sulfonate | ≈39 μg/L | |||
Alcohol ethoxylate | ≈6.2 μg/L | ||||
Alcohol ethoxy sulfate | ≈6.5 μg/L | ||||
Alcohol sulfate | ≈5.7 μg/L | ||||
Soap | ≈174 μg/L | ||||
Pathogenic microorganisms | Clostridium, Klebsiella, Corynebacterium, Bordetella, Staphylococcus and Rhodococcus | ≈1.5–5 log units | |||
Pharmaceuticals and personal care products | Caffeine | ≈61 μg/L | |||
Ibuprofen | ≈1.2 μg/L | ||||
Atenolol | ≈2.9 μg/L | ||||
Triclocarban | ≈2.4 μg/L | ||||
Suspended solids | ≈120 mg/L | ||||
Food processing | Wastewater from food processing plants | Organic matter | COD | ≈1–9 g/L | [30,31,32,33,34] |
Biological Oxygen Demand (BOD) | ≈9–20 g/L | ||||
Industrial | Wastewater produced by industrial processes contains a variety of chemicals and contaminants specific to the industry | Oil and grease | ≈50–66 mg/L | ≈500 mg/kg | [35,36,37,38,39,40,41,42,43] |
Process and cooling water | |||||
Oils and grease | ≈4–6000 mg/L | ||||
Organic matter | Total organic compound | ≈100 and 3000 mg/L | |||
Total naphthenic acids | ≈113–392 μg/L | ||||
COD | ≈22 g/L | ||||
BOD | ≈10 g/L | ||||
Suspend solids | ≈0.5–40 mg/L | ||||
Colorants and dyes | >1000 mg/L | ||||
Solvents | n-butanol dichloromethane, octanol, dimethyl formamide, and cyclohexanol | ≈50–200 mg/L | |||
Hospital | Wastewater generated in healthcare facilities | Pathogenic microorganisms | Acinetobacter Klebsiella Aeromonas Pseudomonas. | [44,45,46,47,48] | |
Chemical disinfectants | Povidone-iodine | ≈0.4 ppm | |||
Liquid chlorine Sodium hypochlorite Chlorine dioxide | |||||
Pharmaceuticals | Clozapine, chlorpromazine and risperidone | ≈0.310–1432 μg/L | |||
Antibiotics | Azithromycin, clarithromycin, and ciprofloxacin | ≈21.2–4886 ng/L | |||
Leachate | Liquid that percolates through a landfill site, picking up contaminants from decomposing waste materials | Organic matter | COD | ≈3.8–28 g/L | [49,50,51] |
BOD | ≈1–11 g/L | ||||
Suspended solids | ≈850–5840 mg/L | ||||
Toxic chemicals | Very different composition depending on which wastes are present in the landfill | ||||
Ammonia | ≈1040–3560 mg/L | ||||
Mining | Wastewater produced by mining operations | Heavy metals | Arsenic, Cadmium, Lead, Selenium, Iron and Zinc | ≈200 g/L | [52,53,54] |
Acidic pH | <3.6 | ||||
Suspended solids | ≈22 mg/L | ||||
Dissolved solids | ≈2900 mg/L | ||||
Municipal/Urban | Mixture of domestic wastewater with industrial wastewater and/or runoff rainwater | Similar components to domestic wastewater with potential industrial additives | [55] | ||
Paper and pulp mill | Wastewater from paper and pulp manufacturing facilities | Nutrients | Total phenol | ≈39 mg/L | [56,57,58] |
Nitrogen | ≈125–234 mg/L | ||||
Sulfate | ≈1926–2098 mg/L | ||||
Organic matter | COD | ≈17.9–19 g/L | |||
Chlorinated compounds | ≈3.12–5.43 mg/L | ||||
Suspend solids | ≈80–90 mg/L | ||||
Dissolved solids | ≈1 g/L | ||||
Solvents | ≈0.4–3 g/L | ||||
Stormwater | Rainwater runoff from precipitation events | Oil and grease | >4–800 mg/L | [39,59,60,61,62] | |
Heavy metals | Lead | ≈119–527 μg/g | |||
Copper | ≈50–464 μg/g | ||||
Zinc | ≈241–1325 μg/g | ||||
Fertilizers and pesticides | ≈0.1–10 ng/L | ||||
Tannery | Wastewater produced by tanneries | Heavy metals | Chromium, Cadmium, Cobalt and Lead | ≈500 mg/kg | [63,64,65,66,67,68,69] |
Organic matter | COD | ≈1.3–2.6 kg/d | |||
Suspended solids | ≈1.2–28 g/L | ||||
High salinity | ≈13.8 mg/L | ||||
Textile | Wastewater from the textile and garment industry | Dyes and colorants | ≈10–361 mg/L | [70,71,72,73,74] | |
Heavy metals | Copper | ≈0.0405 ppm | |||
Lead | ≈0.0003 ppm | ||||
Organic matter | COD | ≈240 kg/d | |||
BOD | ≈60 kg/d | ||||
Suspended solids | ≈100–336 mg/L | ||||
Dissolved solids | ≈1.8–4.4 g/L |
Strains | Type of WW | Volume Treated (L) | Exp Time (Day) | Pollutants | Removal Rate | Biomass Application | Ref. |
---|---|---|---|---|---|---|---|
Consortium of Chlorella vulgaris, Scenedesmus quadricauda and Arthrospira platensis | Urban WW | 10 | 28 | Malathion | 99% | / | [7] |
Agricultural drainage | Cadmium | 88% | |||||
Combination of both | Nickel | 95% | |||||
Lead | 89% | ||||||
Galdieria phlegrea | Urban WW | 1 | 9 | Ammonium | ≈70% | / | [147] |
Phosphates | ≈22% | ||||||
Co-culture of Chlorella vulgaris and Arthrospira platensis | Winery WW | 0.2 | 15 | Polyphenols | 50% | Biofuel | [148] |
Scenedesmus sp. | Tannery WW | 0.25 | 12 | Chromium | up to 96% | / | [149] |
Copper | up to 98% | ||||||
Zinc | up to 98% | ||||||
Lead | up to 98% | ||||||
Scenedesmus quadricauda and Tetraselmis suecica | Dairy WW | 10 | 12 | Nitrates | ≈95% | Tetracycline bioadsorption ≈ 70% | [150] |
Phosphates | ≈89% | ||||||
Sulfate | 100% | ||||||
Chlorella pyrenoidosa, Chlamydomonas reinhardtii, Scenedesmus obliquus and Chlorella vulgaris | Domestic WW | 1 | 7 | Mercury | >50% | / | [6] |
Lead | >50% | ||||||
Gold | >50% | ||||||
Silver | >50% | ||||||
Manganese | >50% | ||||||
Clarithromycin | 80% | ||||||
Roxithromycin | >50% | ||||||
Triclocarban | >50% | ||||||
Chlorella pyrenoidosa | Textile WW | 1 | 7 | Indigo dye | 89% | / | [119] |
Direct blue dye | 79% | ||||||
Remazol brilliant orange | 75% | ||||||
Crystal violet dye | 72% | ||||||
Arthrospira platensis and Arthrospira maxima | Mining WW | 0.5 | 12 | Sulfate | 73% | / | [151] |
Nitrogen | up to 86% | ||||||
Phopshorous | up to 80% | ||||||
C. vulgaris | Urban WW | 4.5 | 9 | Siloxane | ≈98% | / | [152] |
Leptolyngbya sp. and Chroococcus | Brewery WW | 1 | 15 | Nitrates | 67% | Bioethanol production | [153] |
Ammonium | 98% | ||||||
Total Phosphorous | 75% | ||||||
Natural Bloom | Domestic WW | 60 | 30 | Ammonium | 55% | / | [154] |
Total Phosphorous | 91% | ||||||
Chlorella vulgaris and Scenedesmus almeriensis | Synthetic WW | 0.5 | 3 | Arsenic | up to 35% | / | [123] |
Copper | up to 98% | ||||||
Manganese | up to 78% | ||||||
Zinc | up to 83% | ||||||
Enterobacter sp. MN17 and Chlorella vulgaris | Textile WW | 5 | 5 | Cadmium | 93% | Bioenergy production | [155] |
Chromium | 79% | ||||||
Copper | 72% | ||||||
Lead | 79% | ||||||
Nannochloropsis gaditana, Chlorella sorokiniana, Chlorella sp. and Dunaliella tertiolecta | Municipal WW | 0.1 | 15 | Total Nitrogen | 77% | Biostimulants, biofuels, bioplastics, Syngas | [156] |
Total Phosphorous | 61% | ||||||
Arthrospira platensis | Industrial WW | 30 | 8 | Copper | 68% | Bioethanol | [157] |
Nickel | 75% | ||||||
Zinc | 42% | ||||||
Chromium | 24% | ||||||
Nannochloropsis sp. | Synthetic WW | 2 | 6 | Paracetamol | ≈50% | Biobased feedstock | [158] |
Ibuprofen | ≈50% | ||||||
Olanzapine | ≈50% | ||||||
Simvastatin | ≈50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liberti, D.; Pinheiro, F.; Simões, B.; Varela, J.; Barreira, L. Beyond Bioremediation: The Untapped Potential of Microalgae in Wastewater Treatment. Water 2024, 16, 2710. https://doi.org/10.3390/w16192710
Liberti D, Pinheiro F, Simões B, Varela J, Barreira L. Beyond Bioremediation: The Untapped Potential of Microalgae in Wastewater Treatment. Water. 2024; 16(19):2710. https://doi.org/10.3390/w16192710
Chicago/Turabian StyleLiberti, Davide, Filipa Pinheiro, Beatriz Simões, João Varela, and Luísa Barreira. 2024. "Beyond Bioremediation: The Untapped Potential of Microalgae in Wastewater Treatment" Water 16, no. 19: 2710. https://doi.org/10.3390/w16192710
APA StyleLiberti, D., Pinheiro, F., Simões, B., Varela, J., & Barreira, L. (2024). Beyond Bioremediation: The Untapped Potential of Microalgae in Wastewater Treatment. Water, 16(19), 2710. https://doi.org/10.3390/w16192710