Variation in Annual Ring and Wood Anatomy of Six Tree Mangrove Species in the Nicoya Gulf of Costa Rica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mangrove Species and Study Site
2.2. Tree Samples
2.3. Physical Properties and Carbon Content Determination
2.4. Wood Sample Preparation for Ring Boundary Identification
- Density variation: The annual ring boundary is marked by several rows of fibers with fibers having a shortened radial diameter and thickened walls.
- Marginal parenchyma: The annual ring boundary is marked with a uniseriate or multiseriate marginal parenchyma band.
- Fiber/parenchyma pattern: The boundary is marked by periodically recurring patterns of alternating parenchyma and fiber bands.
- Vessels distribution: There is a variation in the diameter or frequency of vessel elements.
- Fiber band: The annual ring boundary is marked by a band of fibers.
2.5. Permanent Slide Preparation and Wood Anatomical Description
2.6. Statistical Analysis
3. Results
3.1. Growth Rings
3.2. Tree Diameter, Physical Properties, and Carbon Content
3.3. Anatomical Description
3.3.1. General Vessel Description
3.3.2. Fibers
3.3.3. Ray Parenchyma
3.3.4. Ray Parenchyma
4. Discussion
4.1. Growth Rings
4.2. Wood Anatomy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maurya, K.; Mahajan, S.; Chaube, N. Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex Intell. Syst. 2021, 7, 2797–2818. [Google Scholar] [CrossRef]
- Bimrah, K.; Dasgupta, R.; Hashimoto, S.; Saizen, I.; Dhyani, S. Ecosystem services of mangroves: A systematic review and synthesis of contemporary scientific literature. Sustainability 2022, 14, 12051. [Google Scholar] [CrossRef]
- Asari, N.; Suratman, M.N.; Mohd Ayob, N.A.; Abdul Hamid, N.H. Mangrove as a Natural Barrier to Environmental Risks and Coastal Protection. In Mangroves: Ecology, Biodiversity and Management; Rastogi, R.P., Phulwaria, M., Gupta, D.K., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Monika Yadav, A. A. A Holistic Study on Impact of Anthropogenic Activities over the Mangrove Ecosystem and Their Conservation Strategies. In Coastal Ecosystems; Madhav, S., Nazneen, S., Singh, P., Eds.; Coastal Research Library; Springer: Cham, Switzerland, 2022; Volume 38. [Google Scholar] [CrossRef]
- Alongi, D.M. Global significance of mangrove blue carbon in climate change mitigation. Sci 2020, 2, 67. [Google Scholar] [CrossRef]
- SINAC (Sistema Nacional de Áreas de Conservación). Costa Rica: Mapa de Ecosistemas de Manglar 2021. 2021 Programa Nacional de Humedales (SINAC)/Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)/Conservación Internacional Costa Rica. Available online: https://storymaps.arcgis.com/stories/2dda39902299463085723bb35ace3c32 (accessed on 15 March 2024).
- Yaney-Keller, A.; Santidrián Tomillo, P.; Marshall, J.M.; Paladino, F.V. Using Unmanned Aerial Systems (UAS) to assay mangrove estuaries on the Pacific coast of Costa Rica. PLoS ONE 2019, 14, e0217310. [Google Scholar] [CrossRef]
- Silva-Benavides, A.M. Mangroves. In Marine Biodiversity of Costa Rica, Central America; Wehrtmann, I.S., Cortés, J., Eds.; Monographiae Biologicae; Springer: Dordrecht, The Netherlands, 2009; Volume 86. [Google Scholar] [CrossRef]
- Vargas, J.A. The Gulf of Nicoya: Estuarine ecosystem. In Costa Rican Ecosystems; Kappelle, M., Ed.; The University of Chicago Press: Chicago, IL, USA, 2016; pp. 139–161. Available online: https://books.google.co.cr/books?hl=es&lr=&id=My-7CwAAQBAJ&oi=fnd&pg=PA139&ots=i0j2SHttqG&sig=QphzNvLVLrnDRwctPVJ7KdJnI6M&redir_esc=y#v=onepage&q&f=false (accessed on 23 April 2024).
- Alms, V.; Wolff, M. Identification of Drivers of Change of the Gulf of Nicoya Ecosystem (Costa Rica). Front. Mar. Sci. 2020, 7, 707. [Google Scholar] [CrossRef]
- Zamora-Trejos, P.; Cortés, J. Los manglares de Costa Rica: El Pacífico Norte. Biol. Trop. 2009, 57, 473–488. [Google Scholar] [CrossRef]
- Carvajal-Oses, M.; Pérez-Molina, J.P.; Herrera-Ulloa, Á.; Moreira-Segura, C. Structure and composition of a mangrove forest on the Central Pacific coast of Costa Rica: Population of mollusks of commercial interest. Uniciencia 2024, 38, 98–116. [Google Scholar] [CrossRef]
- Hernández-Blanco, M.; Costanza, R.; Cifuentes-Jara, M. Economic valuation of the ecosystem services provided by the mangroves of the Gulf of Nicoya using a hybrid methodology. Ecosyst. Serv. 2021, 49, 101258. [Google Scholar] [CrossRef]
- Olson, M.E. From Carlquist’s ecological wood anatomy to Carlquist’s Law: Why comparative anatomy is crucial for functional xylem biology. Am. J. Bot. 2020, 107, 1328–1341. [Google Scholar] [CrossRef]
- Biswas, P.L.; Biswas, S.R. Mangrove Forests: Ecology, Management, and Threats. In Life on Land. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Naskar, S.; Palit, P.K. Anatomical and physiological adaptations of mangroves. Wetl. Ecol. Manag. 2015, 23, 357–370. [Google Scholar] [CrossRef]
- Quadros, A.F.; Helfer, V.; Nordhaus, I.; Reuter, H.; Zimmer, M. Functional traits of terrestrial plants in the intertidal: A review on mangrove trees. Biol. Bull. 2021, 241, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Hamalton, T.; Sahana, K.S. An overview of the adaptive variations in mangroves. Int. J. Agric. Environ. Biotechnol. 2022, 15, 851–860. [Google Scholar] [CrossRef]
- Wright, I.J.; Ackerly, D.D.; Bongers, F.; Harms, K.E.; Ibarra-Manriquez, G.; Martinez-Ramos, M.; Mazer, S.J.; Muller-Landau, H.C.; Paz, H.; Pitman, N.C.A.; et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 2007, 99, 1003–1015. [Google Scholar] [CrossRef]
- Sun, Q.; Lin, P. Wood structure of Aegiceras corniculatum and its ecological adaptations to salinities. In Asia-Pacific Conference on Science and Management of Coastal Environment. Developments in Hydrobiology; Wong, Y.S., Tam, N.F.Y., Eds.; Springer: Dordrecht, The Netherland, 1997; Volume 123. [Google Scholar] [CrossRef]
- Verheyden, A.; De Ridder, F.; Schmitz, N.; Beeckman, H.; Koedam, N. High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol. 2005, 167, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, N.; Verheyden, A.; Kairo, J.G.; Beeckman, H.; Koedam, N. Successive cambia development in Avicennia marina (Forssk.) Vierh. is not climatically driven in the seasonal climate at Gazi Bay, Kenya. Dendrochronologia 2007, 25, 87–96. [Google Scholar] [CrossRef]
- Ewers, F.W.; Lopez-Portillo, J.; Angeles, G.; Fisher, J.B. Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa. Tree Physiol. 2004, 24, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Robert, E.M.; Koedam, N.; Beeckman, H.; Schmitz, N. A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Funct. Ecol. 2009, 23, 649–657. [Google Scholar] [CrossRef]
- Jiang, X.; Choat, B.; Zhang, Y.J.; Guan, X.Y.; Shi, W.; Cao, K.F. Variation in xylem hydraulic structure and function of two mangrove species across a latitudinal gradient in Eastern Australia. Water 2021, 13, 850. [Google Scholar] [CrossRef]
- Sánchez, A.R.; Pineda, J.E.M.; Casas, X.M.; Calderón, J.H.M. Influence of edaphic salinity on leaf morphoanatomical functional traits on juvenile and adult trees of red mangrove (Rhizophora mangle): Implications with relation to climate change. Forests 2021, 12, 1586. [Google Scholar] [CrossRef]
- Souza, B.T.; Estrada, G.C.; Soares, M.L.; Callado, C.H. Occurrence of annual growth rings in Rhizophora mangle in a region with low climate seasonality. An. Acad. Bras. Ciênc. 2016, 88, 517–525. [Google Scholar] [CrossRef]
- Alves, E.E.N.; Rodriguez, D.R.O.; de Azevedo, P.; Vergütz, L.; Junior, L.S.; Hesterberg, D.; Ruiz, L.C.; Tomazello-Filho, M.; da Costa, L.M. Synchrotron-based X-ray microscopy for assessing elements distribution and speciation in mangrove tree-rings. Results Chem. 2021, 3, 100121. [Google Scholar] [CrossRef]
- Menezes, M.; Berger, U.; Worbes, M. Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetl. Ecol. Manag. 2003, 11, 233–242. [Google Scholar] [CrossRef]
- Estrada, C.D.; Callado, C.H.; Soares, L.G.; Lisi, S.L. Annual growth rings in the mangrove Laguncularia racemosa (Combretaceae). Trees 2008, 22, 663–670. [Google Scholar] [CrossRef]
- Jantsch, A.; Melo Júnior, J.C.F.D.; Amorim, M.W.; Larcher, L.; Soffiatti, P. Wood anatomy of Laguncularia racemosa (Combretaceae) in mangrove and transitional forest, Southern Brazil. Biol. Trop. 2018, 66, 647–657. [Google Scholar] [CrossRef]
- Ramírez Correa, J.A.; Molina Grajales, E.C.; Bernal Escobar, M. Anillos anuales y clima en Rhizophora mangle L. de la Bahía de Cispatá, Colombia. Rev. Fac. Nac. Agron. Medellín 2010, 63, 5639–5650. [Google Scholar]
- ASTM D4442-20; Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM D143-22; Standard Test Methods for Small Clear Specimens of Timber. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Silva, M.; Funch, L.S.; da Silva, L.B. The growth ring concept: Seeking a broader and unambiguous approach covering tropical species. Biol. Rev. 2019, 94, 1161–1178. [Google Scholar] [CrossRef]
- Nath, C.D.; Munoz, F.; Pélissier, R.; Burslem, D.F.; Muthusankar, G. Growth rings in tropical trees: Role of functional traits, environment, and phylogeny. Trees 2016, 30, 2153–2175. [Google Scholar] [CrossRef]
- Worbes, M.; Raschke, N. Carbon allocation in a Costa Rican dry forest derived from tree ring analysis. Dendrochronologia 2012, 30, 231–238. [Google Scholar] [CrossRef]
- Worbes, M. Growth rings increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA J. 1989, 10, 109–122. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: New York, NY, USA, 1999; 322p. [Google Scholar]
- Wheeler, E.A.; Baas, P.; Gasson, P.E. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989, 10, 226–332. [Google Scholar]
- Nazim, K.; Ahmed, M.; Shaukat, S.S.; Khan, M.U.; Ali, Q.M. Age and growth rate estimation of grey mangrove Avicennia marina (Forsk.) Vierh from Pakistan. Pak. J. Bot. 2013, 45, 535–542. [Google Scholar]
- Schmitz, N.; Robert, E.M.; Verheyden, A.; Kairo, J.G.; Beeckman, H.; Koedam, N. A patchy growth via successive and simultaneous cambia: Key to success of the most widespread mangrove species Avicennia marina. Ann. Bot. 2008, 101, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Robert, E.M.; Schmitz, N.; Boeren, I.; Driessens, T.; Herremans, K.; De Mey, J.; Hans Beeckman, H.; Koedam, N. Successive cambia: A developmental oddity or an adaptive structure? PLoS ONE 2011, 6, e16558. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 2016; 413p, ISBN 0-521-25567-8. [Google Scholar] [CrossRef]
- Ellison, J.C. The pacific palaeogeography of Rhizophora mangle L. (Rhizophoraceae). Bot. J. Linn. Soc. 1991, 105, 271–284. [Google Scholar] [CrossRef]
- Verheyden, A.; Kairo, J.G.; Beeckman, H.; Koedam, N. Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Ann. Bot. 2004, 94, 59–66. [Google Scholar] [CrossRef]
- Schmitz, N.; Verheyden, A.; Beeckman, H.; Kairo, J.G.; Koedam, N. Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Ann. Bot. 2006, 98, 1321–1330. [Google Scholar] [CrossRef]
- Baas, P. Systematic, phylogenetic, and ecological wood anatomy—History and perspectives. In New Perspectives in Wood Anatomy; Baas, P., Ed.; Forestry Sciences; Springer: Dordrecht, The Netherland, 1982; Volume 1. [Google Scholar] [CrossRef]
- Santini, N.S.; Schmitz, N.; Lovelock, C.E. Variation in wood density and anatomy in a widespread mangrove species. Trees 2012, 26, 1555–1563. [Google Scholar] [CrossRef]
- Ellison, J.C. Factors Influencing Mangrove Ecosystems. In Mangroves: Ecology, Biodiversity and Management; Rastogi, R.P., Phulwaria, M., Gupta, D.K., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Mohammed, A.; Farrell, A.; Gobin, J.; Agard, J. Effects of Freshwater Flooding on Mangroves in the Caribbean Region; Department of Life Science, The University of the West Indies: St Augustine, Trinidad, 2014; Chapter 5; pp. 84–89. [Google Scholar]
- Kanai, H.; Tajima, M.; Sakai, A. Effects of salinity on the growth and survival of the seedlings of mangrove, Rhizophora stylosa. Int. J. Plant Soil Sci. 2014, 3, 879–893. [Google Scholar] [CrossRef]
- Parida, A.K.; Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees 2010, 24, 199–217. [Google Scholar] [CrossRef]
- Yáñez-Espinosa, L.; Terrazas, T.; López-Mata, L.; Valdez-Hernández, J.I. Wood variation in Laguncularia racemosa and its effect on fibre quality. Wood Sci. Technol. 2004, 38, 217–226. [Google Scholar] [CrossRef]
- Carlquist, S. Vessel grouping in dicotyledon wood. Aliso 1984, 10, 505–525. [Google Scholar] [CrossRef]
- Carlquist, S. Pit membrane remnants in perforation plates of primitive dicotyledons and their significance. Am. J. Bot. 1992, 79, 660–672. [Google Scholar] [CrossRef]
- Carlquist, S. Non-random vessel distribution in woods: Patterns, modes, diversity, correlations. Aliso 2009, 27, 39–58. [Google Scholar] [CrossRef]
- Meylan, B.A.; Butterfield, B.G. Occurrence of simple, multiple, and combination perforation plates in the vessels of New Zealand woods. N. Z. J. Bot. 1975, 13, 1–18. [Google Scholar] [CrossRef]
- Oskolski, A.A.; Jansen, S. Distribution of scalariform and simple perforation plates within the vessel network in secondary xylem of Araliaceae and its implications for wood evolution. Plant Syst. Evol. 2009, 278, 43–51. [Google Scholar] [CrossRef]
- Plavcová, L.; Olson, M.E.; Jandová, V.; Doležal, J. Parenchyma is not the sole site of storage: Storage in living fibres. IAWA J. 2023, 44, 465–476. [Google Scholar] [CrossRef]
- Pratt, R.B.; Castro, V.; Jacobsen, A.L. The functional significance of tracheids co-occurring with vessels in xylem of Eudicots suggests a role in embolism tolerance. IAWA J. 2023, 44, 477–494. [Google Scholar] [CrossRef]
- Echeverría, A.; Petrone-Mendoza, E.; Segovia-Rivas, A.; Figueroa-Abundiz, V.A.; Olson, M.E. The vessel wall thickness–vessel diameter relationship across woody angiosperms. Am. J. Bot. 2022, 109, 856–873. [Google Scholar] [CrossRef]
- Deng, C.Y.; Zheng, J.M.; Zhang, W.C.; Guo, S.Z.; Xue, Q.H.; Ye, L.Y.; Sun, J.W. Ecological wood anatomy of Rhizophora stylosa. Chin. J. Plant Ecol. 2015, 39, 604. [Google Scholar] [CrossRef]
- Zheng, D.; Martínez-Cabrera, H.I. Wood anatomical correlates with theoretical conductivity and wood density across China: Evolutionary evidence of the functional differentiation of axial and radial parenchyma. Ann. Bot. 2013, 112, 927–935. [Google Scholar] [CrossRef]
- Carlquist, S. Living cells in wood 3. overview; functional anatomy of the parenchyma network. Bot. Rev. 2018, 84, 242–294. [Google Scholar] [CrossRef]
- Carlquist, S. Living cells in wood. 1. Absence, scarcity and histology of axial parenchyma as keys to function. Bot. J. Linn. Soc. 2015, 177, 291–321. [Google Scholar] [CrossRef]
Site | Nombre | Description |
---|---|---|
Site 1 | Chomes | The mangrove area is 5241.16 ha, and the dry season is from December to April, with an average annual rainfall of 73.74 mm and a rainy season from May to November with a precipitation of 1046.73 mm/year. The average annual temperature varies from 21.03 to 36.42 °C and humidity varies from 60.30% to 85.26%. The salinity is 27.05 UPS measured at a depth of 40 cm. The inundation class is type I. This site presents the influence of running water by permanent rivers or streams. The mangroves are in the coastal line (Figure 1a) and are directly influenced by the tide, and the winds also directly affect them. |
Site 2 | RNVS Cipanci | The mangrove area is 861 ha, and the dry season is from December to April, with an average annual rainfall of 73.7 mm, a rainy season from May to November, and a precipitation of 1047 mm/year. The average annual temperature varies from 21.0 to 36.4 °C, and the humidity varies from 60.3% to 85.3%. The salinity is 38.6 UPS measured at a depth of 40 cm. The inundation class is type I. This site does not present influence of running water by permanent rivers or streams and is not influenced by the ocean tide. |
Site 3 | Río Seco Chacarita | The mangrove area is 5241 ha and the dry season lasts six months (December to April) with an average annual rainfall of 73.7 mm and a rainy season (May to November) with 1047 mm/year. The average annual temperature varies from 21.0 to 36.4 °C and humidity varies from 60.3% to 85.3%. The salinity is 18.95 UPS measured at a depth of 40 cm. The inundation class is type I. This site does not present any influence of running water by permanent rivers or streams and is not influenced by the ocean tide. |
Parameter | Species Effect | Site Effect | Interaction |
---|---|---|---|
Green moisture content | 61.64 ** | 0.88 NS | 1.86 NS |
Green density | 25.32 ** | 13.99 ** | 2.5 * |
Specify gravity | 109.93 ** | 18.43 ** | 3.17 ** |
Carbon content | 24.52 ** | 8.09 * | 1.83 NS |
Vessel diameter | 55.17 ** | 9.62 ** | 6.19 ** |
Length of vessel | 85.53 ** | 8.57 ** | 10.61 ** |
Frequency of vessel | 32.15 ** | 7.04 ** | 9.11 ** |
Length of fiber | 18.74 ** | 13.83 ** | 2.65 ** |
Diameter of fiber | 101.76 ** | 0.39 NS | 4.28 ** |
Diameter of lumen | 187.62 ** | 17.29 ** | 7.71 ** |
Wall cell thick | 119.34 ** | 11.58 ** | 7.31 ** |
Ray height | 76.66 ** | 2.00 NS | 3.83 ** |
Ray width cell | 278.22 ** | 183.60 ** | 120.41 ** |
Species | Site | DBH (cm) | Green MC (%) | Green Density (g/cm3) | Specify Gravity | Carbon Content (%) |
---|---|---|---|---|---|---|
Avicennia bicolor | 1 | 28.5B | 44.4A | 1.08A | 0.75A | 43.0A |
2 | 22.8B | 48.2A | 1.07A | 0.72A | 39.9B | |
3 | 43.0A | 48.8A | 1.07A | 0.72A | 42.3A | |
Avicennia germinans | 1 | 29.0B | 41.2A | 1.13A | 0.80A | 44.0A |
2 | 25.9B | 51.5A | 1.10A | 0.73A | 43.1A | |
3 | 38.7A | 53.9A | 1.04A | 0.67A | 42.3A | |
Laguncularia racemosa | 1 | 28.7A | 46.7A | 0.99A | 0.68A | 45.2A |
2 | 23.9A | 42.2A | 0.98A | 0.69A | 43.2B | |
3 | 20.7A | 45.8A | 0.78B | 0.53B | 43.7B | |
Pelliciera rhizophorae | 1 | 16.8A | 86.2A | 0.97A | 0.52A | 42.7A |
2 | 16.4A | 66.7A | 0.96A | 0.58A | 41.7A | |
3 | 30.5B | 74.2A | 0.96A | 0.55A | 42.5A | |
Rhizophora mangle | 1 | 25.8A | 27.1A | 1.14A | 0.90A | 42.9A |
2 | 24.4A | 22.4A | 1.11A | 0.90A | 43.2A | |
3 | 26.2A | 27.6A | 1.05A | 0.82B | 43.4A | |
Rhizophora racemosa | 1 | 30.7A | 26.0A | 1.12A | 0.89A | 42.4A |
2 | 26.9A | 28.8A | 1.14A | 0.88A | 43.3A | |
3 | 33.7A | 27.6A | 1.07B | 0.84B | 43.9A |
Species | Site | Vessel Characteristics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PA and VG | PF (Pores/mm2) | LV (µm) | DV (µm) | PP | Deposits | IVP | Vestured | VRP | Other | ||
Avicennia bicolor | 1 | 5–7–11 | 20.9A | 283.1A | 69.4A | 13 | - | 20–22 | - | 30 | - |
2 | 5–7–11 | 36.9B | 273.4A | 67.2A | 13 | - | 20–22 | - | 30 | - | |
3 | 5–7–11 | 18.7A | 258.4A | 63.9A | 13 | - | 20–22 | - | 30 | - | |
Avicennia germinans | 1 | 5–7–11 | 37.9B | 211.1A | 57.9B | 13 | - | 20–22 | - | 30 | - |
2 | 5–7 | 35.4B | 370.9B | 52.7B | 13 | - | 20–22 | - | 30 | - | |
3 | 5–7–11 | 24.2A | 390.9B | 71.4A | 13 | - | 20–22 | - | 30 | - | |
Laguncularia racemosa | 1 | 5 | 6.2A | 431.4A | 100.1B | 13 | + | 22–23 | + | 30 | - |
2 | 5 | 10.3B | 428.1A | 83.5A | 13 | - | 22–23 | + | 30 | - | |
3 | 5 | 8.4A | 383.5A | 102.6B | 13 | - | 22–23 | + | 30 | - | |
Pelliciera rhizophorae | 1 | 5–10 | 17.4A | 634.1A | 60.3A | 13 | - | 22 | - | 30–34 | - |
2 | 5–10 | 23.9B | 491.3B | 58.4A | 13 | - | 22 | - | 30 | - | |
3 | 5–10 | 40.6C | 432.5B | 56.6A | 13 | - | 22 | - | 30 | - | |
Rhizophora mangle | 1 | 5–10 | 24.5A | 554.2A | 55.4A | 15 | - | 20 | - | 31 | 35 |
2 | 5 | 17.0B | 572.3A | 74.3B | 15 | - | 20 | - | 31–32 | 35 | |
3 | 5 | 27.0A | 435.6B | 69.5B | 15–19 | - | 20 | - | 31–32 | 35 | |
Rhizophora racemosa | 1 | 5 | 21.5A | 519.2A | 71.4A | 15 | - | 20 | - | 31–32 | 35 |
2 | 5 | 13.3B | 588.1A | 65.8A | 15 | - | 20 | - | 31–32 | 35 | |
3 | 5 | 19.9A | 523.3A | 84.1B | 15 | - | 20 | - | 31–32 | 35 |
Species | Site | Fiber | Ray Parenchyma | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FL (µm) | FD (µm) | LD (µm) | WCT (µm) | RH (µm) | RW (µm) | RF (ray/mm) | RWC-RHC | CC | R(C) | Other | ||
Avicennia bicolor | 1 | 1068.3A | 19.1A | 6.1A | 6.5A | 491.4A | 35.2A | 26.0A | 97–102 | 105–106–108 | 137–138–141 | |
2 | 971.9B | 18.6A | 5.7A | 6.5A | 734.5B | 42.0A | 20.8A | 97–102 | 105–106–108 | 137–138–141 | ||
3 | 1002.8A | 17.3A | 5.8A | 5.7B | 606.7C | 60.7B | 20.8A | 97–98–102 | 105–106–108 | 137–138–141 | ||
Avicennia germinans | 1 | 1007.6A | 20.6A | 4.3A | 8.2A | 692.9A | 31.2A | 21.5A | 97–102 | 105–106–108 | 137–138–141 | |
2 | 879.7B | 17.6B | 5.8B | 5.9B | 496.9B | 32.3A | 25.6A | 97–102 | 105–106–108 | 137–138–141 | ||
3 | 823.3B | 18.7B | 6.0B | 6.3B | 599.3A | 25.8B | 21.7A | 97–102 | 105–106–108 | - | ||
Laguncularia racemosa | 1 | 856.4A | 20.2A | 12.2A | 4.0A | 268.2A | 21.6A | 33.6A | 96 | 109 | - | 113 |
2 | 878.4A | 22.0B | 7.8B | 7.1B | 231.0B | 17.5B | 30.3A | 96 | 109 | 137–138 | - | |
3 | 771.2A | 23.6B | 12.4A | 5.6C | 190.1C | 13.9C | 44.6B | 96 | 109 | 137–138 | 113 | |
Pelliciera rhizophorae | 1 | 1070.4A | 34.4A | 19.9A | 7.3A | 724.4A | 23.2B | 30.0A | 96 | 105 | 149 | 113? |
2 | 839.0B | 30.2B | 13.1B | 8.5B | 563.6B | 17.7C | 31.8A | 96 | 105 | 149 | - | |
3 | 743.9B | 31.2B | 16.4C | 7.4A | 732.9A | 27.1A | 29.9A | 96–97 | 105–109 | - | - | |
Rhizophora mangle | 1 | 1014.9A | 25.5A | 6.2A | 9.7A | 793.4A | 115.0A | 9.0A | 97–98–102 | 104–106–107 | 137–138 | 113? |
2 | 1060.6A | 26.3A | 4.5AB | 10.9A | 749.0A | 44.0B | 11.5B | 97–102 | 104–106 | 137–138 | - | |
3 | 1042.5A | 23.9A | 5.6A | 9.2A | 888.3A | 29.0C | 9.4A | 97–102 | 104–106 | 137–138 | - | |
Rhizophora racemosa | 1 | 1306.5A | 25.1B | 4.3A | 10.4A | 948.0A | 46.5A | 6.8A | 97–98–102 | 104–106–107 | 137–138 | 113? |
2 | 1044.8B | 29.4A | 4.5A | 12.4A | 851.9A | 45.3A | 8.7B | 97–98–102 | 104–106–107 | 137–138 | ||
3 | 1115.5B | 27.8A | 4.3A | 11.7A | 853.8A | 36.9B | 6.8A | 97–98–102 | 104–106 | 137–138 |
Species | Site | Axial Parenchyma | Other Features | ||||
---|---|---|---|---|---|---|---|
ATP | PTP | BP | Cell Type | AP(C) | |||
Avicennia bicolor | 1 | - | 78–79–84 | 85 | 92–93–94? | 141–154 | 133 |
2 | 76 | 78–79 | 85 | 92–93–94 | 141 | 133 | |
3 | 76 | 78–79 | 85 | 92–93–94 | 141 | 133 | |
Avicennia germinans | 1 | - | 78–79–84 | 85 | 92–93 | 141 | 133 |
2 | - | 78–79 | 85 | 92–93 | 141–154 | 133 | |
3 | - | 78–79–84 | 85 | 92–93 | 141–154 | 133 | |
Laguncularia racemosa | 1 | 76 | 79–81–83–84 | - | 93–94 | - | - |
2 | - | 81–83 | - | 92–93 | - | - | |
3 | - | 81–83 | - | 92–93–94 | - | - | |
Pelliciera rhizophorae | 1 | 76 | 78 | - | 91–92 | - | - |
2 | 76 | 78 | - | 92 | - | - | |
3 | 76 | 78 | - | 92 | - | - | |
Rhizophora mangle | 1 | - | 78? | - | 92–93? | - | - |
2 | - | 78? | - | * | - | - | |
3 | - | 78? | - | * | - | - | |
Rhizophora racemosa | 1 | - | 78? | - | * | - | - |
2 | 76 | 78? | - | * | - | - | |
3 | - | 78? | - | * | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya, R.; Tenorio, C.; Torres-Gómez, D.; Cifuentes-Jara, M. Variation in Annual Ring and Wood Anatomy of Six Tree Mangrove Species in the Nicoya Gulf of Costa Rica. Water 2024, 16, 3207. https://doi.org/10.3390/w16223207
Moya R, Tenorio C, Torres-Gómez D, Cifuentes-Jara M. Variation in Annual Ring and Wood Anatomy of Six Tree Mangrove Species in the Nicoya Gulf of Costa Rica. Water. 2024; 16(22):3207. https://doi.org/10.3390/w16223207
Chicago/Turabian StyleMoya, Róger, Carolina Tenorio, Danilo Torres-Gómez, and Miguel Cifuentes-Jara. 2024. "Variation in Annual Ring and Wood Anatomy of Six Tree Mangrove Species in the Nicoya Gulf of Costa Rica" Water 16, no. 22: 3207. https://doi.org/10.3390/w16223207
APA StyleMoya, R., Tenorio, C., Torres-Gómez, D., & Cifuentes-Jara, M. (2024). Variation in Annual Ring and Wood Anatomy of Six Tree Mangrove Species in the Nicoya Gulf of Costa Rica. Water, 16(22), 3207. https://doi.org/10.3390/w16223207