Distribution and Affecting Factors of Aragonite Saturation in the Northern South China Sea in Summer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
3. Results
3.1. Hydrological Data and DO%
3.2. Carbonate System Parameters
4. Discussion
4.1. Effects of Pearl River Freshwater Input on High Ωarag Values in the Nearshore Area of Northern South China Sea
4.2. Dynamic Mechanism of Low Ωarag in Subsurface Water
4.3. Aragonite Saturation States of the Northern South China Sea in 2100
5. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.S.; Wallace, D.W.R.; Tilbrook, B.; et al. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, K.; Wickett, M.E. Oceanography: Anthropogenic carbon and ocean pH. Nature 2003, 425, 365. [Google Scholar] [CrossRef] [PubMed]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F.; et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Böök, I.M.; Krieger, E.C.; Phillips, N.E.; Michael, K.P.; Bell, J.J.; Dillon, W.D.N.; Cornwall, C.E. Effects of ocean acidification on the interaction between calcifying oysters (Ostrea chilensis) and bioeroding sponges (Cliona sp.). Front. Mar. Sci. 2024, 11, 1444863. [Google Scholar] [CrossRef]
- Tomasetti, S.J.; Doall, M.H.; Hallinan, B.D.; Kraemer, J.R.; Gobler, C.J. Oyster reefs’ control of carbonate chemistry—Implications for oyster reef restoration in estuaries subject to coastal ocean acidification. Glob. Change Biol. 2023, 29, 6572–6590. [Google Scholar] [CrossRef]
- Hamilton, S.L.; Kashef, N.S.; Stafford, D.M.; Mattiasen, E.G.; Kapphahn, L.A.; Logan, C.A.; Bjorkstedt, E.P.; Sogard, S.M. Ocean acidification and hypoxia can have opposite effects on rockfish otolith growth. J. Exp. Mar. Biol. Ecol. 2019, 521, 151245. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jeong, C.B.; Wang, M.; Hagiwara, A.; Lee, J.S. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. Mar. Pollut. Bull. 2020, 153, 111006. [Google Scholar] [CrossRef]
- Morse, J.W.; Arvidson, R.S.; Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 2007, 107, 342–381. [Google Scholar] [CrossRef]
- Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am. J. Sci. 1983, 283, 780–799. [Google Scholar] [CrossRef]
- Yang, W.; Guo, X.; Cao, Z.; Su, J.; Guo, L.; Wang, L.; Xu, Y.; Huang, T.; Li, Y.; Xu, Y.; et al. Carbonate dynamics in a tropical coastal system in the South China Sea featuring upwelling, river plumes and submarine groundwater discharge. Sci. China Earth Sci. 2022, 65, 2267–2284. [Google Scholar] [CrossRef]
- Gomez, F.A.; Wanninkhof, R.; Barbero, L.; Lee, S. Mississippi River Chemistry Impacts on the Interannual Variability of Aragonite Saturation State in the Northern Gulf of Mexico. J. Geophys. Res. Ocean. 2024, 129, e2023JC020436. [Google Scholar] [CrossRef]
- Feely, R.A.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, V.J.; Millero, F.J. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 2004, 305, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Feely, R.A.; Doney, S.C.; Cooley, S.R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 2009, 22, 36–47. [Google Scholar] [CrossRef]
- Jiménez-López, D.; Ortega, T.; Sierra, A.; Ponce, R.; Gómez-Parra, A.; Forja, J. Aragonite saturation state in a continental shelf (Gulf of Cádiz, SW Iberian Peninsula): Evidences of acidification in the coastal area. Sci. Total. Environ. 2021, 787, 147858. [Google Scholar] [CrossRef]
- Sun, H.; Gao, Z.Y.; Zhao, D.R.; Sun, X.W.; Chen, L.Q. Spatial variability of summertime aragonite saturation states and its influencing factor in the Bering Sea. Adv. Clim. Chang. Res. 2021, 12, 508–516. [Google Scholar] [CrossRef]
- Barton, A.; Hales, B.; Waldbusser, G.G.; Langdon, C.; Feely, R.A. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr. 2012, 57, 698–710. [Google Scholar] [CrossRef]
- Cotovicz, L.C.; Knoppers, B.A.; Brandini, N.; Poirier, D.; Santos, S.J.C.; Abril, G. Aragonite saturation state in a tropical coastal embayment dominated by phytoplankton blooms (Guanabara Bay—Brazil). Mar. Pollut. Bull. 2018, 129, 729–739. [Google Scholar] [CrossRef]
- Li, C.L.; Zhai, W.D. Decomposing monthly declines in subsurface-water pH and aragonite saturation state from spring to autumn in the North Yellow Sea. Cont. Shelf Res. 2018, 185, 37–50. [Google Scholar] [CrossRef]
- Jones, E.M.; Chierici, M.; Fransson, A.; Assmann, K.M.; Renner, A.H.; Lødemel, H.H. Inorganic carbon and nutrient dynamics in the marginal ice zone of the Barents Sea: Seasonality and implications for ocean acidification. Prog. Oceanogr. 2023, 219, 103131. [Google Scholar] [CrossRef]
- Zhai, W.D.; Zang, K.P.; Huo, C.; Zheng, N.; Xu, X.-M. Occurrence of aragonite corrosive water in the North Yellow Sea, near the Yalu River estuary, during a summer flood. Estuar. Coast. Shelf Sci. 2015, 166, 199–208. [Google Scholar] [CrossRef]
- Gómez, C.E.; Acosta-Chaparro, A.; Bernal, C.A.; Gómez-López, D.I.; Navas-Camacho, R.; Alonso, D. Seasonal Upwelling Conditions Modulate the Calcification Response of a Tropical Scleractinian Coral. Oceans 2023, 4, 170–184. [Google Scholar] [CrossRef]
- Wong, G.T.; Pan, X.; Li, K.Y.; Shiah, F.K.; Ho, T.Y.; Guo, X. Hydrography and nutrient dynamics in the northern South China sea Shelf-sea (NoSoCS). Deep-Sea Res. Pt II 2015, 117, 23–40. [Google Scholar] [CrossRef]
- Mehrbach, C.; Culberson, C.H.; Hawley, J.E.; Pytkowicx, R.M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 1973, 18, 897–907. [Google Scholar] [CrossRef]
- Dickson, A.; Millero, F. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap. 2003, 34, 1733–1743. [Google Scholar] [CrossRef]
- Cai, W.J.; Guo, X.; Chen, C.T.A.; Dai, M.; Zhang, L.; Zhai, W.; Lohrenz, S.E.; Yin, K.; Harrison, P.J.; Wang, Y. A comparative overview of weathering intensity and HCO3− flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont. Shelf Res. 2008, 28, 1538–1549. [Google Scholar] [CrossRef]
- Zhai, W.; Dai, M.; Cai, W.-J.; Wang, Y.; Wang, Z. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: The Pearl River estuary, China. Mar. Chem. 2005, 93, 21–32. [Google Scholar] [CrossRef]
- Dai, M.; Wang, L.; Guo, X.; Zhai, W.; Li, Q.; He, B.; Kao, S.-J. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: The Pearl River Estuary, China. Biogeosci. Discuss. 2008, 5, 1227–1244. [Google Scholar] [CrossRef]
- Redfield, A.C. The influence of organisms on the composition of seawater. Sea 1963, 2, 26–77. [Google Scholar]
- Cao, Z.; Dai, M.; Zheng, N.; Wang, D.; Li, Q.; Zhai, W.; Meng, F.; Gan, J. Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. J. Geophys. Res. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Chou, W.C.; Gong, G.C.; Hung, C.C.; Wu, Y.H. Carbonate mineral saturation states in the East China Sea: Present conditions and future scenarios. Biogeosciences 2013, 10, 6453–6467. [Google Scholar] [CrossRef]
- Xu, X.; Zang, K.; Huo, C.; Zheng, N.; Zhao, H.; Wang, J.; Sun, B. Aragonite saturation state and dynamic mechanism in the southern Yellow Sea, China. Mar. Pollut. Bull. 2016, 109, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, J.L.; Gruber, N. Ocean Biogeochemical Dynamics; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Kosugi, M.Y.K.N.; Kanda, A.K.M.I. Calcium carbonate saturation and ocean acidification in Tokyo Bay, Japan. J. Oceanog. 2015, 71, 427–439. [Google Scholar]
- Xu, X.; Zheng, N.; Zang, K.; Huo, C.; Zhao, H.; Mu, J.; Wang, J.; Sun, B. Aragonite saturation state variation and control in the river-dominated marginal BoHai and Yellow seas of China during summer. Mar. Pollut. Bull. 2018, 135, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, J.; Green, M.; Hunt, C.; Campbell, J. Coastal acidification by rivers: A threat to shellfish? Eos Trans. Am. Geophys. Union 2008, 89, 513. [Google Scholar] [CrossRef]
- Martinez, A.; Crook, E.D.; Barshis, D.J.; Potts, D.C.; Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A. Species-specific calcification response of Caribbean corals after 2-year transplantation to a low aragonite saturation submarine spring. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190572. [Google Scholar] [CrossRef]
- Yu, K. Coral reefs in the South China Sea: Their response to and records on past environmental changes. Sci. China Earth Sci. 2012, 55, 1217–1229. [Google Scholar] [CrossRef]
- Cai, W.J.; Hu, X.; Huang, W.J.; Murrell, M.C.; Lehrter, J.C.; Lohrenz, S.E.; Chou, W.C.; Zhai, W.D.; Hollibaugh, J.T.; Wang, Y.; et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 2011, 4, 766–770. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, P.; Wang, Z.; Lv, H.; Chen, F.; Zhang, X.; Wang, J. Distribution and Affecting Factors of Aragonite Saturation in the Northern South China Sea in Summer. Water 2024, 16, 3614. https://doi.org/10.3390/w16243614
Han P, Wang Z, Lv H, Chen F, Zhang X, Wang J. Distribution and Affecting Factors of Aragonite Saturation in the Northern South China Sea in Summer. Water. 2024; 16(24):3614. https://doi.org/10.3390/w16243614
Chicago/Turabian StyleHan, Ping, Zhaojun Wang, Honggang Lv, Feiyong Chen, Xuewan Zhang, and Jin Wang. 2024. "Distribution and Affecting Factors of Aragonite Saturation in the Northern South China Sea in Summer" Water 16, no. 24: 3614. https://doi.org/10.3390/w16243614
APA StyleHan, P., Wang, Z., Lv, H., Chen, F., Zhang, X., & Wang, J. (2024). Distribution and Affecting Factors of Aragonite Saturation in the Northern South China Sea in Summer. Water, 16(24), 3614. https://doi.org/10.3390/w16243614