An Assessment of Six Years of Precipitation Stable Isotope and Tritium Activity Concentration Records at Station Sv. Urban, Eastern Slovenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Stable Isotope Analysis
2.3. Tritium Activity Concentration Analysis
2.4. Meteorological Data
2.5. Data Evaluation and Visualization
3. Results and Discussion
3.1. Meteorological Data
3.2. Stable Isotope Data (δ2H, δ18O, and d-excess)
3.3. Local Meteoric Water Lines (LMWLs)
3.4. δ18O vs. Temperature Relationship
3.5. Tritium Activity Concentration (A) Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowen, G.J.; Cai, Z.; Fiorella, R.P.; Putman, A.L. Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications. Annu. Rev. Earth Planet. Sci. 2019, 47, 453–479. [Google Scholar] [CrossRef]
- Cucchi, F.; Franceschini, G.; Zini, L. Hydrogeochemical Investigations and Groundwater Provinces of the Friuli Venezia Giulia Plain Aquifers, Northeastern Italy. Environ. Geol. 2008, 55, 985–999. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Barnette, J.E.; Jameel, Y.; Tipple, B.J.; Bowen, G.J. Urban Water—A New Frontier in Isotope Hydrology. Isot. Environ. Health Stud. 2016, 52, 477–486. [Google Scholar] [CrossRef]
- Epstein, S.; Mayeda, T. Variation of O18 Content of Waters from Natural Sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Gat, J.R.; Gonfiantini, R. (Eds.) Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle; Technical Reports Series; International Atomic Energy Agency: Vienna, Austria, 1981; ISBN 978-92-0-145281-8. [Google Scholar]
- Gat, J.R. The Isotopic Composition of Evaporating Waters—Review of the Historical Evolution Leading up to the Craig–Gordon Model. Isot. Environ. Health Stud. 2008, 44, 5–9. [Google Scholar] [CrossRef]
- Gat, J.R.; Carmi, I. Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area. J. Geophys. Res. 1970, 75, 3039–3048. [Google Scholar] [CrossRef]
- Gibson, J.J.; Edwards, T.W.D.; Birks, S.J.; St Amour, N.A.; Buhay, W.M.; McEachern, P.; Wolfe, B.B.; Peters, D.L. Progress in Isotope Tracer Hydrology in Canada. Hydrol. Process. 2005, 19, 303–327. [Google Scholar] [CrossRef]
- Horita, J.; Rozanski, K.; Cohen, S. Isotope Effects in the Evaporation of Water: A Status Report of the Craig–Gordon Model. Isot. Environ. Health Stud. 2008, 44, 23–49. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J. Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1998; ISBN 978-0-444-81546-0. [Google Scholar]
- Jameel, Y.; Brewer, S.; Good, S.P.; Tipple, B.J.; Ehleringer, J.R.; Bowen, G.J. Tap Water Isotope Ratios Reflect Urban Water System Structure and Dynamics across a Semiarid Metropolitan Area. Water Resour. Res. 2016, 52, 5891–5910. [Google Scholar] [CrossRef]
- Koeniger, P.; Gaj, M.; Beyer, M.; Himmelsbach, T. Review on Soil Water Isotope-Based Groundwater Recharge Estimations: Review Soil Water Isotope. Hydrol. Process. 2016, 30, 2817–2834. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, K.; Li, J.; Pang, Z. Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources. Water 2019, 11, 1239. [Google Scholar] [CrossRef]
- Natali, S.; Doveri, M.; Giannecchini, R.; Baneschi, I.; Zanchetta, G. Is the Deuterium Excess in Precipitation a Reliable Tracer of Moisture Sources and Water Resources Fate in the Western Mediterranean? New Insights from Apuan Alps (Italy). J. Hydrol. 2022, 614, 128497. [Google Scholar] [CrossRef]
- Natali, S.; Doveri, M.; Franceschi, L.; Giannecchini, R.; Luppichini, M.; Menichini, M.; Zanchetta, G. Moisture Sources and Climatic Effects Controlling Precipitation Stable Isotope Composition in a Western Mediterranean Island (Pianosa, Italy). Atmos. Res. 2023, 294, 106987. [Google Scholar] [CrossRef]
- Porowski, A.; Porowska, D.; Halas, S. Identification of Sulfate Sources and Biogeochemical Processes in an Aquifer Affected by Peatland: Insights from Monitoring the Isotopic Composition of Groundwater Sulfate in Kampinos National Park, Poland. Water 2019, 11, 1388. [Google Scholar] [CrossRef]
- Rusjan, S.; Sapač, K.; Petrič, M.; Lojen, S.; Bezak, N. Identifying the Hydrological Behavior of a Complex Karst System Using Stable Isotopes. J. Hydrol. 2019, 577, 123956. [Google Scholar] [CrossRef]
- Saccon, P.; Leis, A.; Marca, A.; Kaiser, J.; Campisi, L.; Böttcher, M.E.; Savarino, J.; Escher, P.; Eisenhauer, A.; Erbland, J. Multi-Isotope Approach for the Identification and Characterisation of Nitrate Pollution Sources in the Marano Lagoon (Italy) and Parts of Its Catchment Area. Appl. Geochem. 2013, 34, 75–89. [Google Scholar] [CrossRef]
- Singh, A.T.; Rahaman, W.; Sharma, P.; Laluraj, C.M.; Patel, L.K.; Pratap, B.; Gaddam, V.K.; Thamban, M. Moisture Sources for Precipitation and Hydrograph Components of the Sutri Dhaka Glacier Basin, Western Himalayas. Water 2019, 11, 2242. [Google Scholar] [CrossRef]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global Isoscapes for δ18O and δ2H in Precipitation: Improved Prediction Using Regionalized Climatic Regression Models. Hydrol. Earth Syst. Sci. 2013, 17, 4713–4728. [Google Scholar] [CrossRef]
- Tsuchihara, T.; Shirahata, K.; Ishida, S.; Yoshimoto, S. Application of a Self-Organizing Map of Isotopic and Chemical Data for the Identification of Groundwater Recharge Sources in Nasunogahara Alluvial Fan, Japan. Water 2020, 12, 278. [Google Scholar] [CrossRef]
- Vachon, R.W.; Welker, J.M.; White, J.W.C.; Vaughn, B.H. Monthly Precipitation Isoscapes (δ18O) of the United States: Connections with Surface Temperatures, Moisture Source Conditions, and Air Mass Trajectories. J. Geophys. Res. 2010, 115, D21126. [Google Scholar] [CrossRef]
- Vodila, G.; Palcsu, L.; Futó, I.; Szántó, Z. A 9-Year Record of Stable Isotope Ratios of Precipitation in Eastern Hungary: Implications on Isotope Hydrology and Regional Palaeoclimatology. J. Hydrol. 2011, 400, 144–153. [Google Scholar] [CrossRef]
- Schotterer, U.; Oldfield, F.; Fröhlich, K. GNIP: Global Network for Isotopes in Precipitation; Läderach: Bern, Switzerland, 1996; ISBN 978-3-9521078-0-5. [Google Scholar]
- West, J.B.; Bowen, G.J.; Dawson, T.E.; Tu, K.P. (Eds.) Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-3353-6. [Google Scholar]
- Banda, L.C.; Rivett, M.O.; Zavison, A.S.K.; Kamtukule, S.; Kalin, R.M. National Stable Isotope Baseline for Precipitation in Malawi to Underpin Integrated Water Resources Management. Water 2021, 13, 1927. [Google Scholar] [CrossRef]
- Boschetti, T.; Cifuentes, J.; Iacumin, P.; Selmo, E. Local Meteoric Water Line of Northern Chile (18° S–30° S): An Application of Error-in-Variables Regression to the Oxygen and Hydrogen Stable Isotope Ratio of Precipitation. Water 2019, 11, 791. [Google Scholar] [CrossRef]
- Giustini, F.; Brilli, M.; Patera, A. Mapping Oxygen Stable Isotopes of Precipitation in Italy. J. Hydrol. Reg. Stud. 2016, 8, 162–181. [Google Scholar] [CrossRef]
- Hager, B.; Foelsche, U. Stable Isotope Composition of Precipitation in Austria. Austrian J. Earth Sci. 2015, 108, 2–13. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Szatmári, G.; Kern, Z.; Erdélyi, D.; Vreča, P.; Kanduč, T.; Czuppon, G.; Lojen, S.; Kohán, B. Geostatistical Evaluation of the Design of the Precipitation Stable Isotope Monitoring Network for Slovenia and Hungary. Environ. Int. 2021, 146, 106263. [Google Scholar] [CrossRef]
- Hollins, S.E.; Hughes, C.E.; Crawford, J.; Cendón, D.I.; Meredith, K.T. Rainfall Isotope Variations over the Australian Continent—Implications for Hydrology and Isoscape Applications. Sci. Total Environ. 2018, 645, 630–645. [Google Scholar] [CrossRef]
- Kostrova, S.S.; Meyer, H.; Fernandoy, F.; Werner, M.; Tarasov, P.E. Moisture Origin and Stable Isotope Characteristics of Precipitation in Southeast Siberia. Hydrol. Process. 2020, 34, 51–67. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Yang, L. Stable Isotopic Compositions of Precipitation in China. Tellus B Chem. Phys. Meteorol. 2014, 66, 22567. [Google Scholar] [CrossRef]
- Longinelli, A.; Selmo, E. Isotopic Composition of Precipitation in Italy: A First Overall Map. J. Hydrol. 2003, 270, 75–88. [Google Scholar] [CrossRef]
- Stumpp, C.; Klaus, J.; Stichler, W. Analysis of Long-Term Stable Isotopic Composition in German Precipitation. J. Hydrol. 2014, 517, 351–361. [Google Scholar] [CrossRef]
- Vreča, P.; Pavšek, A.; Kocman, D. SLONIP—A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation. Water 2022, 14, 2127. [Google Scholar] [CrossRef]
- Vreča, P.; Malenšek, N. Slovenian Network of Isotopes in Precipitation (SLONIP)—A Review of Activities in the Period 1981–2015. Geologija 2016, 59, 67–84. [Google Scholar] [CrossRef]
- Schürch, M.; Kozel, R.; Schotterer, U.; Tripet, J.-P. Observation of Isotopes in the Water Cycle—The Swiss National Network (NISOT). Environ. Geol. 2003, 45, 1–11. [Google Scholar] [CrossRef]
- Welker, J.M. Isotopic (δ18O) Characteristics of Weekly Precipitation Collected across the USA: An Initial Analysis with Application to Water Source Studies. Hydrol. Process. 2000, 14, 1449–1464. [Google Scholar] [CrossRef]
- Gospodarič, R.; Habič, P. Underground Water Tracing: Investigations in Slovenia 1972–1975; ZRC SAZU: Postojna, Slovenia, 1976. [Google Scholar]
- Jožef Stefan Institute. SLONIP: Slovenian Network of Isotopes in Precipitation. Available online: https://slonip.ijs.si/ (accessed on 13 December 2023).
- Pavšek, A.; Vreča, P. Isotopes-in-Precipitation-Statistics. Available online: https://github.com/nyuhanc/Isotopes-in-precipitation-statistics (accessed on 8 July 2022).
- Stall, S.; Yarmey, L.; Cutcher-Gershenfeld, J.; Hanson, B.; Lehnert, K.; Nosek, B.; Parsons, M.; Robinson, E.; Wyborn, L. Make Scientific Data FAIR. Nature 2019, 570, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Kern, Z.; Hatvani, I.G.; Czuppon, G.; Fórizs, I.; Erdélyi, D.; Kanduč, T.; Palcsu, L.; Vreča, P. Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region. Water 2020, 12, 1797. [Google Scholar] [CrossRef]
- Kern, Z.; Erdélyi, D.; Vreča, P.; Krajcar Bronić, I.; Fórizs, I.; Kanduč, T.; Štrok, M.; Palcsu, L.; Süveges, M.; Czuppon, G.; et al. Isoscape of Amount-Weighted Annual Mean Precipitation Tritium (3H) Activity from 1976 to 2017 for the Adriatic–Pannonian Region—AP3H_v1 Database. Earth Syst. Sci. Data 2020, 12, 2061–2073. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Smati, A.E.; Erdélyi, D.; Szatmári, G.; Vreča, P.; Kern, Z. Modeling the Spatial Distribution of the Meteoric Water Line of Modern Precipitation across the Broader Mediterranean Region. J. Hydrol. 2023, 617, 128925. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. In Climate Change in Continental Isotopic Records; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Hughes, C.E.; Crawford, J. A New Precipitation Weighted Method for Determining the Meteoric Water Line for Hydrological Applications Demonstrated Using Australian and Global GNIP Data. J. Hydrol. 2012, 464–465, 344–351. [Google Scholar] [CrossRef]
- Skrzypek, G.; Wiśniewski, A.; Grierson, P.F. How Cold Was It for Neanderthals Moving to Central Europe during Warm Phases of the Last Glaciation? Quat. Sci. Rev. 2011, 30, 481–487. [Google Scholar] [CrossRef]
- Rudzka, D.; Mcdermott, F.; Surić, M. A Late Holocene Climate Record in Stalagmites from Modrič Cave (Croatia). J. Quat. Sci. 2012, 27, 585–596. [Google Scholar] [CrossRef]
- Lykoudis, S.P.; Kostopoulou, E.; Argiriou, A.A. Stable Isotopic Signature of Precipitation under Various Synoptic Classifications. Phys. Chem. Earth Parts A/B/C 2010, 35, 530–535. [Google Scholar] [CrossRef]
- Aničić, B.; Juriša, M. SFRJ, Osnovna Geološka Karta 1:100,000, Tolmač za List Rogatec; Zvezni Geološki Zavod: Beograd, Serbia, 1985. [Google Scholar]
- Krajcar Bronić, I.; Barešić, J.; Borković, D.; Sironić, A.; Mikelić, I.L.; Vreča, P. Long-Term Isotope Records of Precipitation in Zagreb, Croatia. Water 2020, 12, 226. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Kozjek, K.; Dolinar, M.; Skok, G. Objective Climate Classification of Slovenia. Int. J. Climatol. 2017, 37, 848–860. [Google Scholar] [CrossRef]
- Kanduč, T.; Šlejkovec, Z.; Vreča, P.; Samardžija, Z.; Verbovšek, T.; Božič, D.; Jamnikar, S.; Solomon, D.K.; Fernandez, D.P.; Eastoe, C.; et al. The Effect of Geochemical Processes on Groundwater in the Velenje Coal Basin, Slovenia: Insights from Mineralogy, Trace Elements and Isotopes Signatures. SN Appl. Sci. 2019, 1, 1518. [Google Scholar] [CrossRef]
- Coplen, T.B.; Wildman, J.D.; Chen, J. Improvements in the Gaseous Hydrogen-Water Equilibration Technique for Hydrogen Isotope-Ratio Analysis. Anal. Chem. 1991, 63, 910–912. [Google Scholar] [CrossRef]
- Avak, H.; Brand, W.A. He Finning MAT HDO-Equilibration—A Fully Automated H2O/Gas Phase Equilibration System for Hydrogen and Oxygen Isotope Analyses. Thermo Electron. Corp. Appl. News 1995, 11, 1–13. [Google Scholar]
- Coplen, T.B. Reporting of Stable Hydrogen, Carbon, and Oxygen Isotopic Abundances (Technical Report). Pure Appl. Chem. 1994, 66, 273–276. [Google Scholar] [CrossRef]
- Coplen, T.B. Guidelines and Recommended Terms for Expression of Stable-Isotope-Ratio and Gas-Ratio Measurement Results: Guidelines and Recommended Terms for Expressing Stable Isotope Results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, G.; Allison, C.E.; Böhlke, J.K.; Bontempo, L.; Brewer, P.; Camin, F.; Carter, J.F.; Chartrand, M.M.G.; Coplen, T.B.; Gröning, M.; et al. Minimum Requirements for Publishing Hydrogen, Carbon, Nitrogen, Oxygen and Sulfur Stable-Isotope Delta Results (IUPAC Technical Report). Pure Appl. Chem. 2022, 94, 1249–1255. [Google Scholar] [CrossRef]
- Carter, J.F.; Barwick, V.J. Good Practice Guide for Isotope Ratio Mass Spectrometry, 1st ed.; FIRMS Network: Teddington, UK, 2011; ISBN 978-0-948926-31-0. [Google Scholar]
- Slovenian Environmental Agency (ARSO). ARSO METEO. Available online: http://www.meteo.si/ (accessed on 4 September 2023).
- Crawford, J.; Hughes, C.E.; Lykoudis, S. Alternative Least Squares Methods for Determining the Meteoric Water Line, Demonstrated Using GNIP Data. J. Hydrol. 2014, 519, 2331–2340. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Leis, A.; Demšar, M. Isotopic Composition of Precipitation at the Station Ljubljana (Reaktor), Slovenia—Period 2007–2010. Geologija 2014, 57, 217–230. [Google Scholar] [CrossRef]
- Vreča, P.; Bronić, I.K.; Horvatinčić, N.; Barešić, J. Isotopic Characteristics of Precipitation in Slovenia and Croatia: Comparison of Continental and Maritime Stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Bertalanič, R.; Dolinar, M.; Honzak, L.; Lokošek, N.; Medved, A.; Vertačnik, G.; Vlahović, Ž. Climate Change Projections for Slovenia over the 21st Century. Temperature and Precipitation Summary; Ministry of the Environment and Spatial Planning, Slovenian Environment Agency: Ljubljana, Slovenia, 2019; ISBN 978-961-6024-81-5. [Google Scholar]
- Nadbath, M. Meteorological station Podčetrtek. Naše Okolje 2014, 21, 32–37. [Google Scholar]
- Vreča, P.; Krajcar Bronić, I.; Leis, A.; Brenčič, M. Isotopic Composition of Precipitation in Ljubljana (Slovenia). Geologija 2008, 51, 169–180. [Google Scholar] [CrossRef]
- Putman, A.L.; Fiorella, R.P.; Bowen, G.J.; Cai, Z. A Global Perspective on Local Meteoric Water Lines: Meta-analytic Insight Into Fundamental Controls and Practical Constraints. Water Resour. Res. 2019, 55, 6896–6910. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Harvey, F.E. Stable Hydrogen and Oxygen Isotopic Composition of Precipitation in Northeastern Colorado. J. Am. Water Resour. Assoc. 2005, 41, 447–460. [Google Scholar] [CrossRef]
- Merlivat, L.; Jouzel, J. Global Climatic Interpretation of the Deuterium-oxygen 18 Relationship for Precipitation. J. Geophys. Res. 1979, 84, 5029–5033. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and Hydrogen Isotopes in the Hydrologic Cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Gat, J.R.; Bowser, C.J.; Kendall, C. The Contribution of Evaporation from the Great Lakes to the Continental Atmosphere: Estimate Based on Stable Isotope Data. Geophys. Res. Lett. 1994, 21, 557–560. [Google Scholar] [CrossRef]
- Araguas, L.A.; Froehlich, K.; Rozanski, K. Deuterium and Oxygen-18 Isotope Composition of Precipitation and Atmospheric Moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Peng, H.; Mayer, B.; Harris, S.; Krouse, H.R. A 10-Yr Record of Stable Isotope Ratios of Hydrogen and Oxygen in Precipitation at Calgary, Alberta, Canada. Tellus B Chem. Phys. Meteorol. 2004, 56, 147–159. [Google Scholar] [CrossRef]
- Dütsch, M.; Pfahl, S.; Sodemann, H. The Impact of Nonequilibrium and Equilibrium Fractionation on Two Different Deuterium Excess Definitions. JGR Atmos. 2017, 122, 12732–12746. [Google Scholar] [CrossRef]
- Vreča, P.; Brenčič, M.; Leis, A. Comparison of Monthly and Daily Isotopic Composition of Precipitation in the Coastal Area of Slovenia. Isot. Environ. Health Stud. 2007, 43, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Liotta, M.; Favara, R.; Valenza, M. Isotopic Composition of the Precipitations in the Central Mediterranean: Origin Marks and Orographic Precipitation Effects. J. Geophys. Res. 2006, 111, D19302. [Google Scholar] [CrossRef]
- Mezga, K.; Urbanc, J.; Cerar, S. The Isotope Altitude Effect Reflected in Groundwater: A Case Study from Slovenia. Isot. Environ. Health Stud. 2014, 50, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Palcsu, L.; Morgenstern, U.; Sültenfuss, J.; Koltai, G.; László, E.; Temovski, M.; Major, Z.; Nagy, J.T.; Papp, L.; Varlam, C.; et al. Modulation of Cosmogenic Tritium in Meteoric Precipitation by the 11-Year Cycle of Solar Magnetic Field Activity. Sci. Rep. 2018, 8, 12813. [Google Scholar] [CrossRef]
- Martell, E.A. Atmospheric Aspects of Strontium-90 Fallout: Fallout Evidence Indicates Short Stratospheric Holdup Time for Middle-Latitude Atomic Tests. Science 1959, 129, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Storebø, P.B. The Exchange of Air between Stratosphere and Troposphere. J. Meteor. 1960, 17, 547–554. [Google Scholar] [CrossRef]
- University of Olou Cosmic Ray Station. Available online: https://cosmicrays.oulu.fi/ (accessed on 13 December 2023).
Month | PARSO mm | TARSO °C | δ2H ‰ | δ18O ‰ | d-excess ‰ | A TU |
---|---|---|---|---|---|---|
January | 47 | 0.3 | −90.2 | −12.68 | 11.2 | 4.6 |
February | 87 | 3.8 | −95.2 | −13.02 | 8.9 | 5.8 |
March | 50 | 6.6 | −66.9 | −9.38 | 8.1 | 5.5 |
April | 59 | 11.2 | −43.4 | −6.87 | 11.6 | 9.4 |
May | 116 | 14.7 | −56.1 | −8.08 | 8.6 | 9.5 |
June | 92 | 20.2 | −36.6 | −5.54 | 7.7 | 11.1 |
July | 125 | 21.2 | −37.6 | −5.83 | 9.0 | 12.0 |
August | 89 | 20.9 | −35.9 | −5.55 | 8.5 | 9.0 |
September | 119 | 15.9 | −48.5 | −7.76 | 13.6 | 6.3 |
October | 82 | 10.9 | −60.1 | −9.07 | 12.5 | 5.4 |
November | 117 | 6.4 | −81.1 | −11.95 | 14.5 | 4.4 |
December | 75 | 1.8 | −97.1 | −13.58 | 11.6 | 4.4 |
Year | PARSO mm | TARSO °C | δ2H ‰ | δ18O ‰ | d-excess ‰ | A TU |
---|---|---|---|---|---|---|
Winter | 209 | 2.1 | −94.9 | −13.17 | 10.4 | 4.9 |
Spring | 225 | 10.8 | −55.1 | −8.04 | 9.2 | 8.7 |
Summer | 306 | 20.6 | −36.8 | −5.66 | 8.5 | 10.9 |
Autumn | 317 | 11.0 | −63.5 | −9.64 | 13.6 | 5.4 |
Year | PARSO mm | TARSO °C | δ2H ‰ | δ18O ‰ | d-excess ‰ | A TU |
---|---|---|---|---|---|---|
2016 | 1047 | 10.9 | −71.9 | −10.09 | 8.8 | n.d. 1 |
2017 | 1010 | 11.0 | −57.2 | −8.49 | 10.8 | 6.2 |
2018 | 1016 | 11.7 | −56.3 | −8.28 | 9.9 | 9.5 |
2019 | 1222 | 11.6 | −55.4 | −8.22 | 10.3 | 8.1 |
2020 | 1008 | 11.1 | −56.5 | −8.49 | 11.4 | 6.9 |
2021 | 1039 | 10.6 | −62.3 | −9.33 | 12.4 | 7.6 |
mean 2016–2021 | 1057 | 11.1 | −59.9 | −8.81 | 10.6 | 7.7 |
mean 2016–2018 | 1024 | 11.2 | −62.0 | −8.98 | 9.8 | 7.8 |
Year | N | b | MC b CI 95% | a | MC a CI 95% | SSWR | d.f. | MC SSWR CI 95% |
---|---|---|---|---|---|---|---|---|
2016 | 11 | 2.6 | [−2, 7.6] | 7.3 | [6.8, 7.8] | 14.9 | 9 | [2.8, 18.9] |
2017 | 12 | 2.6 | [−0.09, 5.2] | 7.2 | [6.9, 7.5] | 40.5 | 10 | [3.3, 20.0] |
2018 | 11 | 10.8 | [7.5, 13.8] | 8.1 | [7.7, 8.4] | 10.9 | 9 | [2.5, 18.2] |
2019 | 12 | 12.5 | [8.4, 16.9] | 8.2 | [7.8, 8.7] | 8.8 | 10 | [3.2, 19.5] |
2020 | 10 | 2.7 | [−2.5, 7.6] | 7 | [6.5, 7.6] | 9.7 | 8 | [2.1, 17.1] |
2021 | 12 | 9.1 | [5.4, 12.9] | 7.6 | [7.2, 8] | 9 | 10 | [3.4, 20.4] |
2016–2018 | 34 | 5.4 | [3.3, 7.2] | 7.5 | [7.3, 7.7] | 83 | 32 | [19.1, 49.9] |
All | 68 | 6.6 | [5, 8.2] | 7.6 | [7.4, 7.7] | 138 | 66 | [45, 92] |
Year | a ‰ °C−1 | b ‰ | r |
---|---|---|---|
2016 | 0.45 | −15.3 | 0.94 |
2017 | 0.43 | −12.6 | 0.82 |
2018 | 0.44 | −13.7 | 0.95 |
2019 | 0.43 | −12.5 | 0.91 |
2020 | 0.27 | −11.8 | 0.84 |
2021 | 0.35 | −12.8 | 0.81 |
2016–2021 | 0.37 | −13.0 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vreča, P.; Kanduč, T.; Štrok, M.; Žagar, K.; Nigro, M.; Barsanti, M. An Assessment of Six Years of Precipitation Stable Isotope and Tritium Activity Concentration Records at Station Sv. Urban, Eastern Slovenia. Water 2024, 16, 469. https://doi.org/10.3390/w16030469
Vreča P, Kanduč T, Štrok M, Žagar K, Nigro M, Barsanti M. An Assessment of Six Years of Precipitation Stable Isotope and Tritium Activity Concentration Records at Station Sv. Urban, Eastern Slovenia. Water. 2024; 16(3):469. https://doi.org/10.3390/w16030469
Chicago/Turabian StyleVreča, Polona, Tjaša Kanduč, Marko Štrok, Klara Žagar, Matteo Nigro, and Michele Barsanti. 2024. "An Assessment of Six Years of Precipitation Stable Isotope and Tritium Activity Concentration Records at Station Sv. Urban, Eastern Slovenia" Water 16, no. 3: 469. https://doi.org/10.3390/w16030469
APA StyleVreča, P., Kanduč, T., Štrok, M., Žagar, K., Nigro, M., & Barsanti, M. (2024). An Assessment of Six Years of Precipitation Stable Isotope and Tritium Activity Concentration Records at Station Sv. Urban, Eastern Slovenia. Water, 16(3), 469. https://doi.org/10.3390/w16030469