Comparative Evaluation of Deep Learning Techniques in Streamflow Monthly Prediction of the Zarrine River Basin
Abstract
:1. Introduction
2. Data Collection and the Study Area
3. Model Description
3.1. RNN (Recurrent Neural Network)
3.2. LSTM (Long Short-Term Memory)
3.3. Sensitivity Analysis
4. Methodology
4.1. LSTM and RNN Model Development
4.2. Data Normalization
4.3. The Criteria of Model Evaluation
5. Results
5.1. Evaluation of LSTM and RNN Networks
5.2. Sensitivity Analysis
6. Physical Mechanism Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, Z.; Niu, W.; Tang, Z.; Jiang, Z.; Xu, Y.; Liu, Y.; Zhang, H. Monthly Runoff Time Series Prediction by Variational Mode Decomposition and Support Vector Machine Based on Quantum-Behaved Particle Swarm Optimization. J. Hydrol. 2020, 583, 124627. [Google Scholar] [CrossRef]
- Nohara, D.; Nishioka, Y.; Hori, T.; Sato, Y. Real-Time Reservoir Operation for Flood Management Considering Ensemble Streamflow Prediction and Its Uncertainty. In Advances in Hydroinformatics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 333–347. [Google Scholar]
- Sabzi, H.Z.; King, J.P.; Abudu, S. Developing an Intelligent Expert System for Streamflow Prediction, Integrated in a Dynamic Decision Support System for Managing Multiple Reservoirs: A Case Study. Expert Syst. Appl. 2017, 83, 145–163. [Google Scholar] [CrossRef]
- Young, C.-C.; Liu, W.-C. Prediction and Modelling of Rainfall–Runoff during Typhoon Events Using a Physically-Based and Artificial Neural Network Hybrid Model. Hydrol. Sci. J. 2015, 60, 2102–2116. [Google Scholar] [CrossRef]
- Partington, D.; Brunner, P.; Simmons, C.T.; Werner, A.D.; Therrien, R.; Maier, H.R.; Dandy, G.C. Evaluation of Outputs from Automated Baseflow Separation Methods against Simulated Baseflow from a Physically Based, Surface Water-Groundwater Flow Model. J. Hydrol. 2012, 458, 28–39. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Khan, A.; Zhang, Y.; Kuang, X.; Liang, X.; Taccari, M.L.; Nuttall, J. Daily Runoff Forecasting by Deep Recursive Neural Network. J. Hydrol. 2021, 596, 126067. [Google Scholar] [CrossRef]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-Term Runoff Prediction with GRU and LSTM Networks without Requiring Time Step Optimization during Sample Generation. J. Hydrol. 2020, 589, 125188. [Google Scholar] [CrossRef]
- Pulukuri, S.; Keesara, V.R.; Deva, P. Flow Forecasting in a Watershed Using Autoregressive Updating Model. Water Resour. Manag. 2018, 32, 2701–2716. [Google Scholar] [CrossRef]
- Rath, A.; Samantaray, S.; Bhoi, K.S.; Swain, P.C. Flow Forecasting of Hirakud Reservoir with ARIMA Model. In Proceedings of the IEEE 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 2952–2960. [Google Scholar]
- Zhang, J.; Xiao, H.; Fang, H. Component-Based Reconstruction Prediction of Runoff at Multi-Time Scales in the Source Area of the Yellow River Based on the ARMA Model. Water Resour. Manag. 2022, 36, 433–448. [Google Scholar] [CrossRef]
- Kan, G.; Yao, C.; Li, Q.; Li, Z.; Yu, Z.; Liu, Z.; Ding, L.; He, X.; Liang, K. Improving Event-Based Rainfall-Runoff Simulation Using an Ensemble Artificial Neural Network Based Hybrid Data-Driven Model. Stoch. Environ. Res. Risk Assess. 2015, 29, 1345–1370. [Google Scholar] [CrossRef]
- Gheibi, M.; Moezzi, R. A Social-Based Decision Support System for Flood Damage Risk Reduction in European Smart Cities. Quanta Res. 2023, 1, 27–33. [Google Scholar] [CrossRef]
- Poonia, V.; Tiwari, H.L. Rainfall-Runoff Modeling for the Hoshangabad Basin of Narmada River Using Artificial Neural Network. Arab. J. Geosci. 2020, 13, 944. [Google Scholar] [CrossRef]
- Wang, W.; Xu, D.; Chau, K.; Chen, S. Improved Annual Rainfall-Runoff Forecasting Using PSO–SVM Model Based on EEMD. J. Hydroinform. 2013, 15, 1377–1390. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Q.; Li, G.; Li, J. Data-Driven Runoff Forecasting for Minjiang River: A Case Study. Water Supply 2020, 20, 2284–2295. [Google Scholar] [CrossRef]
- Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.M.; Pain, C.C. Long Lead-Time Daily and Monthly Streamflow Forecasting Using Machine Learning Methods. J. Hydrol. 2020, 590, 125376. [Google Scholar] [CrossRef]
- Nourani, V.; Komasi, M. A Geomorphology-Based ANFIS Model for Multi-Station Modeling of Rainfall–Runoff Process. J. Hydrol. 2013, 490, 41–55. [Google Scholar] [CrossRef]
- Alvisi, S.; Franchini, M. Fuzzy Neural Networks for Water Level and Discharge Forecasting with Uncertainty. Environ. Model. Softw. 2011, 26, 523–537. [Google Scholar] [CrossRef]
- Shortridge, J.E.; Guikema, S.D.; Zaitchik, B.F. Machine Learning Methods for Empirical Streamflow Simulation: A Comparison of Model Accuracy, Interpretability, and Uncertainty in Seasonal Watersheds. Hydrol. Earth Syst. Sci. 2016, 20, 2611–2628. [Google Scholar] [CrossRef]
- Kalra, A.; Ahmad, S.; Nayak, A. Increasing Streamflow Forecast Lead Time for Snowmelt-Driven Catchment Based on Large-Scale Climate Patterns. Adv. Water Resour. 2013, 53, 150–162. [Google Scholar] [CrossRef]
- Yu, P.-S.; Yang, T.-C.; Chen, S.-Y.; Kuo, C.-M.; Tseng, H.-W. Comparison of Random Forests and Support Vector Machine for Real-Time Radar-Derived Rainfall Forecasting. J. Hydrol. 2017, 552, 92–104. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Demir, I. Distributed Long-Term Hourly Streamflow Predictions Using Deep Learning–A Case Study for State of Iowa. Environ. Model. Softw. 2020, 131, 104761. [Google Scholar] [CrossRef]
- Rangapuram, S.S.; Seeger, M.W.; Gasthaus, J.; Stella, L.; Wang, B.; Januschowski, T. Deep State Space Models for Time Series Forecasting. In Proceedings of the Advances in Neural Information Processing Systems 31: 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Mouatadid, S.; Adamowski, J.F.; Tiwari, M.K.; Quilty, J.M. Coupling the Maximum Overlap Discrete Wavelet Transform and Long Short-Term Memory Networks for Irrigation Flow Forecasting. Agric. Water Manag. 2019, 219, 72–85. [Google Scholar] [CrossRef]
- Zhang, D.; Lindholm, G.; Ratnaweera, H. Use Long Short-Term Memory to Enhance Internet of Things for Combined Sewer Overflow Monitoring. J. Hydrol. 2018, 556, 409–418. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) Based Model for Predicting Water Table Depth in Agricultural Areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.; Liu, R.; Men, C.; Guo, L.; Miao, Y.; Jiao, L.; Wang, Y.; Shoaib, M.; Xia, X. Sequence-Based Statistical Downscaling and Its Application to Hydrologic Simulations Based on Machine Learning and Big Data. J. Hydrol. 2020, 586, 124875. [Google Scholar] [CrossRef]
- Li, X.; Song, G.; Zhou, S.; Yan, Y.; Du, Z. Rainfall Runoff Prediction via a Hybrid Model of Neighbourhood Rough Set with LSTM. Int. J. Embed. Syst. 2020, 13, 405–413. [Google Scholar] [CrossRef]
- Ren, Y.; Zeng, S.; Liu, J.; Tang, Z.; Hua, X.; Li, Z.; Song, J.; Xia, J. Mid-to Long-Term Runoff Prediction Based on Deep Learning at Different Time Scales in the Upper Yangtze River Basin. Water 2022, 14, 1692. [Google Scholar] [CrossRef]
- Zanjanian, H.; Niksokhan, M.H.; Ghorbani, M.; Rezaei, A.R. A Novel Framework for Water Right Conflict Resolution Considering Actors’ Power and Inter-Organizational Relationships Analysis. J. Hydroinform. 2022, 24, 622–641. [Google Scholar] [CrossRef]
- Zhihua, L.V.; Zuo, J.; Rodriguez, D. Predicting of Runoff Using an Optimized SWAT-ANN: A Case Study. J. Hydrol. Reg. Stud. 2020, 29, 100688. [Google Scholar]
- Sarzaeim, P.; Bozorg-Haddad, O.; Bozorgi, A.; Loáiciga, H.A. Runoff Projection under Climate Change Conditions with Data-Mining Methods. J. Irrig. Drain. Eng. 2017, 143, 4017026. [Google Scholar] [CrossRef]
- Asadi, S.; Shahrabi, J.; Abbaszadeh, P.; Tabanmehr, S. A New Hybrid Artificial Neural Networks for Rainfall–Runoff Process Modeling. Neurocomputing 2013, 121, 470–480. [Google Scholar] [CrossRef]
- Alizadeh, A.; Rajabi, A.; Shabanlou, S.; Yaghoubi, B.; Yosefvand, F. Modeling Long-Term Rainfall-Runoff Time Series through Wavelet-Weighted Regularization Extreme Learning Machine. Earth Sci. Inform. 2021, 14, 1047–1063. [Google Scholar] [CrossRef]
- Wu, H.; Chen, B. Evaluating Uncertainty Estimates in Distributed Hydrological Modeling for the Wenjing River Watershed in China by GLUE, SUFI-2, and ParaSol Methods. Ecol. Eng. 2015, 76, 110–121. [Google Scholar] [CrossRef]
- Bae, D.-H.; Trinh, H.L.; Nguyen, H.M. Uncertainty Estimation of the SURR Model Parameters and Input Data for the Imjin River Basin Using the GLUE Method. J. Hydro-Environ. Res. 2018, 20, 52–62. [Google Scholar] [CrossRef]
- Lee, H.; Balin, D.; Shrestha, R.R.; Rode, M. Streamflow Prediction with Uncertainty Analysis, Weida Catchment, Germany. KSCE J. Civ. Eng. 2010, 14, 413–420. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Wang, G.; Jin, J.; Liu, C.; Liu, Y.; He, R.; Bao, Z. Uncertainty Analysis of SWAT Modeling in the Lancang River Basin Using Four Different Algorithms. Water 2021, 13, 341. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, H.; Takase, K.; Oue, H. Comparison of the Soil Physical Properties and Hydrological Processes in Two Different Forest Type Catchments. Water Resour. 2016, 43, 225. [Google Scholar] [CrossRef]
- Her, Y.; Yoo, S.-H.; Cho, J.; Hwang, S.; Jeong, J.; Seong, C. Uncertainty in Hydrological Analysis of Climate Change: Multi-Parameter vs. Multi-GCM Ensemble Predictions. Sci. Rep. 2019, 9, 1–22. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, Q.J.; Bennett, J.C.; Robertson, D.E.; Shao, Q.; Zhao, J. Quantifying Predictive Uncertainty of Streamflow Forecasts Based on a Bayesian Joint Probability Model. J. Hydrol. 2015, 528, 329–340. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, G.; Huang, F.; Qin, H.; Wang, B.; Yi, L. Directed Graph Deep Neural Network for Multi-Step Daily Streamflow Forecasting. J. Hydrol. 2022, 607, 127515. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H. Ensemble Combination of Seasonal Streamflow Forecasts. J. Hydrol. Eng. 2016, 21, 4015043. [Google Scholar] [CrossRef]
- Farajzadeh, J.; Fard, A.F.; Lotfi, S. Modeling of Monthly Rainfall and Runoff of Urmia Lake Basin Using “Feed-Forward Neural Network” and “Time Series Analysis” Model. Water Resour. Ind. 2014, 7, 38–48. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Moradian, S.; Izadi, A. Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran. Water Resour. Manag. 2020, 34, 4831–4846. [Google Scholar] [CrossRef]
- Amini, A.; Ghazvinei, P.T.; Javan, M.; Saghafian, B. Evaluating the Impacts of Watershed Management on Runoff Storage and Peak Flow in Gav-Darreh Watershed, Kurdistan, Iran. Arab. J. Geosci. 2014, 7, 3271–3279. [Google Scholar] [CrossRef]
- Emami, F.; Koch, M. Agricultural Water Productivity-Based Hydro-Economic Modeling for Optimal Crop Pattern and Water Resources Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change. Sustainability 2018, 10, 3953. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.Y.; Liu, J. LSTM Network: A Deep Learning Approach for Short-term Traffic Forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [Google Scholar] [CrossRef]
- Fischer, T.; Krauss, C. Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [Google Scholar] [CrossRef]
- Johnson, R.A.; Bhattacharyya, G.K. Statistics: Principles and Methods; John Wiley Sons: Hoboken, NJ, USA, 2019; ISBN 1119497116. [Google Scholar]
- Kaihena, M.; Talakua, C.M.; Pagaya, J.; Talakua, S.M. Analysis of Water Pollution in Microbiology Aspect of Some Watersheds at Ambon City, Maluku Province. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 805, p. 12021. [Google Scholar]
- Zhu, S.; Heddam, S.; Nyarko, E.K.; Hadzima-Nyarko, M.; Piccolroaz, S.; Wu, S. Modeling Daily Water Temperature for Rivers: Comparison between Adaptive Neuro-Fuzzy Inference Systems and Artificial Neural Networks Models. Environ. Sci. Pollut. Res. 2019, 26, 402–420. [Google Scholar] [CrossRef]
- Kumar, P.S.; Praveen, T.V.; Prasad, M.A. Artificial Neural Network Model for Rainfall-Runoff-A Case Study. Int. J. Hybrid Inf. Technol. 2016, 9, 263–272. [Google Scholar] [CrossRef]
- Gheibi, M.; Chahkandi, B.; Behzadian, K.; Akrami, M.; Moezzi, R. Evaluation of Ceramic Water Filters’ Performance and Analysis of Managerial Insights by SWOT Matrix. Environ. Ind. Lett. 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Kiyan, A.; Gheibi, M.; Akrami, M.; Moezzi, R.; Behzadian, K. A Comprehensive Platform for Air Pollution Control System Operation in Smart Cities of Developing Countries: A Case Study of Tehran. Environ. Ind. Lett. 2023, 1, 10–27. [Google Scholar] [CrossRef]
- Kiyan, A.; Gheibi, M.; Akrami, M.; Moezzi, R.; Behzadian, K.; Taghavian, H. The Operation of Urban Water Treatment Plants: A Review of Smart Dashboard Frameworks. Environ. Ind. Lett. 2023, 1, 28–45. [Google Scholar] [CrossRef]
- Kiyan, A.; Gheibi, M.; Moezzi, R.; Behzadian, K. Smart Dashboard of Water Distribution Network Operation: A Case Study of Tehran. Environ. Ind. Lett. 2023, 1, 46–63. [Google Scholar] [CrossRef]
- Akbarian, H.; Gheibi, M.; Hajiaghaei-Keshteli, M.; Rahmani, M. A hybrid novel framework for flood disaster risk control in developing countries based on smart prediction systems and prioritized scenarios. J. Environ. Manag. 2022, 312, 114939. [Google Scholar] [CrossRef]
- Zabihi, O.; Siamaki, M.; Gheibi, M.; Akrami, M.; Hajiaghaei-Keshteli, M. A smart sustainable system for flood damage management with the application of artificial intelligence and multi-criteria decision-making computations. Int. J. Disaster Risk Reduct. 2023, 84, 103470. [Google Scholar] [CrossRef]
- Nakhaei, M.; Nakhaei, P.; Gheibi, M.; Chahkandi, B.; Wacławek, S.; Behzadian, K.; Chen, A.S.; Campos, L.C. Enhancing community resilience in arid regions: A smart framework for flash flood risk assessment. Ecol. Indic. 2023, 153, 110457. [Google Scholar] [CrossRef]
- Akrami, M.; Behzadian, K.; Gheibi, M.; Khaleghiabbasabadi, M.; Wacławek, S. Application of Decision-Making Techniques for Prioritizing Water Treatment Technology in Flood Events: A Preventive Crisis Management in the Czech Republic (No. EGU23-9445). In Proceedings of the Copernicus Meetings, Vienna, Austria, 23–28 April 2023. [Google Scholar]
- Bindas, T.; Tsai, W.P.; Liu, J.; Rahmani, F.; Feng, D.; Bian, Y.; Lawson, K.; Shen, C. Improving large-basin river routing using a differentiable Muskingum-Cunge model and physics-informed machine learning. ESS Open Arch. 2023; Authorea Preprints. [Google Scholar] [CrossRef]
- Ponce, V.M.; Yevjevich, V. Muskingum-Cunge method with variable parameters. J. Hydraul. Div. 1978, 104, 1663–1667. [Google Scholar] [CrossRef]
Name | Input |
---|---|
Scenario 1 (S1) | |
Scenario 2 (S2) | |
Scenario 3 (S3) | |
Scenario 4 (S4) | |
Scenario 5 (S5) |
Training Phase | Validation Phase | Testing Phase | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Station | Model Type | Structure | NSE | R2 | RMSE | NSE | R2 | RMSE | NSE | R2 | RMSE |
Safakhaneh (#1) | LSTM | S1 | 0.21 | 0.42 | 13.3 | 0.44 | 0.31 | 3.4 | 0.01 | 0.3 | 11.8 |
S2 | 0.48 | 0.65 | 10.8 | 0.38 | 0.21 | 5.7 | 0.44 | 0.48 | 8.9 | ||
S3 | 0.77 | 0.83 | 7.17 | 0.53 | 0.24 | 4.2 | 0.64 | 0.67 | 7.2 | ||
S4 | 0.56 | 0.63 | 10 | 0.58 | 0.27 | 3.7 | 0.55 | 0.58 | 8.0 | ||
S5 | 0.68 | 0.77 | 8.4 | 0.68 | 0.71 | 5.0 | 0.7 | 0.73 | 6.3 | ||
RNN | S1 | 0.56 | 0.7 | 17.21 | 0.44 | 0.35 | 3.3 | 0.58 | 0.04 | 14.6 | |
S2 | 0.62 | 0.16 | 15.1 | 0.68 | 0.1 | 3.3 | 0.61 | 0.1 | 11.9 | ||
S3 | 0.68 | 0.75 | 8.4 | 0.65 | 0.5 | 2.5 | 0.64 | 0.67 | 7.1 | ||
S4 | 0.69 | 0.75 | 8.3 | 0.64 | 0.56 | 2.5 | 0.68 | 0.71 | 6.7 | ||
S5 | 0.75 | 0.81 | 7.5 | 0.75 | 0.76 | 5.0 | 0.76 | 0.79 | 5.6 | ||
Bookan reservoir (#2) | LSTM | S1 | 0.82 | 0.12 | 169 | 0.54 | 0.2 | 79 | 0.76 | 0.08 | 160 |
S2 | 0.79 | 0.85 | 35.3 | 0.63 | 0.00 | 50.4 | 0.81 | 0.89 | 24.1 | ||
S3 | 0.84 | 0.88 | 30.5 | 0.59 | 0.62 | 20.7 | 0.73 | 0.88 | 28.8 | ||
S4 | 0.77 | 0.79 | 37 | 0.51 | 0.59 | 23.7 | 0.77 | 0.78 | 26.6 | ||
S5 | 0.79 | 0.81 | 35.2 | 0.73 | 0.58 | 42.3 | 0.79 | 0.81 | 24.4 | ||
RNN | S1 | 0.77 | 0.01 | 165.1 | 0.58 | 0.01 | 68.8 | 0.87 | 0.2 | 137.5 | |
S2 | 0.83 | 0.86 | 32.1 | 0.73 | 0.69 | 19.5 | 0.82 | 0.88 | 23.8 | ||
S3 | 0.84 | 0.84 | 31.3 | 0.84 | 0.7 | 19.3 | 0.86 | 0.87 | 20.6 | ||
S4 | 0.81 | 0.82 | 34.1 | 0.69 | 0.73 | 18.8 | 0.84 | 0.84 | 22.3 | ||
S5 | 0.77 | 0.83 | 37.5 | 0.77 | 0.8 | 21.4 | 0.82 | 0.85 | 22.7 | ||
Qezkorpi (#3) | LSTM | S1 | 0.96 | 0.96 | 14.5 | 0.98 | 0.98 | 4.8 | 0.96 | 0.98 | 11 |
S2 | 0.93 | 0.96 | 20.6 | 0.94 | 0.99 | 8.2 | 0.93 | 0.99 | 15 | ||
S3 | 0.93 | 0.96 | 19 | 0.92 | 0.98 | 9.3 | 0.94 | 0.98 | 25.2 | ||
S4 | 0.78 | 0.8 | 35.8 | 0.6 | 0.65 | 22.6 | 0.81 | 0.82 | 25.25 | ||
S5 | 0.93 | 0.96 | 20.1 | 0.95 | 0.99 | 9.8 | 0.93 | 0.99 | 13.8 | ||
RNN | S1 | 0.96 | 0.96 | 15.1 | 0.9 | 0.98 | 10.4 | 0.97 | 0.99 | 9.6 | |
S2 | 0.95 | 0.96 | 16.3 | 0.97 | 0.98 | 5.4 | 0.99 | 0.99 | 5.6 | ||
S3 | 0.97 | 0.95 | 81.2 | 0.93 | 0.91 | 35.6 | 0.93 | 0.97 | 59.5 | ||
S4 | 0.9 | 0.96 | 89.1 | 0.91 | 0.98 | 40.26 | 0.96 | 0.99 | 64.9 | ||
S5 | 0.95 | 0.97 | 16.7 | 0.96 | 0.99 | 8.5 | 0.96 | 0.66 | 10.8 | ||
Nezamabad (#4) | LSTM | S1 | 0.65 | 0.01 | 16.7 | 0.28 | 0.53 | 3.3 | 0.57 | 0.01 | 13.8 |
S2 | 0.59 | 0.64 | 9.6 | 0.56 | 0.28 | 4.9 | 0.51 | 0.51 | 8.3 | ||
S3 | 0.78 | 0.82 | 7.03 | 0.48 | 0.04 | 3.4 | 0.61 | 0.64 | 7.4 | ||
S4 | 0.57 | 0.63 | 9.8 | 0.51 | 0.31 | 3.6 | 0.56 | 0.58 | 7.9 | ||
S5 | 0.48 | 0.11 | 10.8 | 0.66 | 0.11 | 6.76 | 0.47 | 0.52 | 8.5 | ||
RNN | S1 | 0.65 | 0.78 | 47.8 | 0.55 | 6.2 | 14.5 | 0.64 | 0.75 | 31 | |
S2 | 0.81 | 0.84 | 35 | 0.65 | 0.69 | 12.7 | 0.79 | 0.79 | 23.6 | ||
S3 | 0.87 | 0.88 | 28.7 | 0.65 | 0.76 | 12.8 | 0.78 | 0.83 | 24.1 | ||
S4 | 0.88 | 0.89 | 26.9 | 0.73 | 0.79 | 11.7 | 0.8 | 0.84 | 22.8 | ||
S5 | 0.82 | 0.29 | 101.3 | 0.77 | 0.31 | 36.5 | 0.75 | 0.2 | 61.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakhaei, M.; Zanjanian, H.; Nakhaei, P.; Gheibi, M.; Moezzi, R.; Behzadian, K.; Campos, L.C. Comparative Evaluation of Deep Learning Techniques in Streamflow Monthly Prediction of the Zarrine River Basin. Water 2024, 16, 208. https://doi.org/10.3390/w16020208
Nakhaei M, Zanjanian H, Nakhaei P, Gheibi M, Moezzi R, Behzadian K, Campos LC. Comparative Evaluation of Deep Learning Techniques in Streamflow Monthly Prediction of the Zarrine River Basin. Water. 2024; 16(2):208. https://doi.org/10.3390/w16020208
Chicago/Turabian StyleNakhaei, Mahdi, Hossein Zanjanian, Pouria Nakhaei, Mohammad Gheibi, Reza Moezzi, Kourosh Behzadian, and Luiza C. Campos. 2024. "Comparative Evaluation of Deep Learning Techniques in Streamflow Monthly Prediction of the Zarrine River Basin" Water 16, no. 2: 208. https://doi.org/10.3390/w16020208
APA StyleNakhaei, M., Zanjanian, H., Nakhaei, P., Gheibi, M., Moezzi, R., Behzadian, K., & Campos, L. C. (2024). Comparative Evaluation of Deep Learning Techniques in Streamflow Monthly Prediction of the Zarrine River Basin. Water, 16(2), 208. https://doi.org/10.3390/w16020208