Novel Framework for Exploring Human–Water Symbiosis Relationship: Analysis, Quantification, Discrimination, and Attribution
Abstract
:1. Introduction
2. Methodology
2.1. Theoretical Analysis of Human–Water Symbiosis
2.2. Assessment Indicator System of Human–Water Symbiosis System
2.2.1. Establishment of Index System
2.2.2. Evaluation Method of HDI and WDI
2.3. Lotka–Volterra Model
2.3.1. Construction of Human–Water Symbiosis Model
2.3.2. Calculation of Human–Water Symbiosis Index
2.4. Influencing Factor Identification Method
2.4.1. Obstacle Degree Model
2.4.2. Neural Network Model
3. Case Study
3.1. Overview of the Study Area
3.2. Data Source
4. Results
4.1. Spatial and Temporal Evolution Analysis of HDI and WDI
4.2. Analysis of Comprehensive Characteristic Index of Human–Water Symbiosis System
4.2.1. Discriminant of Human–Water Symbiosis Pattern
4.2.2. Analysis of Human–Water Symbiosis Index
4.3. Attribution Analysis
4.3.1. Analysis of Influencing Factors in Human System and Water System
4.3.2. Analysis of Influencing Factors in Human–Water Symbiosis System
5. Discussion
5.1. Comparison and Contribution of the Framework
5.2. Policy Implication
5.3. Limitations and Prospects
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frenkel-Pinter, M.; Rajaei, V.; Glass, J.B.; Hud, N.V.; Williams, L.D. Water and life: The medium is the message. J. Mol. Evol. 2021, 89, 2–11. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhang, Z.; Ma, J.; Li, J. Solutions to Difficult Problems Caused by the Complexity of Human–Water Relationship in the Yellow River Basin: Based on the Perspective of Human–Water Relationship Discipline. Water 2022, 14, 2868. [Google Scholar] [CrossRef]
- Abrunhosa, M.; Chambel, A.; Peppoloni, S.; de Matos, P.F.; Aragão, A.; Petitta, M.; Chaminé, H.I. Water resources management for a sustainable nexus of hydrogeoethics and societal well-being. Sustain. Water Resour. Manag. 2024, 10, 97. [Google Scholar] [CrossRef]
- Savenije, H.H.; Hoekstra, A.Y.; van der Zaag, P. Evolving water science in the Anthropocene. Hydrol. Earth Syst. Sci. 2014, 18, 319–332. [Google Scholar] [CrossRef]
- Raikes, J.; Smith, T.F.; Jacobson, C.; Baldwin, C. Pre-disaster planning and preparedness for floods and droughts: A systematic review. Int. J. Disaster Risk Reduct. 2019, 38, 101207. [Google Scholar] [CrossRef]
- Sofoulis, Z. Big water, everyday water: A sociotechnical perspective. Continuum 2005, 19, 445–463. [Google Scholar] [CrossRef]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef]
- Zuo, Q.; Liu, H.; Ma, J.; Jin, R. China calls for human–water harmony. Water Policy 2016, 18, 255–261. [Google Scholar] [CrossRef]
- Connor, R. The United Nations World Water Development Report 2015: Water for a Sustainable World (Vol. 1); United Nations Educational, Scientific and Cultural Organization: Paris, France, 2015. [Google Scholar]
- Falkenmark, M. Water and mankind: A complex system of mutual interaction. Ambio 1977, 6, 3–9. [Google Scholar]
- Boulange, J.; Hanasaki, N.; Yamazaki, D.; Pokhrel, Y. Role of dams in reducing global flood exposure under climate change. Nat. Commun. 2021, 12, 417. [Google Scholar] [CrossRef]
- kumar Nayan, N.; Das, A.; Mukerji, A.; Mazumder, T.; Bera, S. Spatio-temporal dynamics of water resources of Hyderabad Metropolitan Area and its relationship with urbanization. Land Use Policy 2020, 99, 105010. [Google Scholar] [CrossRef]
- Marques, R.C.; Pinto, F.S. How to watch the watchmen? The role and measurement of regulatory governance. Util. Policy 2018, 51, 73–81. [Google Scholar] [CrossRef]
- Varis, O.; Vakkilainen, P. China’s 8 challenges to water resources management in the first quarter of the 21st Century. Geomorphology. 2001, 41, 93–104. [Google Scholar] [CrossRef]
- Peng, Q.; He, W.; Kong, Y.; Shen, J.; Yuan, L.; Ramsey, T.S. Spatio-temporal analysis of water sustainability of cities in the Yangtze River Economic Belt based on the perspectives of quantity-quality-benefit. Ecol. Indic. 2024, 160, 111909. [Google Scholar] [CrossRef]
- Dai, M.; Huang, S.; Huang, Q.; Leng, G.; Guo, Y.; Wang, L.; Fang, W.; Li, P.; Zheng, X. Assessing agricultural drought risk and its dynamic evolution characteristics. Agric. Water Manag. 2020, 231, 106003. [Google Scholar] [CrossRef]
- Dong, B.; Xia, J.; Li, Q.; Zhou, M. Risk assessment for people and vehicles in an extreme urban flood: Case study of the “7.20” flood event in Zhengzhou, China. Int. J. Disaster Risk Reduct. 2022, 80, 103205. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Tepe, Y.; Taş, B. Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecol. Indic. 2020, 113, 105815. [Google Scholar] [CrossRef]
- Taft, L.; Evers, M. A review of current and possible future human–water dynamics in Myanmar’s river basins. Hydrol. Earth Syst. Sci. 2016, 20, 4913–4928. [Google Scholar] [CrossRef]
- Pienaar, H.; Xu, Y.; Braune, E.; Cao, J.; Dzikiti, S.; Jovanovic, N.Z. Implementation of groundwater protection measures, particularly resource-directed measures in South Africa: A review paper. Water Policy 2021, 23, 819–837. [Google Scholar] [CrossRef]
- Evers, M.; Höllermann, B.; Almoradie, A.D.S.; Garcia Santos, G.; Taft, L. The pluralistic water research concept: A new human-water system research approach. Water 2017, 9, 933. [Google Scholar] [CrossRef]
- Zuo, Q. Basic principles and theoretical system of human-water relationship discipline. Water Resour. Prot. 2022, 38, 1–6+25. (In Chinese) [Google Scholar]
- Ding, Y.; Tang, D.; Dai, H.; Wei, Y. Human-water harmony index: A new approach to assess the human water relationship. Water Resour. Manag. 2014, 28, 1061–1077. [Google Scholar] [CrossRef]
- Zuo, Q.; Li, W.; Zhao, H.; Ma, J.; Han, C.; Luo, Z. A harmony-based approach for assessing and regulating human-water relationships: A case study of Henan province in China. Water 2020, 13, 32. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Wang, X.; Zhang, L. A hybrid DPSR and entropy-weight-based uncertain comprehensive evaluation method for human-water harmony assessment. Water Resour. Manag. 2022, 36, 1727–1743. [Google Scholar] [CrossRef]
- Sivapalan, M.; Savenije, H.H.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M.R. A prototype framework for obstacle ls of socio-hydrology: Identification of key feedback loops and parameterisation approach. Hydrol. Earth Syst. Sci. 2014, 18, 2141–2166. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G. Grey Lotka-Volterra model for the co-evolution of technological innovation, resource consumption, environmental quality, and high-quality industrial development in Shaanxi Province, China. Environ. Sci. Pollut. Res. 2021, 28, 57751–57768. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, X.; Zhu, Z.; Wang, Y. Logistic-based network stability study of industrial coupling symbiosis applied to oil-gas-based eco-industrial parks. J. Clean. Prod. 2019, 225, 256–261. [Google Scholar] [CrossRef]
- Demartini, M.; Tonelli, F.; Govindan, K. An investigation into modelling approaches for industrial symbiosis: A literature review and research agenda. Clean. Logist. Supply Chain 2022, 3, 100020. [Google Scholar] [CrossRef]
- Yang, C.; Huang, J.; Lin, Z.; Zhang, D.; Zhu, Y.; Xu, X.; Chen, M. Evaluating the symbiosis status of tourist towns: The case of Guizhou Province, China. Ann. Tourism. Res. 2018, 72, 109–125. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, Y.C.; Li, P.X.; Chen, J.L. Recognition and evaluation of city-lake symbiosis under the background of high-quality development: A case study of Hefei and Chaohu Lake in Yangtze River Delta. J. Nat. Res. 2022, 37, 1626–1642. (In Chinese) [Google Scholar] [CrossRef]
- Liu, S.; Zhao, L. Development and synergetic evolution of the water–energy–food nexus system in the Yellow River Basin. Environ. Sci. Pollut. Res. 2022, 29, 65549–65564. [Google Scholar] [CrossRef]
- Naveh, Z. Ten major premises for a holistic conception of multifunctional landscapes. Landsc. Urban Plan. 2001, 57, 269–284. [Google Scholar] [CrossRef]
- Liu, P.; Zeng, C.; Liu, R. Environmental adaptation of traditional Chinese settlement patterns and its landscape gene mapping. Habitat Int. 2023, 135, 102808. [Google Scholar] [CrossRef]
- Sapp, J. Saltational symbiosis. Theor. Biosci. 2010, 129, 125–133. [Google Scholar] [CrossRef]
- Margulis, L. Symbiosis and evolution. Sci. Am. 1971, 225, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q. The research core and nexus of water science: Human-water relationship discipline. South North Water Transfers. Water Sci. Technol. 2022, 20, 1–8. (In Chinese) [Google Scholar]
- Zuo, Q.; Diao, Y.; Hao, L.; Han, C. Comprehensive evaluation of the human-water harmony relationship in countries along the “belt and road”. Water Resour. Manag. 2020, 34, 4019–4035. [Google Scholar] [CrossRef]
- Wu, Q.; Zuo, Q.; Li, D.; Li, J.; Han, C.; Ma, J. Integrated assessment of multiple characteristics for extreme climatic events under climate change: Application of a distribution-evolution-attribution-risk framework. Atmos. Res. 2023, 282, 106515. [Google Scholar] [CrossRef]
- Zhang, Z.; Zuo, Q.; Li, D.; Wu, Q.; Ma, J. The relationship between resource utilization and high-quality development in the context of carbon neutrality: Measurement, assessment and identification. Sustain. Cities Soc. 2023, 94, 104551. [Google Scholar] [CrossRef]
- Halder, S.; Roy, M.B.; Roy, P.K.; Sedighi, M. Groundwater vulnerability assessment for drinking water suitability using Fuzzy Shannon Entropy model in a semi-arid river basin. Catena 2023, 229, 107206. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Physical Biology. J. Am. Stat. Assoc. 1925, 20, 452. [Google Scholar]
- Volterra, V. Variazioni e Fluttuazioni del Numero D’individui in Specie Animali Conviventi. Mem. Acad. Lincei 1926, 2, 31–113. [Google Scholar]
- Ren, W.; Xu, Y.; Ni, J. Evolution of marine ecology-industry symbiosis patterns and ecological security assessment: New evidence from coastal areas of China. Ocean Coast. Manag. 2024, 247, 106939. [Google Scholar] [CrossRef]
- Ji, J.; Guo, X.; Zhang, Y. The study of symbiotic relationships between the economic and the ecological system of China’s mariculture industry—An empirical analysis of 10 coastal regions with Lokta–Volterra model. Reg. Stud. Mar. Sci. 2021, 48, 102051. [Google Scholar] [CrossRef]
- Wang, S.; Chen, S.; Zhang, H.; Song, M. The model of early warning for China’s marine ecology-economy symbiosis security. Mar. Policy 2021, 128, 104476. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, Q.; Wu, Q.; Han, C.; Tao, J. An integrated diagnostic framework for water resource spatial equilibrium considering water-economy-ecology nexus. J. Clean. Prod. 2023, 414, 137592. [Google Scholar] [CrossRef]
- Yuan, L.; Li, R.; He, W.; Wu, X.; Kong, Y.; Degefu, D.M.; Ramsey, T.S. Coordination of the industrial-ecological economy in the Yangtze River Economic Belt, China. Front. Environ. Sci. 2022, 10, 882221. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, D.; Wang, S.; Xiang, H.; Zhang, W. Multisource remote sensing data-based flood monitoring and crop damage assessment: A case study on the 20 July 2021 extraordinary rainfall event in Henan, China. Remote Sens. 2022, 14, 5771. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Z.; Zuo, Q.; Du, H. Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness. J. Clean. Prod. 2023, 397, 136485. [Google Scholar] [CrossRef]
- Chang, A.; Qiong, H.; Binguo, Z. Analysis of Agricultural Non-point Source Pollution in Henan Province (China) from the Perspective of Time and Space. Nat. Environ. Pollut. Technol. 2022, 21, 268–274. [Google Scholar] [CrossRef]
- Jiang, L.; Zuo, Q.; Ma, J.; Zhang, Z. Evaluation and prediction of the level of high-quality development: A case study of the Yellow River Basin, China. Ecol. Indic. 2021, 129, 107994. [Google Scholar] [CrossRef]
- Kundu, A.; Dutta, D. Monitoring desertification risk through climate change and human interference using remote sensing and GIS techniques. Int. J. Geomat. Geosci. 2011, 2, 21–33. [Google Scholar]
- Qin, K.; Liu, J.; Yan, L.; Huang, H. Integrating ecosystem services flows into water security simulations in water scarce areas: Present and future. Sci. Total Environ. 2019, 670, 1037–1048. [Google Scholar] [CrossRef]
- Liu, L.; He, L.; Zuo, Q. Evaluating the Human–Water Relationship over the Past Two Decades Using the SMI-P Method across Nine Provinces along the Yellow River, China. Water 2024, 16, 916. [Google Scholar] [CrossRef]
- Sun, Y. Evaluation of industrial ecology in the π-shaped curve area of China’s Yellow River based on the grey Lotka–Volterra model. Sci. Rep. 2023, 13, 19089. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Sci. Rep. 2022, 12, 5105. [Google Scholar] [CrossRef]
- Zhou, Y.; Tong, X.; Gan, R.; Liu, P.; Guo, L.; Zhao, S. Distribution characteristics and influencing factors of water resources in Henan Province. Hydrol. Res. 2023, 54, 508–522. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Taş, B.; Tepe, Y.; Topaldemir, H. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 62736–62754. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.; Wang, J.; Ma, J.; Li, W.; Wang, M. Conceptual differences and calculation methods comparison of matching degree, coordination degree and harmony degre. J. N. China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2023, 44, 1–9. (In Chinese) [Google Scholar]
- Xu, L.; Chen, S.S. Coupling coordination degree between social-economic development and water environment: A case study of Taihu lake basin, China. Ecol. Indic. 2023, 148, 110118. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, Q.; Wu, Q.; Jiang, L.; Han, C.; Zhang, W. Evaluation and Spatial Equilibrium Analysis of High-Quality Development Level in Mainland China Considering Water Constraints. Water 2022, 14, 2364. [Google Scholar] [CrossRef]
- Xia, M.; He, X.; Lin, H.; Xie, Z.; Zhou, Y. Analyzing the ecological relations of technology innovation of the Chinese high-tech industry based on the Lotka-Volterra model. PLoS ONE 2022, 17, e0267033. [Google Scholar] [CrossRef] [PubMed]
Symbiotic Pattern | SH > 0 | SH < 0 | SH = 0 |
---|---|---|---|
SW > 0 | Mutualism symbiosis (H+W+) | Water system parasitizes human system (H−W+) | Partially beneficial symbiotic pattern of water system (H0W+) |
SW < 0 | Human system parasitizes water system (H+W−) | Mutual-harm symbiosis (H−W−) | Partially harmful symbiotic pattern of water system (H0W−) |
SW = 0 | Partially beneficial symbiotic pattern of human system (H+W0) | Partially harmful symbiotic pattern of human system (H−W0) | Irrelevant symbiosis (H0W0) |
Index | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZZ | S | 1.25 | 0.93 | −1.07 | 1.32 | 0.89 | 1.15 | 1.40 | 1.38 | 0.03 | 0.54 | −0.77 | −1.31 | 0.87 | −1.41 |
Level | I | II | IV | I | VI | I | I | I | VI | VI | V | IV | II | IV | |
KF | S | −1.00 | 1.28 | 1.02 | −0.94 | 0.52 | −0.98 | 0.72 | 1.26 | −0.70 | −1.07 | 0.97 | 0.85 | −0.99 | 0.52 |
Level | IV | I | I | V | VI | V | VI | I | V | IV | VI | II | III | VI | |
LY | S | −1.11 | 1.38 | −0.06 | −0.98 | 1.39 | −0.46 | 0.73 | 1.18 | −0.88 | 0.86 | −1.02 | −1.41 | 1.39 | −1.30 |
Level | IV | I | V | V | I | V | VI | I | V | VI | IV | IV | I | IV | |
PDS | S | 0.00 | 0.93 | −1.01 | 1.29 | 1.41 | −0.06 | −0.17 | −0.98 | 1.03 | 0.18 | 0.34 | 0.80 | −0.57 | −1.41 |
Level | V | II | IV | I | I | V | V | V | I | VI | VI | II | III | IV | |
AY | S | −0.64 | −0.80 | 0.45 | −1.03 | 0.01 | −0.77 | −1.39 | −1.37 | −1.41 | 0.90 | 0.85 | 0.77 | 0.93 | 0.50 |
Level | V | V | VI | IV | VI | V | IV | IV | IV | VI | II | VI | II | VI | |
HB | S | −0.44 | −0.96 | 0.99 | 0.76 | −1.35 | 0.96 | 0.72 | −0.85 | 0.74 | 0.49 | 1.40 | −1.39 | −0.35 | −0.63 |
Level | V | V | VI | II | IV | VI | II | III | II | VI | I | IV | III | V | |
XX | S | 1.36 | 1.37 | 0.39 | 1.41 | 1.09 | −0.94 | −0.42 | −0.77 | 0.87 | −0.86 | 1.07 | −0.93 | 1.41 | −1.24 |
Level | I | I | VI | I | I | V | V | V | VI | V | I | V | I | IV | |
JZ | S | 0.93 | −0.87 | −0.96 | −0.32 | 0.64 | −0.63 | 1.40 | 1.20 | 1.13 | 1.41 | −0.02 | −0.93 | 1.13 | −0.98 |
Level | VI | V | V | V | VI | V | I | I | I | I | V | V | I | V | |
PY | S | 0.80 | −0.84 | −0.80 | 1.41 | −0.32 | −0.35 | −1.32 | −0.96 | 0.82 | 1.15 | −0.13 | −0.55 | 1.08 | −0.87 |
Level | II | III | V | I | V | V | IV | III | II | I | V | V | I | V | |
XC | S | 0.01 | 0.81 | 0.23 | 1.37 | 0.33 | −0.95 | −0.63 | 0.01 | −0.30 | 0.97 | −0.54 | −1.31 | −0.87 | −1.03 |
Level | II | VI | VI | I | VI | V | V | VI | V | VI | V | IV | III | IV | |
LH | S | −0.97 | 1.01 | −1.36 | −1.41 | 1.40 | 1.41 | −0.73 | 0.07 | 1.26 | −0.95 | 1.41 | −0.99 | −0.95 | −1.20 |
Level | V | I | IV | IV | I | I | V | VI | I | V | I | V | III | IV | |
SMX | S | −0.99 | 1.09 | 0.94 | −1.00 | 1.21 | −1.07 | 0.96 | −1.26 | 1.13 | 0.38 | 1.07 | 1.10 | −0.70 | 0.50 |
Level | V | I | VI | V | I | IV | VI | IV | I | VI | I | I | V | VI | |
NY | S | 0.68 | 1.00 | 0.19 | 0.12 | 0.71 | 0.68 | 0.98 | 1.02 | 1.02 | 1.09 | −0.86 | −1.30 | −0.92 | −0.83 |
Level | VI | I | VI | II | II | VI | II | I | I | I | V | IV | III | V | |
SQ | S | −1.14 | −1.04 | −1.08 | 1.01 | −1.30 | −0.68 | 0.96 | −0.85 | 0.81 | 1.32 | −0.97 | −1.38 | −1.15 | −0.78 |
Level | IV | IV | IV | I | IV | V | II | III | VI | I | V | IV | IV | III | |
XY | S | 0.99 | −0.72 | −0.97 | 1.11 | 1.04 | −1.00 | 1.41 | 1.02 | 1.41 | −0.27 | 1.17 | −1.33 | −1.03 | 0.99 |
Level | II | V | V | I | I | V | I | I | I | V | I | IV | IV | II | |
ZK | S | 0.71 | 0.57 | −0.77 | −0.51 | 1.27 | −0.85 | −1.41 | 0.68 | 1.30 | 0.80 | −1.00 | 0.25 | −1.19 | −1.22 |
Level | II | VI | V | III | I | V | IV | II | I | VI | V | VI | IV | IV | |
ZMD | S | 1.37 | −0.92 | −0.95 | −0.26 | −0.92 | −0.71 | −0.78 | 1.05 | 1.10 | −1.40 | 1.00 | 0.58 | −1.40 | −1.13 |
Level | I | V | V | V | V | V | V | I | I | IV | I | VI | IV | IV | |
JY | S | −0.51 | −1.40 | −1.00 | −1.03 | 1.41 | −0.42 | 1.39 | −0.88 | 0.72 | −0.39 | 0.40 | 0.92 | 0.17 | −1.36 |
Level | V | IV | IV | IV | I | V | I | V | VI | V | VI | II | II | IV |
Index | Sql | Index | Sql | Index | Sql | Index | Sql | Index | Sql | Index | Sql | Index | Sql |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W6 | 0.106 | W5 | 0.068 | H7 | 0.056 | W8 | 0.043 | H5 | 0.038 | W4 | 0.033 | H8 | 0.027 |
H1 | 0.083 | H8 | 0.064 | H10 | 0.052 | H9 | 0.042 | H4 | 0.035 | W7 | 0.031 | W2 | 0.026 |
W1 | 0.068 | W3 | 0.058 | W9 | 0.051 | H2 | 0.039 | W10 | 0.034 | H6 | 0.027 | H11 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Zuo, Q.; Wu, Q.; Ma, J. Novel Framework for Exploring Human–Water Symbiosis Relationship: Analysis, Quantification, Discrimination, and Attribution. Water 2024, 16, 2829. https://doi.org/10.3390/w16192829
Qin X, Zuo Q, Wu Q, Ma J. Novel Framework for Exploring Human–Water Symbiosis Relationship: Analysis, Quantification, Discrimination, and Attribution. Water. 2024; 16(19):2829. https://doi.org/10.3390/w16192829
Chicago/Turabian StyleQin, Xi, Qiting Zuo, Qingsong Wu, and Junxia Ma. 2024. "Novel Framework for Exploring Human–Water Symbiosis Relationship: Analysis, Quantification, Discrimination, and Attribution" Water 16, no. 19: 2829. https://doi.org/10.3390/w16192829