The Spatial and Temporal Variability of the Blue–Green Spatial Structures of the South Dongting Lake Wetland Areas Amidst Climate Change, including Its Relationship with Meteorological Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Methods
2.3.1. Modified Normalized Difference Water Index (MNDWI)
2.3.2. Landscape Pattern Index
2.3.3. Cross-Wavelet Transform (XWT)
3. Results
3.1. Landscape Pattern Analysis of Blue and Green Spaces
3.1.1. Flood Period
3.1.2. Drought Period
3.2. Relationship between Runoff and Meteorological Factors
3.2.1. Relationship between Runoff and Precipitation
3.2.2. Correlation between Runoff and Air Temperature
3.2.3. Correlation between Runoff and Evapotranspiration
4. Discussion
4.1. Driving Forces for Blue–Green Space Alternations
4.2. Ecological Response to Blue–Green Space Alternations
4.3. Mitigation and Adaptation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.J. Extent and drivers of global wetland loss. Nature 2023, 614, 234–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. The Yangtze River Basin is a key area for the study of global climate change. In Climate Security in Changjiang River Economic Zone an A Net-Zero Future; China Entrepreneurs Forum & Changjiang Conservation Foundation, 2022; pp. 34–37. Available online: https://mp.weixin.qq.com/s?__biz=MzAxNDYyODMxNQ==&mid=2455678995&idx=2&sn=ee41be517cd64df62284f8a8b6e469db&chksm=8c3a74a7bb4dfdb16134bba878e2dd37f30f112bc9181b0c3322b05d393a1d4a08546db02d6b&scene=27 (accessed on 5 January 2024).
- Xia, J.; Chen, J.; She, D. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022. J. Hydraul. Eng. 2022, 53, 1143–1153. [Google Scholar]
- Wang, W.J.; Shi, K.; Wang, X.W.; Wang, S.Q.; Zhang, D.; Peng, Y.Y.; Li, N.; Zhang, Y.L.; Zhang, Y.B.; Qin, B.Q.; et al. A record-breaking extreme heat event caused unprecedented warming of lakes in China. Sci. Bull. 2023, 68, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Hegerl, G.C.; Hanlon, H.; Beierkuhnlein, C. Elusive extremes. Nat. Geosci. 2011, 4, 142–143. [Google Scholar] [CrossRef]
- Qi, W.; Feng, L.; Yang, H.; Liu, J.G. Warming winter, drying spring and shifting hydrological regimes in Northeast China under climate change. J. Hydrol. 2022, 606, 127390. [Google Scholar] [CrossRef]
- Wang, J.; Foley, K. Promoting climate-resilient cities: Developing an attitudinal analytical framework for understanding the relationship between humans and blue-green infrastructure. Environ. Sci. Policy 2023, 146, 133–143. [Google Scholar] [CrossRef]
- Cui, Y.; Guo, B.; Li, W.; Kong, X. Assessment of urban blue-green space cooling effect linking maximum and accumulative perspectives in the Yangtze River Delta, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 121834–121850. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Guo, G.H.; Wu, Z.F.; Cao, Z.; Chen, Y.B.; Zheng, Z.H. Location of greenspace matters: A new approach to investigating the effect of the greenspace spatial pattern on urban heat environment. Landsc. Ecol. 2021, 36, 1533–1548. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The win-win interaction between integrated blue and green space on urban cooling. Sci. Total Environ. 2023, 863, 160712. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xiao, W.H.; Wang, Y.; Wang, X. Characteristics and Factors of Water Level Variations in the Dongting Lake during the Recent 50 Years. South-North Water Transf. Water Sci. Technol. 2012, 10, 18–22. [Google Scholar]
- Zhou, Y.; Jing, L.; Wang, S.Q.; Jia, Y.F.; Wang, Y.S.; Lei, G.C. Drivers for ecosystem respiration during the drawdown period in Dongting Lake, China. Front. Environ. Sci. 2023, 11, 1181894. [Google Scholar] [CrossRef]
- Guan, L.; Wen, L.; Feng, D.D.; Zhang, H.; Lei, G.C. Delayed Flood Recession in Central Yangtze Floodplains Can Cause Significant Food Shortages for Wintering Geese: Results of Inundation Experiment. Environ. Manag. 2014, 54, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.L.; Qian, S.; Meng, C.Z.; Chang, Y.F.; Guo, W.Z.; Wang, S.; Sun, Y.L. Blue-Green Space Changes of Baiyangdian Wetland in Xiong’an New Area, China. Adv. Meteorol. 2022, 2022, 4873393. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Zeng, G.M.; Liang, J.; Huang, L.; Hua, S.S.; Li, F.; Zhu, Y.; Wu, H.P.; Liu, J.Y.; He, X.X.; et al. Variation of water level in Dongting Lake over a 50-year period: Implications for the impacts of anthropogenic and climatic factors. J. Hydrol. 2015, 525, 450–456. [Google Scholar] [CrossRef]
- Peng, Y.; He, G.J.; Wang, G.Z.; Cao, H.J. Surface Water Changes in Dongting Lake from 1975 to 2019 Based on Multisource Remote-Sensing Images. Remote Sens. 2021, 13, 1827. [Google Scholar] [CrossRef]
- Lai, X.; Jiang, J.; Huang, Q. Effects of the normal operation of the Three Gorges Reservoir on wetland inundation in Dongting Lake, China: A modelling study. Hydrol. Sci. J. 2013, 58, 1467–1477. [Google Scholar] [CrossRef]
- Wang, H.X.; Zhu, Y.W.; Zha, H.F.; Guo, W.X. Quantitative assessment of water level regime alterations during 1959-2016 caused by Three Gorges Reservoir in the Dongting Lake, China. Water Supply 2021, 21, 1188–1201. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Yang, S.Q.; Jiang, C.B.; Long, Y.N.; Deng, B.; Yan, S.X. Hydrological Drought in Dongting Lake Area (China) after the Running of Three Gorges Dam and a Possible Solution. Water 2020, 12, 2713. [Google Scholar] [CrossRef]
- Guan, L.; Lei, J.L.; Zuo, A.J.; Zhang, H.; Lei, G.C.; Wen, L. Optimizing the timing of water level recession for conservation of wintering geese in Dongting Lake, China. Ecol. Eng. 2016, 88, 90–98. [Google Scholar] [CrossRef]
- Cheng, J.X.; Xu, L.G.; Wang, Q.; Yan, B.Y.; Wan, R.R.; Jiang, J.H.; You, H.L. Temporal and spatial variations of water level and its driving forces in Lake Dongting over the last three decades. J. Lake Sci. 2017, 29, 974–983. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. Report of Comprehensive Scientific Investigation and Biodiversity Background Survey in South Dongting Lake; National Forestry and Grassland Administration: Beijing, China, 2023; pp. 7–11. [Google Scholar]
- Liu, X.Y.; Zhang, Z.X.; Zhang, J.M.; Zhu, B.; Tian, J.X. Projection of the potential distribution of suitable habitats for Siberian crane (Grus leucogeranus) in the middle and lower reaches of the Yangtze River basin. Front. Earth Sci. 2023, 11, 1193677. [Google Scholar] [CrossRef]
- Sobhani, P.; Esmaeilzadeh, H.; Barghjelveh, S.; Sadeghi, S.M.M.; Marcu, M.V. Habitat Integrity in Protected Areas Threatened by LULC Changes and Fragmentation: A Case Study in Tehran Province, Iran. Land 2022, 11, 6. [Google Scholar] [CrossRef]
- Sobhani, P.; Esmaeilzadeh, H.; Sadeghi, S.M.M.; Wolf, I.D. Land potential for ecotourism development and assessing landscape ecology in areas on protection of Iran. Environ. Dev. Sustain. 2023. early access. [Google Scholar] [CrossRef]
- Wu, J.G. Landscape Ecology Pattern, Process, Scale and Hierarchy; Higher Education Press: Beijing, China, 2007. [Google Scholar]
- Sefidi, K.; Copenheaver, C.A.; Sadeghi, S.M.M. Anthropogenic pressures decrease structural complexity in Caucasian forests of Iran. Ecoscience 2022, 29, 199–209. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Muraja, D.O.S.; Klausner, V.; Prestes, A.; da Silva, I.R. Ocean-atmosphere interaction identified in tree-ring time series from southern Brazil using cross-wavelet analysis. Theor. Appl. Climatol. 2023, 153, 1177–1189. [Google Scholar] [CrossRef]
- Wang, H.X.; Huang, L.T.; Guo, W.X.; Zhu, Y.W.; Yang, H.; Jiao, X.Y.; Zhou, H.T. Evaluation of ecohydrological regime and its driving forces in the Dongting Lake, China. J. Hydrol. Reg. Stud. 2022, 41, 101067. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Yu, M.H.; Tian, H.Y.; Liu, Y.J. Decomposition and Attribution Analysis of Runoff Alteration of the Dongting Lake in China. Water 2020, 12, 2729. [Google Scholar] [CrossRef]
- Voigt, A.; Shaw, T.A. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci. 2015, 8, 102–106. [Google Scholar] [CrossRef]
- Cai, W.; Yang, P.; Xia, J.; Zhang, S.Q.; Wang, W.Y.; Luo, Y.J. Analysis of climate change in the middle reaches of the Yangtze River Basin using principal component analysis. Theor. Appl. Climatol. 2023, 151, 449–465. [Google Scholar] [CrossRef]
- Sobhani, P.; Esmaeilzadeh, H.; Deljouei, A.; Wolf, I.D.; Marcu, M.V.; Sadeghi, S.M.M. Assessing water security and footprint in hypersaline Lake Urmia. Ecol. Indic. 2023, 155, 110955. [Google Scholar] [CrossRef]
- Wu, H.P.; Hu, X.Y.; Sun, S.Q.; Dai, J.; Ye, S.J.; Du, C.Y.; Chen, H.; Yu, G.L.; Zhou, L.; Chen, J. Effect of increasing of water level during the middle of dry season on landscape pattern of the two largest freshwater lakes of China. Ecol. Indic. 2020, 113, 106283. [Google Scholar] [CrossRef]
- Jing, L.; Zeng, Q.; He, K.; Liu, P.Z.; Fan, R.; Lu, W.Z.; Lei, G.C.; Lu, C.; Wen, L. Vegetation Dynamic in a Large Floodplain Wetland: The Effects of Hydroclimatic Regime. Remote Sens. 2023, 15, 2614. [Google Scholar] [CrossRef]
- Zhou, Y.; Jing, L.; Jia, Y.F.; Lei, G.; Yao, Y.; Lv, C.; Chen, A.; Lei, G.C. Population dynamics of four endangered cranes and landscape patterns of habitats in the East Dongting Lake during recent 30 years. J. Lake Sci. 2019, 31, 1415–1423. [Google Scholar] [CrossRef]
- Yang, F.; He, B.Y.; Feng, Q.; Xiao, F.; Ban, X.; Tu, S.P.; Shu, W. Shoal exposure caused by water level drop in the middle reaches of the Yangtze River and its potential impact on stickiness spawning fish: A case study in spring 2020. J. Cent. China Norm. Univ. (Nat. Sci.) 2022, 56, 354–362. [Google Scholar] [CrossRef]
- Li, Q.Y.; Li, W.Y.; Lai, G.Y.; Liu, Y.; Devlin, A.T.; Wang, W.P.; Zhan, S.P. Identifying High Stranding Risk Areas of the Yangtze Finless Porpoise via Remote Sensing and Hydrodynamic Modeling. Remote Sens. 2022, 14, 2455. [Google Scholar] [CrossRef]
- Li, Q.Y.; Dai, X.F.; Liu, Y.; Devlin, A.T.; Lai, G.Y.; Wang, W.P. Potential spawning grounds of phytophilic fish under a shifting hydrological regime in Poyang Lake, China. Fish. Manag. Ecol. 2022, 29, 597–607. [Google Scholar] [CrossRef]
- Otto, F.E.L.; Fabian, F. Equalising the evidence base for adaptation and loss and damages. Glob. Policy 2023. early access. [Google Scholar] [CrossRef]
- de Melo, M.C.; Fernandes, L.F.S.; Pissarra, T.C.T.; Valera, C.A.; da Costa, A.M.; Pacheco, F.A.L. The COP27 screened through the lens of global water security. Sci. Total Environ. 2023, 873, 162303. [Google Scholar] [CrossRef] [PubMed]
- COP27. Sharm el-Sheikh Implementation Plan. In Framework Convention on Climate Change, Proceedings of the Conference of the Parties, Twentyseventh Session, Sharm El Sheikh, Egypt, 6–18 November 2022; United Nations: New York, NY, USA, 2022; 9p. [Google Scholar]
- SADC; IUCN; UNCCD. SADC Drought Risk Management and Mitigation Strategy 2022–2032. Volume 1: A Global Review of Drought Policies and Mitigation Strategies, and the Lessons Learnt for the SADC Region. Gaborone, Botswana. Technical Report, South African Development Community. 2022; 70p, Available online: https://www.unccd.int/resources/publications/drimms-vol-3-drought-risk-management-and-mitigation-strategy-2022-2032 (accessed on 26 November 2023).
- SADC; IUCN; UNCCD. SADC Drought Risk Management and Mitigation Strategy 2022–2032. Volume 2: Drought Vulnerability Assessment Report. Technical Report, South African Development Community. 2022. Available online: https://www.unccd.int/resources/publications/drimms-vol-2-drought-vulnerability-and-assessment-report (accessed on 26 November 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Li, Y.; Cao, X.; Jiang, S.; Yu, H. The Spatial and Temporal Variability of the Blue–Green Spatial Structures of the South Dongting Lake Wetland Areas Amidst Climate Change, including Its Relationship with Meteorological Factors. Water 2024, 16, 209. https://doi.org/10.3390/w16020209
Luo Q, Li Y, Cao X, Jiang S, Yu H. The Spatial and Temporal Variability of the Blue–Green Spatial Structures of the South Dongting Lake Wetland Areas Amidst Climate Change, including Its Relationship with Meteorological Factors. Water. 2024; 16(2):209. https://doi.org/10.3390/w16020209
Chicago/Turabian StyleLuo, Qiao, Yong Li, Xueyou Cao, Shufang Jiang, and Hongbing Yu. 2024. "The Spatial and Temporal Variability of the Blue–Green Spatial Structures of the South Dongting Lake Wetland Areas Amidst Climate Change, including Its Relationship with Meteorological Factors" Water 16, no. 2: 209. https://doi.org/10.3390/w16020209
APA StyleLuo, Q., Li, Y., Cao, X., Jiang, S., & Yu, H. (2024). The Spatial and Temporal Variability of the Blue–Green Spatial Structures of the South Dongting Lake Wetland Areas Amidst Climate Change, including Its Relationship with Meteorological Factors. Water, 16(2), 209. https://doi.org/10.3390/w16020209