Optimization of a Chlorella vulgaris-Based Carbon Sequestration Technique Using an Alkaline Medium of Wood Biomass Ash Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Applied Strain of Algae and the Culturing Conditions
2.2. Extraction of Wood Biomass Ash
2.3. Model Experiment for the Optimization of Wood Biomass Ash Extract
2.4. Experiment for the Optimization of the Initial Algal Biomass and Nutrients
2.5. Statistical Analysis
3. Results
3.1. Results of the Wood Biomass Ash Extract Optimization
3.2. Results for the Initial Algal Biomass and Nutrient Optimization
3.3. Results for Biomass Growth in the Differently Inoculated and Nutrient-Supplied Treatments
3.4. Observed Changes in the Nutrient Content of the Media
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef] [PubMed]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quere, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- National Oceanic and Atmospheric Administration. During a Year of Extremes, Carbon Dioxide Levels Surge Faster than Ever. 2024. Available online: https://www.noaa.gov/news-release/during-year-of-extremes-carbon-dioxide-levels-surge-faster-than-ever (accessed on 6 November 2024).
- Inman, M. Carbon is forever. Nat. Clim. Change 2008, 1, 156–158. [Google Scholar] [CrossRef]
- Raupach, M.R.; Gloor, M.; Sarmiento, J.L.; Canadell, J.G.; Frölicher, T.L.; Gasser, T.; Trudinger, C.M. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 2014, 11, 3453–3475. [Google Scholar] [CrossRef]
- Watson, A.J.; Schuster, U.; Shutler, J.D.; Holding, T.; Ashton, I.G.; Landschützer, P.; Goddijn-Murphy, L. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat. Commun. 2020, 11, 4422. [Google Scholar] [CrossRef] [PubMed]
- Duffy, K.A.; Schwalm, C.R.; Arcus, V.L.; Koch, G.W.; Liang, L.L.; Schipper, L.A. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 2021, 7, eaay1052. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.P.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Friedlingstein, P.; Ilyina, T.; Tans, P. Towards real-time verification of CO2 emissions. Nat. Clim. Change 2017, 7, 848–850. [Google Scholar] [CrossRef]
- Koerner, B.; Klopatek, J. Anthropogenic and natural CO2 emission sources in an arid urban environment. Environ. Pollut. 2002, 116, 45–51. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil. J. Environ. Stud. Sci. 2022, 12, 794–814. [Google Scholar] [CrossRef]
- Lau, L.C.; Lee, K.T.; Mohamed, A.R. Global warming mitigation and renewable energy policy development from the Kyoto protocol to the Copenhagen accord—A comment. Renew. Sustain. Energy Rev. 2012, 16, 5280–5284. [Google Scholar] [CrossRef]
- European Parliament and of the Council. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). OJ EU 2021, L 243, 1–17. [Google Scholar]
- STATISTA. Annual Carbon Dioxide (CO2) Emissions Worldwide from 1940 to 2023. 2023. Available online: https://www.statista.com/statistics/276629/global-co2-emissions/ (accessed on 6 November 2024).
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; Van Aardenne, J.A.; Janssens-Maenhout, G. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4. 3.2. Earth Syst. Sci. Data 2018, 10, 1987–2013. [Google Scholar] [CrossRef]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Schellnhuber, H.J. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.; Abernethy, S.; Andrew, R.M.; Peters, G.P. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Сlim. Сhange 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Ray, R.L.; Singh, V.P.; Singh, S.K.; Acharya, B.S.; He, Y. What is the impact of COVID-19 pandemic on global carbon emissions? Sci. Total Environ. 2022, 816, 151503. [Google Scholar] [CrossRef]
- Rivas, S.; Urraca, R.; Bertoldi, P.; Thiel, C. Towards the EU Green Deal: Local key factors to achieve ambitious 2030 climate targets. J. Clean. Prod. 2021, 320, 128878. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J.; Bindzár, P. Assessing the level of energy and climate sustainability in the European Union countries in the context of the European green deal strategy and agenda 2030. Energies 2021, 14, 1767. [Google Scholar] [CrossRef]
- Zlateva, P.; Terziev, A.; Mileva, N.M. Sustainable solutions for energy production from biomass materials. Sustainability 2024, 16, 7732. [Google Scholar] [CrossRef]
- Ali, S.; Akter, S.; Ymeri, P.; Fogarassy, C. How the use of biomass for green energy and waste incineration practice will affect GDP growth in the less developed countries of the EU (A case study with Visegrad and Balkan countries). Energies 2022, 15, 2308. [Google Scholar] [CrossRef]
- Kożuch, A.; Cywicka, D.; Adamowicz, K.; Wieruszewski, M.; Wysocka-Fijorek, E.; Kiełbasa, P. The use of forest biomass for energy purposes in selected European countries. Energies 2023, 16, 5776. [Google Scholar] [CrossRef]
- Odzijewicz, J.I.; Wołejko, E.; Wydro, U.; Wasil, M.; Jabłońska-Trypuć, A. Utilization of ashes from biomass combustion. Energies 2022, 15, 9653. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Gierke, J.S.; Kawatra, S.K.; Eisele, T.C.; Sutter, L.L. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ. Sci. Technol. 2009, 43, 1986–1992. [Google Scholar] [CrossRef]
- Li, L.; Yu, H.; Puxty, G.; Zhou, S.; Conway, W.; Feron, P. Integrated CO2 capture and mineralization based on monoethanolamine and Lime Kiln Dust. Ind. Eng. Chem. Res. 2024, 63, 16019–16028. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Deja, J. Potential application of cement kiln dust in carbon capture, utilisation, and storage technology. Energy 2024, 292, 130412. [Google Scholar] [CrossRef]
- Koch, R.; Sailer, G.; Paczkowski, S.; Pelz, S.; Poetsch, J.; Müller, J. Lab-scale carbonation of wood ash for CO2-sequestration. Energies 2021, 14, 7371. [Google Scholar] [CrossRef]
- Adamczyk, J.; Smołka-Danielowska, D.; Krzątała, A.; Krzykawski, T. Chemical and mineral composition of bottom ash from agri-food biomass produced under low combustion conditions. Int. J. Environ. Sci. Technol. 2024, 21, 4025–4036. [Google Scholar] [CrossRef]
- Shiraiwa, Y.; Goyal, A.; Tolbert, N.E. Alkalization of the medium by unicellular green algae during uptake dissolved inorganic carbon. Plant Cell Physiol. 1993, 34, 649–657. [Google Scholar] [CrossRef]
- Brown, L.M.; Zeiler, K.G. Aquatic biomass and carbon dioxide trapping. Energy Convers. Manag. 1993, 34, 1005–1013. [Google Scholar] [CrossRef]
- Goldman, J.C.; Porcella, D.B.; Joe Middlebrooks, E.; Toerien, D.F. The effect of carbon on algal growth -its relationship to eutrophication. Water Res. 1972, 6, 637–679. [Google Scholar] [CrossRef]
- Becker, E.W. Microalgae: Biotechnology and Microbiology; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Ho, S.; Chen, C.; Lee, D.; Chang, J. Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnol. Adv. 2011, 29, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Vunjak-Novakovic, G.; Kim, Y.; Wu, X.; Berzin, I.; Merchuk, J.C. Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies. Ind. Eng. Chem. Res. 2005, 44, 6154–6163. [Google Scholar] [CrossRef]
- Yoo, C.; Jun, S.; Lee, J.; Ahn, C.; Oh, H. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 2010, 101, S71–S74. [Google Scholar] [CrossRef]
- Kao, C.; Chiu, S.; Huang, T.; Dai, L.; Hsu, L.; Lin, C. Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl. Energy 2012, 93, 176–183. [Google Scholar] [CrossRef]
- Mann, G.; Schlegel, M.; Schumann, R.; Sakalauskas, A. Biogas-conditioning with microalgae. Agron. Res. 2009, 7, 33–38. [Google Scholar]
- Fekete, G. Impact of Biogas Injection on Growth of Algal Biomass. Master’s Thesis, Cranfield University, Cranfield, UK, 2013. [Google Scholar]
- Chunzhuk, E.A.; Grigorenko, A.V.; Kiseleva, S.V.; Chernova, N.I.; Ryndin, K.G.; Kumar, V.; Vlaskin, M.S. The influence of elevated CO2 concentrations on the growth of various microalgae strains. Plants 2023, 12, 2470. [Google Scholar] [CrossRef] [PubMed]
- Azov, Y. Effect of pH on inorganic carbon uptake in algal cultures. Appl. Environ. Microbiol. 1982, 43, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Pesheva, I.; Kodama, M.; Dionisio-Sese, M.L.; Miyachi, S. Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 conditions. Plant Cell Physiol. 1994, 35, 379–387. [Google Scholar]
- Ratomski, P.; Hawrot-Paw, M.; Koniuszy, A. Utilisation of CO2 from sodium bicarbonate to produce Chlorella vulgaris biomass in tubular photobioreactors for biofuel purposes. Sustainability 2021, 13, 9118. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Wu, N.; Lan, C.Q. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 2008, 79, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.; Kao, C.; Tsai, M.; Ong, S.; Chen, C.; Lin, C. Lipid accumulation and CO2 utilization of Nannochloropsis oculate in response to CO2 aeration. Bioresour. Technol. 2009, 100, 833–838. [Google Scholar] [CrossRef]
- Nielsen, E.S.; Willemoes, M. The influence of CO2 concentration and pH on two Chlorella species grown in continuous light. Physiol. Plant. 1966, 19, 279–293. [Google Scholar] [CrossRef]
- de Morais, M.G.; Costa, J.A.V. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett. 2007, 29, 1349–1352. [Google Scholar] [CrossRef]
- Heubeck, S.; Craggs, R.; Shilton, A. Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci. Technol. 2007, 55, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, Y.; Cheng, L.; Zhang, L.; Tang, D.; Chen, H. Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem. Eng. Technol. 2007, 30, 1094–1099. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Tohidfar, M.; Jouzani, G.S.; Safarnejad, M.; Pazouki, M. Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran. Renew. Sustain. Energy Rev. 2011, 15, 1918–1927. [Google Scholar] [CrossRef]
- Demirbas, A. Current technologies for the thermo-conversion of biomass into fuels and chemicals. Energy Sources 2004, 26, 715–730. [Google Scholar] [CrossRef]
- Bonenfant, D.; Mimeault, M.; Hausler, R. Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution. Ind. Eng. Chem. Res. 2003, 42, 3179–3184. [Google Scholar] [CrossRef]
- Fekete, G. Industrial use of microalgal biomass. Biohulladék 2017, 11, 13–19. (In Hungarian) [Google Scholar]
- Dragone, G.; Fernandes, B.; Vicente, A.A.; Teixeira, J.A. Third generation biofuels from microalgae. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2010; Volume 2, pp. 1355–1366. [Google Scholar]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Ahmad, A.; Hassan, S.W.; Banat, F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered 2022, 13, 9521–9547. [Google Scholar] [CrossRef] [PubMed]
- Farrelly, D.J.; Everard, C.D.; Fagan, C.C.; McDonnell, K.P. Carbon sequestration and the role of biological carbon mitigation: A review. Renew. Sustain. Energy Rev. 2013, 21, 712–727. [Google Scholar] [CrossRef]
- Greene, C.H.; Huntley, M.E.; Archibald, I.; Gerber, L.N.; Sills, D.L.; Granados, J.; Tester, J.W.; Beal, C.M.; Walsh, M.J.; Bidigare, R.R.; et al. Marine microalgae: Climate, energy, and food security from the sea. Oceanography 2016, 29, 10–15. [Google Scholar] [CrossRef]
- Fekete, G.; Sebők, A.; Klátyik, S.; Varga, Z.I.; Grósz, J.; Czinkota, I.; Székács, A.; Aleksza, L. Comparative analysis of laboratory-based and spectroscopic methods used to estimate the algal density of Chlorella vulgaris. Microorganisms 2024, 12, 1050. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.J.; Harrison, S.T. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Psychol. 2009, 21, 493–507. [Google Scholar] [CrossRef]
- Ördög, V. Contributions to the standardization of laboratory alga tests. Bot. Közlemények—Bot. Publ. 1981, 68, 85–93. [Google Scholar]
- Mokka. Szakolyi Pernye. 2018. Available online: https://mokkka.hu/node/1021 (accessed on 6 November 2024). (In Hungarian).
- Klebercz, O.; Böröndi, T.; Magos, Z.; Feigl, V.; Uzinger, N.; Gruiz, K. Session: E. 3-Sustainable Use of the Subsurface Scale-Up Experiments for Composing Cultivation Media from Degraded Soils and Waste Amendments. 2013. Available online: https://xn--krinfo-wxa.hu/sites/default/files/2345paper_long._Klebercz.pdf (accessed on 6 November 2024).
- Mirzahosseini, A.; Noszál, B. Species-specific standard redox potential of thiol-disulfide systems: A key parameter to develop agents against oxidative stress. Sci. Rep. 2016, 6, 37596. [Google Scholar] [CrossRef]
- Johnson, K.M.; Sieburth, J.M.; leB Williams, P.J.; Brändström, L. Coulometric total carbon dioxide analysis for marine studies: Automation and calibration. Mar. Chem. 1987, 21, 117–133. [Google Scholar] [CrossRef]
- Strotmann, U.; Reuschenbach, P.; Schwarz, H.; Pagga, U. Development and evaluation of an online CO2 evolution test and a multicomponent biodegradation test system. Appl. Environ. Microbiol. 2004, 70, 4621–4628. [Google Scholar] [CrossRef]
- MSZ 08-0206-2:1978; A talaj egyes kémiai tulajdonságainak vizsgálata. Laboratóriumi vizsgálatok. (pH-érték, szódában kifejezett fenolftalein lúgosság, vízben oldható összes só, hidrolitos (yˇ1^-érték) és kicserélődési aciditás (yˇ2^-érték)). Magyar Szabványügyi Testület: Budapest, Hungary, 1978. (In Hungarian)
- Kádár, I. Kármentesítési Kézikönyv 2. A Szennyezett Talajok Vizsgálatáról; Környezetvédelmi Minisztérium: Budapest, Hungary, 1998. (In Hungarian) [Google Scholar]
- Filep, T.; Rékási, M. Factors controlling dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and DOC/DON ratio in arable soils based on a dataset from Hungary. Geoderma 2011, 162, 312–318. [Google Scholar] [CrossRef]
- Parnas, J.K.; Wagner, R. Über die Ausführung von Bestimmungen kleiner Stickstoffmengen nach KJELDAHL. Biochem. Z. 1921, 125, 253. [Google Scholar] [CrossRef]
- Amery, F.; Vandecasteele, B.; D’Hose, T.; Nawara, S.; Elsen, A.; Odeurs, W.; Vandendriessche, H.; Arlotti, D.; Mcgrath, S.P.; Cougnon, M.; et al. Dynamics of soil phosphorus measured by ammonium lactate extraction as a function of the soil phosphorus balance and soil properties. Geoderma. 2021, 385, 114855. [Google Scholar] [CrossRef]
- Gerchev, G.; Mihaylova, G. Milk yield and chemical composition of sheep milk in Srednostaroplaninska and Tetevenska breeds. Biotechnol. Anim. Husb. 2012, 28, 241–251. [Google Scholar] [CrossRef]
- Koçer, A.T.; İnan, B.; Özçimen, D.; Gökalp, İ. A study of microalgae cultivation in hydrothermal carbonization process water: Nutrient recycling, characterization and process design. Environ. Technol. Innov. 2023, 30, 103048. [Google Scholar] [CrossRef]
- Algae Research and Supply. Measuring Growth. 2024. Available online: https://algaeresearchsupply.com/pages/measuring-growth (accessed on 6 November 2024).
- Adamec, L.; Ondok, J.P. Water alkalization due to photosynthesis of aquatic plants: The dependence on total alkalinity. Aquat. Bot. 1992, 43, 93–98. [Google Scholar] [CrossRef]
- Kuo, C.M.; Lin, T.H.; Yang, Y.C.; Zhang, W.X.; Lai, J.T.; Wu, H.T.; Chang, J.S.; Lin, C.S. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency. Bioresour. Technol. 2017, 244, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Zerveas, S.; Mente, M.S.; Tsakiri, D.; Kotzabasis, K. Microalgal photosynthesis induces alkalization of aquatic environment as a result of H+ uptake independently from CO2 concentration–New perspectives for environmental applications. J. Environ. Manag. 2021, 289, 112546. [Google Scholar] [CrossRef]
- Ihnken, S.; Beardall, J.; Kromkamp, J.C.; Serrano, C.G.; Torres, M.A.; Masojídek, J.; Malpartida, I.; Abdala, R.; Gil Jerez, C.; Malapascua, J.R.F.; et al. Light acclimation and pH perturbations affect photosynthetic performance in Chlorella mass culture. Aquat. Biol. 2014, 22, 95–110. [Google Scholar] [CrossRef]
- Andersen, R.A. Algal Culturing Techniques; Elsevier Academic Press: Cambridge, UK, 2005; Volume 578. [Google Scholar]
- Montemezzani, V.; Duggan, I.C.; Hogg, I.D.; Craggs, R.J. A review of potential methods for zooplankton control in wastewater treatment High Rate Algal Ponds and algal production raceways. Algal Res. 2015, 11, 211–226. [Google Scholar] [CrossRef]
- Barker, H.A. Photosynthesis in diatoms. Arch. Microbiol. 1935, 6, 141–156. [Google Scholar] [CrossRef]
- Piorreck, M.; Baasch, K.H.; Pohl, P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 1984, 23, 207–216. [Google Scholar] [CrossRef]
- Schindler, D.W. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 1974, 184, 897–899. [Google Scholar] [CrossRef]
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Mandalam, R.K.; Palsson, B. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol. Bioeng. 1998, 59, 605–611. [Google Scholar] [CrossRef]
- Tyrrell, T. Redfield Ratio. In Encyclopedia of Ocean Sciences; Steele, J.H., Thorpe, A.A., Turekian, K.K., Eds.; Elsevier Academic Press: Cambridge, UK, 2001; pp. 2377–2387. [Google Scholar]
- Matos, Â.P.; Ferreira, W.B.; Morioka, L.R.I.; Moecke, E.H.S.; França, K.B.; Sant’Anna, E.S. Cultivation of Chlorella vulgaris in medium supplemented with desalination concentrate grown in a pilot-scale open raceway. Braz. J. Chem. Eng. 2018, 35, 1183–1192. [Google Scholar] [CrossRef]
- Huang, Y.; Xiong, W.; Liao, Q.; Fu, Q.; Xia, A.; Zhu, X.; Sun, Y. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide. Bioresour. Technol. 2016, 222, 367–373. [Google Scholar] [CrossRef]
- Ramírez-López, C.; Perales-Vela, H.V.; Fernández-Linares, L. Biomass and lipid production from Chlorella vulgaris UTEX 26 cultivated in 2 m3 raceway ponds under semicontinuous mode during the spring season. Bioresour. Technol. 2019, 274, 252–260. [Google Scholar] [CrossRef]
- Melo, M.; Fernandes, S.; Caetano, N.; Borges, M.T. Chlorella vulgaris (SAG 211-12) biofilm formation capacity and proposal of a rotating flat plate photobioreactor for more sustainable biomass production. J. Appl. Phycol. 2018, 30, 887–899. [Google Scholar] [CrossRef]
- Valdovinos-García, E.M.; Petriz-Prieto, M.A.; Olán-Acosta, M.D.L.Á.; Barajas-Fernández, J.; Guzmán-López, A.; Bravo-Sánchez, M.G. Production of microalgal biomass in photobioreactors as feedstock for bioenergy and other uses: A techno-economic study of harvesting stage. Appl. Sci. 2021, 11, 4386. [Google Scholar] [CrossRef]
- Ammar, S.H. Cultivation of microalgae Chlorella vulgaris in airlift photobioreactor for biomass production using commercial NPK nutrients. Khwarizmi Eng. J. 2016, 12, 90–99. [Google Scholar]
- Ren, H.; Tuo, J.; Addy, M.M.; Zhang, R.; Lu, Q.; Anderson, E.; Chen, P.; Ruan, R. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresour. Technol. 2017, 245, 1130–1138. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Lozano, P.; Adjé, F.; Ouattara, A.; Vian, M.A.; Tranchant, C.; Lozano, Y. Effects of temperature and other operational parameters on Chlorella vulgaris mass cultivation in a simple and low-cost column photobioreactor. Appl. Biochem. Biotechnol. 2015, 177, 389–406. [Google Scholar] [CrossRef]
- Razzak, S.A.; Ali, S.A.M.; Hossain, M.M.; Mouanda, A.N. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis. Bioprocess Biosyst. Eng. 2016, 39, 1651–1658. [Google Scholar] [CrossRef]
- Ashour, M.; Mansour, A.T.; Alkhamis, Y.A.; Elshobary, M. Usage of Chlorella and diverse microalgae for CO2 capture-towards a bioenergy revolution. Front. Bioeng. Biotechnol. 2024, 12, 1387519. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.X.; Huang, Y.; Fu, Q.; Liao, Q.; Zhu, X. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresour. Technol. 2016, 206, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Wen, X.; Geng, Y.; Ouyang, Z.; Luo, L.; Li, Y. Growth rate and biomass productivity of Chlorella as affected by culture depth and cell density in an open circular photobioreactor. J. Microbiol. Biotechnol. 2013, 23, 539–544. [Google Scholar] [CrossRef]
- Je, S.; Yamaoka, Y. Biotechnological approaches for biomass and lipid production using microalgae Chlorella and its future perspectives. J. Microbiol. Biotechnol. 2022, 32, 1357. [Google Scholar] [CrossRef]
- Kong, W.; Kong, J.; Ma, J.; Lyu, H.; Feng, S.; Wang, Z.; Yuan, P.; Shen, B. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO2 fixation simultaneously. J. Environ. Manag. 2021, 284, 112070. [Google Scholar] [CrossRef] [PubMed]
- James, C.M.; Al-Khars, A.M. An intensive continuous culture system using tubular photobio-reactors for producing microalgae. Aquaculture 1990, 87, 381–393. [Google Scholar] [CrossRef]
- Bai, A.; Popp, J.; Pető, K.; Szőke, I.; Harangi-Rákos, M.; Gabnai, Z. The significance of forests and algae in CO2 balance: A Hungarian case study. Sustainability 2017, 9, 857. [Google Scholar] [CrossRef]
- Narala, R.R.; Garg, S.; Sharma, K.K.; Thomas-Hall, S.R.; Deme, M.; Li, Y.; Schenk, P.M. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front. Energy Res. 2016, 4, 29. [Google Scholar] [CrossRef]
- Abou-Shanab, R. Green renewable Energy for Sustainable socio-economic development. In Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3–5 September 2015; pp. 3–5. [Google Scholar]
- Bošnjaković, M.; Sinaga, N. The perspective of large-scale production of algae biodiesel. Appl. Sci. 2020, 10, 8181. [Google Scholar] [CrossRef]
- Egbo, M.K.; Okoani, A.O.; Okoh, I.E. Photobioreactors for microalgae cultivation—An overview. Int. J. Sci. Eng. Res. 2018, 9, 65–74. [Google Scholar]
Element | Concentration (mg L−1) |
---|---|
K | 2233.23 ± 67.18 |
Ca | 546.57 ± 34.53 |
Al | 4.30 ± 1.05 |
Fe | 1.15 ± 0.28 |
Zn | 0.10 ± 0.04 |
Cu | 0.06 ± 0.01 |
Treatment | WBA Extract 1 (mL L−1) | Algae Broth 2 (g L−1) | BDW 3 (mL) |
---|---|---|---|
blank | - | 1.87 | 500 |
0% | - | 1.87 | 500 |
10% | 100 | 1.87 | 450 |
25% | 250 | 1.87 | 375 |
50% | 500 | 1.87 | 250 |
Treatment | WBA Extract 1 (mL L−1) | Algae (mL L−1) | Algae (v/v %) | Algae Broth 2 (g L−1) | Algae Broth % 3 |
---|---|---|---|---|---|
blank | 0 | 20 | 2 | 0 | 0 |
A2N0 | 100 | 20 | 2 | 0 | 0 |
A2N100 | 100 | 20 | 2 | 1.87 | 100 |
A5N50 | 100 | 50 | 5 | 0.94 | 50 |
A8N0 | 100 | 80 | 8 | 0 | 0 |
A8N100 | 100 | 80 | 8 | 1.87 | 100 |
Treatment | Chi2 1 | R2 2 | A1 3 | A2 4 | x0 5 | dx 6 |
---|---|---|---|---|---|---|
blank | 0.832 | 0.992 | 5.2 | 15.6 | 25.8 | 7.1 |
0% | 0.359 | 1.000 | 4.9 | 46.6 | 27.9 | 5.2 |
10% | 1.621 | 0.996 | 3.6 | 146.0 | 41.0 | 9.2 |
25% | 1.778 | 0.998 | 5.0 | 178.3 | 47.6 | 9.4 |
50% | 1.126 | 0.992 | 5.4 | 152.5 | 66.8 | 15.3 |
Parameter | Dimension | Blank | 0% WBA 1 | 10% WBA | 25% WBA | 50% WBA |
---|---|---|---|---|---|---|
initial algal conc. 2 | mg L−1 (d.m.) | 5.6 ± 0.5 a 3 | 5.5 ± 0.6 a | 5.5 ± 0.8 a | 6.5 ± 0.7 a | 5.7 ± 0.8 a |
final algal conc. | mg L−1 (d.m.) | * 17.1 ± 0.5 a | * 49.8 ± 3.6 b | * 160.2 ± 17.2 c | * 176.0 ± 5.6 cd | * 133.3 ± 18.0 d |
change in biomass | mg L−1 (d.m.) | 11.5 ± 1.6 a | 44.3 ± 3.8 b | 154.7 ± 17.1 c | 169.5 ± 5.5 cd | 125.8 ± 18.3 d |
mass multiplication | - | 3.10 ± 0.4 a | 9.24 ± 1.3 a | 29.32 ± 3.5 b | 27.21 ± 1.8 b | 17.83 ± 3.2 c |
specific growth rate (μ) 4 | day−1 | 0.28 ± 0.03 a | 0.55 ± 0.04 b | 0.84 ± 0.03 c | 0.83 ± 0.02 c | 0.72 ± 0.04 d |
doubling time 5 | days | 1.97 ± 0.11 a | 1.29 ± 0.07 b | 0.86 ± 0.04 c | 0.89 ± 0.02 c | 1.02 ± 0.06 c |
pH without CO2 addition | - | 6.94 ± 0.01 a | 6.79 ± 0.01 a | 9.67 ± 0.20 b | 11.18 ± 0.06 c | 12.15 ± 0.04 d |
change in pH | - | 0.05 ± 0.01 a | 0.87 ± 0.04 b | 3.95 ± 0.17 c | 2.98 ± 0.09 d | 1.83 ± 0.06 e |
initial DIC 6 | mg C L−1 | LOD 7 | 10.4 ± 0.00 a | 48.6 ± 7.96 b | 156.3 ± 9.03 c | 309.2 ± 7.96 d |
final DIC | mg C L−1 | LOD 7 | 3.5 ± 3.01 a | * 3.5 ± 3.01 a | * 90.3 ± 3.01 b | * 218.9 ± 10.42 c |
DIC removal | % | - | 66.7 ± 28.9 ab | 92.8 ± 6.5 a | 42.2 ± 1.4 b | 29.1 ± 5.15 b |
Treatment | Chi2 1 | R2 2 | A1 3 | A2 4 | x0 5 | dx 6 |
---|---|---|---|---|---|---|
blank | 0.515 | 0.971 | n.a. 7 | 33.9 | n.a. 7 | 97.2 |
A2N0 | 0.375 | 0.999 | 1.2 | 68.2 | 41.4 | 9.5 |
A2N100 | 7.767 | 0.996 | 2.0 | 170.3 | 40.8 | 8.1 |
A5N50 | 0.375 | 0.999 | 0.7 | 267.1 | 47.1 | 10.6 |
A8N0 | 0.082 | 0.997 | 17.0 | 161.6 | 62.4 | 10.0 |
A8N100 | 1.176 | 0.999 | 11.7 | 273.2 | 42.5 | 8.4 |
Treatment | N Concentration 1 (mg L−1) | P Concentration 2 (mg L−1) | K Concentration 3 (mg L−1) | |||
---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Initial | Final | |
blank | 3.7 ± 1.1 a 4 | 1.2 ± 0.2 a | 34.7 ± 1.5 a | * 24.9 ± 1.7 ab | 8.3 ± 2.2 a | * 0.0 ± 0.0 a |
A2N0 | 3.2 ± 1.4 a | 0.2 ± 0.1 a | 30.6 ± 5.1 a | * 16.0 ± 5.6 b | 242.3 ± 5.8 b | 241.1 ± 8.6 b |
A2N100 | 290.9 ± 4.0 b | * 256.9 ± 5.0 b | 198.9 ± 10.1 b | * 36.4 ± 3.3 c | 364.2 ± 6.8 c | * 342.2 ± 2.0 c |
A5N50 | 168.8 ± 14.3 c | * 128.1 ± 11.5 c | 124.8 ± 4.3 c | * 35.4 ± 1.0 c | 327.9 ± 4.2 d | * 309.9 ± 6.7 d |
A8N0 | 3.2 ± 0.0 a | 1.0 ± 0.9 a | 38.4 ± 1.1 a | 32.2 ± 3.1 ac | 257.3 ± 5.7 b | 250.1 ± 4.6 b |
A8N100 | 317.0 ± 8.9 d | * 254.6 ± 8.6 b | 217.3 ± 40.7 b | * 23.2 ± 3.8 ab | 404.1 ± 12.4 e | * 362.6 ± 10.9 e |
Parameter | Dimension | Blank | A2N0 | A2N100 | A5N50 | A8N0 | A8N100 |
---|---|---|---|---|---|---|---|
initial algal conc. | mg L−1 (d.m.) 1 | 2.9 ± 0.49 a 2 | 2.4 ± 0.21 a | 3.6 ± 1.18 a | 6.0 ± 0.50 b | 11.4 ± 0.88 c | 13.2 ± 0.81 c |
final algal conc. | mg L−1 (d.m.) | * 19 ± 1.6 a | * 69 ± 1.8 b | * 180 ± 3.8 c | * 267 ± 9.1 d | * 157 ± 15.0 e | * 273 ± 3.4 d |
change in biomass | mg L−1 (d.m.) | 16 ± 1.1 a | 67 ± 1.7 b | 177 ± 2.6 c | 261 ± 8.9 d | 146 ± 15.0 e | 260 ± 4.0 d |
mass multiplication | - | 7 ± 0.6 a | 29 ± 2.3 bc | 54 ± 19.2 d | 44 ± 3.1 bd | 14 ± 1.3 ac | 21 ± 1.4 ac |
specific growth rate 3 | day−1 | 0.47 ± 0.02 a | 0.84 ± 0.02 b | 0.98 ± 0.08 c | 0.95 ± 0.02 c | 0.66 ± 0.02 d | 0.76 ± 0.02 bd |
doubling time 4 | days | 1.46 ± 0.05 a | 0.87 ± 0.02 bc | 0.72 ± 0.08 d | 0.75 ± 0.02 bd | 1.11 ± 0.04 e | 0.97 ± 0.02 c |
change in pH | - | 4.32 ± 0.02 a | 2.27 ± 0.19 b | 4.78 ± 0.27 c | 5.11 ± 0.03 c | 3.72 ± 0.12 d | 5.06 ± 0.04 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, G.; Klátyik, S.; Sebők, A.; Dálnoki, A.B.; Takács, A.; Gulyás, M.; Czinkota, I.; Székács, A.; Gyuricza, C.; Aleksza, L. Optimization of a Chlorella vulgaris-Based Carbon Sequestration Technique Using an Alkaline Medium of Wood Biomass Ash Extract. Water 2024, 16, 3696. https://doi.org/10.3390/w16243696
Fekete G, Klátyik S, Sebők A, Dálnoki AB, Takács A, Gulyás M, Czinkota I, Székács A, Gyuricza C, Aleksza L. Optimization of a Chlorella vulgaris-Based Carbon Sequestration Technique Using an Alkaline Medium of Wood Biomass Ash Extract. Water. 2024; 16(24):3696. https://doi.org/10.3390/w16243696
Chicago/Turabian StyleFekete, György, Szandra Klátyik, András Sebők, Anna Boglárka Dálnoki, Anita Takács, Miklós Gulyás, Imre Czinkota, András Székács, Csaba Gyuricza, and László Aleksza. 2024. "Optimization of a Chlorella vulgaris-Based Carbon Sequestration Technique Using an Alkaline Medium of Wood Biomass Ash Extract" Water 16, no. 24: 3696. https://doi.org/10.3390/w16243696
APA StyleFekete, G., Klátyik, S., Sebők, A., Dálnoki, A. B., Takács, A., Gulyás, M., Czinkota, I., Székács, A., Gyuricza, C., & Aleksza, L. (2024). Optimization of a Chlorella vulgaris-Based Carbon Sequestration Technique Using an Alkaline Medium of Wood Biomass Ash Extract. Water, 16(24), 3696. https://doi.org/10.3390/w16243696