A Methodology for Water Resource Management and the Planning of the Coastal Reservoir in Indonesia
Abstract
:1. Introduction
2. Methodology Development
2.1. Data Preparation
2.2. Hydrology Analysis
2.3. Water Resource Allocation Modeling
2.4. Numerical Model
3. Case Study
3.1. Research Location
3.2. Hydrology Analysis
3.3. Water Resource Allocation Modeling
3.4. Numerical Modeling
- When tide level > water level in the coastal reservoir, the floodgate is closed;
- When tide level ≤ water level in the coastal reservoir, the floodgate is opened.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mellivera, A.; Zain, K.; Adityawan, M.B.; Harlan, D.; Farid, M.; Yakti, B.P. Development of FTCS Artificial Dissipation for Dam Break 2D Modelling. J. Tek. Sipil 2020, 27, 1–8. [Google Scholar] [CrossRef]
- Younus, M.; Suswanta; Zaenuri, M.; Wildhani, A.M.; Rodriguez, M.J.D. From Crisis to Sustainability: Analyzing Fresh Water Shortage Crises and The Urgency for Government Intervention to Manage Resources. J. Surv. Fish. Sci. 2023, 10, 6228–6238. [Google Scholar]
- Shi, X.; Lyu, G. Water-preserved coal mining in water-shortage mining areas: A case study in the Yonglong mining area of China. Water Pract. Technol. 2023, 18, 2123–2135. [Google Scholar] [CrossRef]
- Sanchez, L.; Warziniack, T.; Knowles, M. The Inequitable Exposure of Socially Vulnerable Groups to Water Shortages across the United States. Environ. Res. Lett. 2023, 18, 044022. [Google Scholar] [CrossRef]
- Taftazani, R.; Kazama, S.; Takizawa, S. Spatial Analysis of Groundwater Abstraction and Land Subsidence for Planning the Piped Water Supply in Jakarta, Indonesia. Water 2022, 14, 3197. [Google Scholar] [CrossRef]
- Rahman, S.; Sumotarto, U.; Pramudito, H. Influence the condition land subsidence and groundwater impact of Jakarta coastal area. IOP Conf. Ser. Earth Environ. Sci. 2018, 106, 012006. [Google Scholar] [CrossRef]
- Hendarto, H.; Standing, J.R. Influence of groundwater extraction on land subsidence in Jakarta. In Proceedings of the XVII ECSMGE, Reykjavík, Iceland, 1–6 September 2019; pp. 1–8. [Google Scholar]
- Putri, R.F.; Rostika, M.D.; Abadi, A.W.; Rakhmatika, M. A Review Disaster Mitigation of Jakarta Land Subsidence Areas. E3S Web Conf. 2021, 325, 01002. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards 2011, 59, 1753–1771. [Google Scholar] [CrossRef]
- Suprayogi, H.; Rudyanto, A.; Bachtiar, H.; Limantara, L.M. Critical-phase sea dike construction of NCICD program in Jakarta as national capital city. IOP Conf. Ser. Earth Environ. Sci. 2018, 162, 012020. [Google Scholar] [CrossRef]
- Stiawan, Y.A.; Adityawan, M.B.; Prasetyo, A. Flood Modeling on the Dadap River and Estuary, Banten Province. J. Tek. Sipil 2023, 30, 1–8. [Google Scholar] [CrossRef]
- Mishra, B.K.; Emam, A.R.; Masago, Y.; Kumar, P.; Regmi, R.K.; Fukushi, K. Assessment of future flood inundations under climate and land use change scenarios in the Ciliwung River Basin, Jakarta. J. Flood Risk Manag. 2018, 11, S1105–S1115. [Google Scholar] [CrossRef]
- Marwanza, I.; Anugrahadi, A.; Sumotarto, U.; Kurniawati, R.; Yudha, H.F.; Nugraheni, R.D. Land Subsidence and Geotechnical Impact of Jakarta Kota Area. Indones. J. Urban Environ. Technol. 2023, 6, 145–164. [Google Scholar] [CrossRef]
- Batubara, B.; Kooy., M.; Zwarteveen, M. Politicising land subsidence in Jakarta: How land subsidence is the outcome of uneven sociospatial and socionatural processes of capitalist urbanization. Geoforum 2023, 139, 103689. [Google Scholar] [CrossRef]
- Yang, S. Historical Review of Existing Coastal Reservoirs and Its Applications. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019; pp. 3957–3973. [Google Scholar]
- Yang, P.; Liu, M.; Tang, K.M.; Yang, H.; Lai, D.Y.F.; Tong, C.; Chun, K.P.; Zhang, L.; Tang, C. Coastal reservoirs as a source of nitrous oxide: Spatio-temporal patterns and assessment strategy. Sci. Total Environ. 2021, 790, 147878. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Jin, Q.; Zhang, C.; Xu, J.; Tang, H.; Shen, C.; Scheuermann, A.; Li, L. Combined effect of inland groundwater input and tides on flow and salinization in the coastal reservoir and adjacent aquifer. J. Hydrol. 2021, 600, 126575. [Google Scholar] [CrossRef]
- Jayanti, M.; Sabar, A.; Ariesyady, H.D.; Marselina, M.; Qadafi, M. A comparison of three water discharge forecasting models for monsoon climate region: A case study in cimanuk-jatigede watershed Indonesia. Water Cycle 2023, 4, 17–25. [Google Scholar] [CrossRef]
- Sebayang, I.S.D.; Fahmi, M. Dependable Flow Modeling In Upper Basin Citarum Using Multilayer Perceptron Backpropagation. Int. J. Artif. Intell. Res. 2020, 4, 75–85. [Google Scholar] [CrossRef]
- SNI 2415:2016; Tata Cara Perhitungan Debit Banjir Rencana. Badan Standarisasi Nasional: Jakarta, Indonesia, 2016.
- Suroso, S.; Santoso, P.; Birkinshaw, S.; Kilsby, C.; Bardossy, A.; Aldrian, E. Assessment of TRMM rainfall data for flood modelling in three contrasting catchments in Java, Indonesia. J. Hydroinform. 2023, 25, 797–814. [Google Scholar] [CrossRef]
- Senjaya, T.; Yudianto, D.; Yuebo, X.; Adidarma, W. Application of TRMM in the Hydrological Analysis of Upper Bengawan Solo River Basin. J. Civ. Eng. Forum 2020, 6, 309–318. [Google Scholar] [CrossRef]
- Komariah, I.; Motsumoto, T. Application of Hydrological Method for Sustainable Water Management in the Upper-Middle Ciliwung (UMC) River Basin, Indonesia. J. Water Environ. Technol. 2019, 17, 203–217. [Google Scholar] [CrossRef]
- Rintis, H.; Suyanto; Setyoasri, Y.P. Rainfall-Discharge Simulation in Bah Bolon Catchment Area by Mock Method, NRECA Method, and GR2M Method. Appl. Mech. Mater. 2016, 845, 24–29. [Google Scholar]
- Chandrasasi, D.; Limantara, L.M.; Juni, R.W. Analysis using the F. J. Mock Method for calculation of water balance in the Upper Konto Sub-Watershed. IOP Conf. Ser. Earth Environ. Sci. 2020, 437, 012019. [Google Scholar] [CrossRef]
- Herman, R.; Andiesse, V.W.; Rahmi, O.S. Changes in Land Use Affect Dependable Discharge in the Miu River Basin. MATEC Web Conf. 2020, 331, 04004. [Google Scholar] [CrossRef]
- Utamahadi, M.A.; Pandjaitan, N.H.; Rau, M.I. Land use change impacts on discharge analysis using SWAT model at Ciherang Pondok DAM catchment area. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012015. [Google Scholar] [CrossRef]
- Hamdi, A.; Abdulhameed, I.; Mawlood, I. Application of Weap Model for Managing Water Resources in Iraq: A Review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1222, 012032. [Google Scholar] [CrossRef]
- Creager, W.P.; Justin, J.D.; Hinds, J. Engineering for Dams: Volume 1—General Design; John Wiley and Sons: New York, NY, USA, 1945. [Google Scholar]
- PLN (Perusahaan Listrik Negara). Studi Inventarisasi Air; PLN: Jakarta, Indonesia, 1997. [Google Scholar]
- Sendrós, A.; Himi, M.; Rivero, L.; Lovera, R.; Urruela, A.; Tapias, J.C.; Casas, A. Enhanced Groundwater Protection and Management Using Gravity and Geoelectrical Data (Valls Basin, Spain). Water 2023, 15, 4130. [Google Scholar] [CrossRef]
- Sheikha-BagemGhaleh, S.; Babazadeh, H.; Rezaie, H.; Sarai-Tabrizi, M. The effect of climate change on surface and groundwater resources using WEAP-MODFLOW models. Appl. Water Sci. 2023, 13, 121. [Google Scholar] [CrossRef]
- Čož, N.; Ahmadian, R.; Falconer, R.A. Implementation of a Full Momentum Conservative Approach in Modelling Flow Through Tidal Structures. Water 2019, 11, 1917. [Google Scholar] [CrossRef]
- Sandi, C.; Nugroho, E.O.; Cahyono, M. Dambreak Risk Analysis of Jenelata Dam and its Mitigation Plan. Bull. Civ. Eng. 2022, 2, 49–56. [Google Scholar] [CrossRef]
- Kirana, P.H.; Farid, M.; Adityawan, M.B.; Kuntoro, A.A.; Widyaningtias. Study of Flood Risk Assessment on Banyumas and Cilacap District in Downstream Serayu River Basin, Indonesia. J. Tek. Sipil 2023, 30, 149–156. [Google Scholar] [CrossRef]
- Burnama, N.S.; Rohmat, F.I.W.; Farid, M.; Kuntoro, A.A.; Kardhana, H.; Rohmat, F.I.W.; Wijayasari, W. The Utilization of Satellite Data and Machine Learning for Predicting the Inundation Height in the Majalaya Watershed. Water 2023, 15, 3026. [Google Scholar] [CrossRef]
- Syarifudin, A.; Satyanaga, A.; Destania, H.R. Application of the HEC-RAS Program in the Simulation of the Streamflow Hydrograph for Air Lakitan Watershed. Water 2022, 14, 4094. [Google Scholar] [CrossRef]
- Rohmat, F.I.W.; Sa’adi, Z.; Stamataki, I.; Kuntoro, A.A.; Farid, M.; Suwarman, R. Flood modeling and baseline study in urban and high population environment: A case study of Majalaya, Indonesia. Urban Clim. 2022, 46, 101332. [Google Scholar] [CrossRef]
- Thapa, S.; Shrestha, A.; Lamichhane, S.; Adhikari, R.; Gautam, D. Catchment-scale flood hazard mapping and flood vulnerability analysis of residential buildings: The case of Khando River in eastern Nepal. J. Hydrol. Reg. Stud. 2020, 30, 100704. [Google Scholar] [CrossRef]
- Erima, G.; Kabenge, I.; Gidudu, A.; Bamutaze, Y.; Egeru, A. Differentiated Spatial-Temporal Flood Vulnerability and Risk Assessment in Lowland Plains in Eastern Uganda. Hydrology 2022, 9, 201. [Google Scholar] [CrossRef]
- Effendi, H.; Permatasari, P.A.; Muslimah, S.; Mursalin. Water quality of Cisadane River based on watershed segmentation. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012023. [Google Scholar] [CrossRef]
- SNI 7745:2012; Tata Cara Perhitungan Evapotranspirasi Tanaman Acuan dengan Metode Penman-Monteith. Badan Standarisasi Nasional: Jakarta, Indonesia, 2012.
NSE Value | Interpretation |
---|---|
NSE ≥ 0.75 | Good |
0.36 < NSE < 0.75 | Satisfactory |
NSE ≤ 0.36 | Not Satisfied |
Volume (106 m3) | Area (ha) | |
---|---|---|
UWR | 68.83 | 1739.69 |
TWR | 202.78 | 1212.90 |
Scenario | Q100 | Q1000 | Flood Gate Width (m) |
---|---|---|---|
1 | v | - | 500 |
2 | - | v | |
3 | v | - | 400 |
4 | - | v | |
5 | v | - | 300 |
6 | - | v | |
7 | v | - | 200 |
8 | - | v | |
9 | v | - | 100 |
10 | - | v |
Segment | Percent Passing (%) | |||
---|---|---|---|---|
Gravel | Sand | Silt | Clay | |
Upstream | 0 | 77.90 | 14.32 | 7.78 |
Middle | 0 | 55.56 | 30.35 | 14.09 |
Downstream | 0 | 49.72 | 33.75 | 16.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soekarno, I.; Adityawan, M.B.; Sandi, C.; Amatullah, S.I.; Farid, M.; Suryadi, Y.; Yakti, B.P.; Chrysanti, A.; Kuntoro, A.A.; Widyaningtias; et al. A Methodology for Water Resource Management and the Planning of the Coastal Reservoir in Indonesia. Water 2024, 16, 344. https://doi.org/10.3390/w16020344
Soekarno I, Adityawan MB, Sandi C, Amatullah SI, Farid M, Suryadi Y, Yakti BP, Chrysanti A, Kuntoro AA, Widyaningtias, et al. A Methodology for Water Resource Management and the Planning of the Coastal Reservoir in Indonesia. Water. 2024; 16(2):344. https://doi.org/10.3390/w16020344
Chicago/Turabian StyleSoekarno, Indratmo, Mohammad Bagus Adityawan, Calvin Sandi, Salma Izzatu Amatullah, Mohammad Farid, Yadi Suryadi, Bagus Pramono Yakti, Asrini Chrysanti, Arno Adi Kuntoro, Widyaningtias, and et al. 2024. "A Methodology for Water Resource Management and the Planning of the Coastal Reservoir in Indonesia" Water 16, no. 2: 344. https://doi.org/10.3390/w16020344
APA StyleSoekarno, I., Adityawan, M. B., Sandi, C., Amatullah, S. I., Farid, M., Suryadi, Y., Yakti, B. P., Chrysanti, A., Kuntoro, A. A., Widyaningtias, & Purnama, M. R. (2024). A Methodology for Water Resource Management and the Planning of the Coastal Reservoir in Indonesia. Water, 16(2), 344. https://doi.org/10.3390/w16020344