Assessment of Hydrological Responses to Land Use and Land Cover Changes in Forest-Dominated Watershed Using SWAT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. SWAT Model Description and Data Inputs
2.3. SWAT Model Setup and Simulation
2.4. Model Calibration and Validation Approach
3. Results and Discussion
3.1. SWAT Model Performance
3.2. LULC Scenarios on Hydrological Components
3.2.1. Groundwater Recharge
3.2.2. Water Yield
3.2.3. Evapotranspiration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mensah, J.K.; Ofosu, E.A.; Yidana, S.M.; Akpoti, K.; Kabo-bah, A.T. Integrated Modeling of Hydrological Processes and Groundwater Recharge Based on Land Use Land Cover, and Climate Changes: A Systematic Review. Environ. Adv. 2022, 8, 100224. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-Arid Environments. Ecol. Process. 2016, 5, 1–21. [Google Scholar] [CrossRef]
- Afonso de Oliveira Serrão, E.; Silva, M.T.; Ferreira, T.R.; Paiva de Ataide, L.C.; Assis dos Santos, C.; Meiguins de Lima, A.M.; de Paulo Rodrigues da Silva, V.; de Assis Salviano de Sousa, F.; Cardoso Gomes, D.J. Impacts of Land Use and Land Cover Changes on Hydrological Processes and Sediment Yield Determined Using the SWAT Model. Int. J. Sediment Res. 2022, 37, 54–69. [Google Scholar] [CrossRef]
- Andaryani, S.; Nourani, V.; Trolle, D.; Dehgani, M.; Asl, A.M. Assessment of Land Use and Climate Change Effects on Land Subsidence Using a Hydrological Model and Radar Technique. J. Hydrol. 2019, 578, 124070. [Google Scholar] [CrossRef]
- Yifru, B.A.; Chung, I.-M.; Kim, M.-G.; Chang, S.W. Assessing the Effect of Land/Use Land Cover and Climate Change on Water Yield and Groundwater Recharge in East African Rift Valley Using Integrated Model. J. Hydrol. Reg. Stud. 2021, 37, 100926. [Google Scholar] [CrossRef]
- Kim, J.H.; Kwon, O.S.; Ra, J.H. Urban Type Classification and Characteristic Analysis through Time-Series Environmental Changes for Land Use Management for 31 Satellite Cities around Seoul, South Korea. Land 2021, 10, 799. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an Improved SWAT Model to Simulate Hydrological Responses to Land Use Change: A Case Study of a Catchment in Tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Mengistu, T.D.; Chung, I.-M.; Kim, M.-G.; Chang, S.W.; Lee, J.E. Impacts and Implications of Land Use Land Cover Dynamics on Groundwater Recharge and Surface Runoff in East African Watershed. Water 2022, 14, 2068. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Stehr, A.; Sauvage, S.; Echeverría, C.; Sánchez-Pérez, J.M. Effect of Land Use/Cover Change on the Hydrological Response of a Southern Center Basin of Chile. Water 2020, 12, 302. [Google Scholar] [CrossRef]
- Lee, J.; Park, M.; Min, J.H.; Na, E.H. Integrated Assessment of the Land Use Change and Climate Change Impact on Baseflow by Using Hydrologic Model. Sustainability 2023, 15, 12465. [Google Scholar] [CrossRef]
- Im, S.; Kim, H.; Kim, C.; Jang, C. Assessing the Impacts of Land Use Changes on Watershed Hydrology Using MIKE SHE. Environ. Geol. 2009, 57, 231–239. [Google Scholar] [CrossRef]
- Tam, V.T.; Nga, T.T.V. Assessment of Urbanization Impact on Groundwater Resources in Hanoi, Vietnam. J. Environ. Manag. 2018, 227, 107–116. [Google Scholar] [CrossRef]
- Koneti, S.; Sunkara, S.L.; Roy, P.S. Hydrological Modeling with Respect to Impact of Land-Use and Land-Cover Change on the Runoff Dynamics in Godavari River Basin Using the HEC-HMS Model. Int. J. Geo-Inf. 2018, 7, 206. [Google Scholar] [CrossRef]
- Sinha, R.K.; Eldho, T.I. Effects of Historical and Projected Land Use/Cover Change on Runoff and Sediment Yield in the Netravati River Basin, Western Ghats, India. Environ. Earth Sci. 2018, 77, 111. [Google Scholar] [CrossRef]
- Aragaw, H.M.; Goel, M.K.; Mishra, S.K. Hydrological Responses to Human-Induced Land Use/Land Cover Changes in the Gidabo River Basin, Ethiopia. Hydrol. Sci. J. 2021, 66, 640–655. [Google Scholar] [CrossRef]
- Andrade Abe, C.; de Lucia Lobo, F.; Berhan Dibike, Y.; Pereira de Farias Costa, M.; Dos Santos, V.; Márcia, M.; Novo, E.L. Modelling the Effects of Historical and Future Land Cover Changes on the Hydrology of an Amazonian Basin. Water 2018, 10, 932. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of Climate and Land Use Change on Hydrological Response in Gumara Watershed, Ethiopia. Ecohydrol. Hydrobiol. 2021, 21, 315–332. [Google Scholar] [CrossRef]
- Das, P.; Behera, M.D.; Patidar, N.; Sahoo, B.; Tripathi, P.; Behera, P.R.; Srivastava, S.K.; Roy, P.S.; Thakur, P.; Agrawal, S.P.; et al. Impact of LULC Change on the Runoff, Base Flow and Evapotranspiration Dynamics in Eastern Indian River Basins during 1985–2005 Using Variable Infiltration Capacity Approach. J. Earth Syst. Sci. 2018, 127, 19. [Google Scholar] [CrossRef]
- Getachew, B.; Manjunatha, B.R.; Bhat, H.G. Modeling Projected Impacts of Climate and Land Use/Land Cover Changes on Hydrological Responses in the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. J. Hydrol. 2021, 595, 125974. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Molina-Navarro, E.; Bailey, R.T.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Park, S.; Jensen, J.S.; Jensen, J.B.; Trolle, D. Comparison of Abstraction Scenarios Simulated by SWAT and SWAT-MODFLOW. Hydrol. Sci. J. 2019, 64, 434–454. [Google Scholar] [CrossRef]
- Liu, W.; Park, S.; Bailey, R.; Molina-Navarro, E.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Jeppesen; Jensen, E.; Skødt, J.; et al. Comparing SWAT with SWAT-MODFLOW Hydrological Simulations When Assessing the Impacts of Groundwater Abstractions for Irrigation and Drinking Water. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–51. [Google Scholar] [CrossRef]
- Liu, W.; Wu, J.; Xu, F.; Mu, D.; Zhang, P. Modeling the Effects of Land Use/Land Cover Changes on River Runoff Using SWAT Models: A Case Study of the Danjiang River Source Area, China. Environ. Res. 2024, 242, 117810. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ali, M.; Shrestha, S.; Hafeez, M.A.; Moiz, A.; Sheikh, Z.A. Impacts of Climate and Land-Use Change on Groundwater Recharge in the Semi-Arid Lower Ravi River Basin, Pakistan. Groundw. Sustain. Dev. 2022, 17, 100743. [Google Scholar] [CrossRef]
- Siddik, M.S.; Tulip, S.S.; Rahman, A.; Islam, M.N.; Haghighi, A.T.; Mustafa, S.M.T. The Impact of Land Use and Land Cover Change on Groundwater Recharge in Northwestern Bangladesh. J. Environ. Manag. 2022, 315, 115130. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Kumar, V.; Paliwal, R. Quantifying the Impacts of Decadal Landuse Change on the Water Balance Components Using Soil and Water Assessment Tool in Ghaggar River Basin. SN Appl. Sci. 2020, 2, 1777. [Google Scholar] [CrossRef]
- Lee, J.E.; Chung, I.M.; Lee, J.; Kim, M.G. Estimation of Exploitable Groundwater in the Jinju Region by Using a Distributed Hydrologic Model. KSCE J. Civ. Environ. Eng. Res. 2021, 41, 655–662. [Google Scholar] [CrossRef]
- Lopes, T.R.; Zolin, C.A.; Mingoti, R.; Vendrusculo, L.G.; de Almeida, F.T.; de Souza, A.P.; de Oliveira, R.F.; Paulino, J.; Uliana, E.M. Hydrological Regime, Water Availability and Land Use/Land Cover Change Impact on the Water Balance in a Large Agriculture Basin in the Southern Brazilian Amazon. J. S. Am. Earth Sci. 2021, 108, 103224. [Google Scholar] [CrossRef]
- Wagner, P.D.; Bhallamudi, S.M.; Narasimhan, B.; Kantakumar, L.N.; Sudheer, K.P.; Kumar, S.; Schneider, K.; Fiener, P. Dynamic Integration of Land Use Changes in a Hydrologic Assessment of a Rapidly Developing Indian Catchment. Sci. Total Environ. 2016, 539, 153–164. [Google Scholar] [CrossRef]
- Seyoum, W.M.; Milewski, A.M.; Durham, M.C. Understanding the Relative Impacts of Natural Processes and Human Activities on the Hydrology of the Central Rift Valley Lakes, East Africa. Hydrol. Process. 2015, 29, 4312–4324. [Google Scholar] [CrossRef]
- Chen, M.; Gassman, P.W.; Srinivasan, R.; Cui, Y.; Arritt, R. Analysis of Alternative Climate Datasets and Evapotranspiration Methods for the Upper Mississippi River Basin Using SWAT within HAWQS. Sci. Total Environ. 2020, 720, 137562. [Google Scholar] [CrossRef]
- Chung, I.-M.; Lee, J. Preliminary Hydrological Design for Sand Dam Installation at the Valley of Seosang-Ri, Chuncheon. KSCE J. Civ. Environ. Eng. Res. 2019, 39, 725–733. [Google Scholar] [CrossRef]
- Choi, J.R.; Kim, B.S.; Kang, D.H.; Chung, I.M. Evaluation of Water Supply Capacity of a Small Forested Basin Water Supply Facilities Using SWAT Model and Flow Recession Curve. KSCE J. Civ. Eng. 2022, 26, 3665–3675. [Google Scholar] [CrossRef]
- Qi, P.; Xu, Y.J.; Wang, G. Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River. Sustainability 2020, 12, 3777. [Google Scholar] [CrossRef]
- Ma, K.; Huang, X.; Liang, C.; Zhao, H.; Zhou, X.; Wei, X. Effect of Land Use/Cover Changes on Runoff in the Min River Watershed. River Res. Appl. 2020, 36, 749–759. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.; Kiniry, R.; Williams, E.; Haney, S.; Neitsch, S. Soil & Water Assessment Tool. In Input/Output Documentation Version 2012; TR-439; Texas Water Resources Institute: College Station, TX, USA, 2012. [Google Scholar]
- Sertel, E.; Imamoglu, M.Z.; Cuceloglu, G.; Erturk, A. Impacts of Land Cover/Use Changes on Hydrological Processes in a Rapidly Urbanizing Mid-Latitude Water Supply Catchment. Water 2019, 11, 1075. [Google Scholar] [CrossRef]
- Ware, H.H.; Mengistu, T.D.; Yifru, B.A.; Chang, S.W.; Chung, I.-M. Assessment of Spatiotemporal Groundwater Recharge Distribution Using SWAT-MODFLOW Model and Transient Water Table Fluctuation Method. Water 2023, 15, 2112. [Google Scholar] [CrossRef]
- Welcome to the National Academy of Agricultural Sciences. Available online: http://www.naas.go.kr/ (accessed on 11 November 2023).
- Korea Soil Information System. Available online: https://soil.rda.go.kr/soil/koreaSoils/soilSearch.jsp (accessed on 10 October 2023).
- Environmental Spatial Information Service. Available online: https://egis.me.go.kr/intro/land.do (accessed on 10 October 2023).
- Metrological Agency Weather Data Service. Available online: https://data.kma.go.kr/cmmn/main.do (accessed on 11 November 2022).
- Water Resources Management Information System. Available online: http://www.wamis.go.kr/ (accessed on 11 November 2022).
- Moriasi, D.; Arnold, J. Evaluating Hydrology of the Soil and Water Assessment Tool (SWAT) with New Tile Drain Equations. Artic. J. Soil Water Conserv. 2012, 67, 513–524. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP SWATCalibration and Uncertainty Programs. Arch. Orthop. Trauma Surg. 2010, 130, 965–970. [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing Uncertainty Analysis Techniques for a SWAT Application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Veith Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Dogan, F.N.; Karpuzcu, M.E. Effect of Land Use Change on Hydrology of Forested Watersheds. Ecohydrology 2022, 15, e2367. [Google Scholar] [CrossRef]
- Yifru, B.A.; Chung, I.-M.; Kim, M.-G.; Chang, S.W. Assessment of Groundwater Recharge in Agro-Urban Watersheds Using Integrated SWAT-MODFLOW Model. Sustainability 2020, 12, 6593. [Google Scholar] [CrossRef]
- Huang, T.C.C.; Lo, K.F.A. Effects of Land Use Change on Sediment and Water Yields in Yang Ming Shan National Park, Taiwan. Environments 2015, 2, 32–42. [Google Scholar] [CrossRef]
- Phuong, T.T.; Vo, C.; Thong, T.; Bich, N.; Huynh, N.; Chuong, V. Modeling Soil Erosion within Small Moutainous Watershed in Central Vietnam Using GIS and SWAT. Resour. Environ. 2014, 4, 139–147. [Google Scholar] [CrossRef]
- Gessesse, A.A.; Melesse, A.M.; Abera, F.F.; Abiy, A.Z. Modeling Hydrological Responses to Land Use Dynamics, Choke, Ethiopia. Water Conserv. Sci. Eng. 2019, 4, 201–212. [Google Scholar] [CrossRef]
- Santillan, J.R.; Amora, A.M.; Makinano-Santillan, M.; Gingo, A.L.; Marqueso, J.T. Analyzing the impacts of land cover change to the hydrologic and hydraulic behaviours of the philippines’ third largest river basin. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 41–48. [Google Scholar] [CrossRef]
- Akpoti, K.; Antwi, E.; Hydrology, A.K. Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa. Hydrology 2016, 3, 26. [Google Scholar] [CrossRef]
- Hengade, N.; Eldho, T.I. Relative Impact of Recent Climate and Land Cover Changes in the Godavari River Basin, India. J. Earth Syst. Sci. 2019, 128, 94. [Google Scholar] [CrossRef]
- Staal, A.; Flores, B.M.; Aguiar, A.P.; Bosmans, J.H.; Fetzer, I.; Tuinenburg, O.A. Feedback between Drought and Deforestation in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [Google Scholar] [CrossRef]
- Aladejana, O.O.; Salami, A.T.; Adetoro, O.I.O. Hydrological Responses to Land Degradation in the Northwest Benin Owena River Basin, Nigeria. J. Environ. Manag. 2018, 225, 300–312. [Google Scholar] [CrossRef]
- Farinosi, F.; Arias, M.E.; Lee, E.; Longo, M.; Pereira, F.F.; Livino, A.; Moorcroft, P.R.; Briscoe, J. Future Climate and Land Use Change Impacts on River Flows in the Tapajós Basin in the Brazilian Amazon. Earth’s Future 2019, 7, 993–1017. [Google Scholar] [CrossRef]
- Hassaballah, K.; Mohamed, Y.; Uhlenbrook, S.; Biro, K. Analysis of Streamflow Response to Land Use and Land Cover Changes Using Satellite Data and Hydrological Modelling: Case Study of Dinder and Rahad Tributaries of The Blue Nile (Ethiopia–Sudan). Hydrol. Earth Syst. Sci. 2017, 21, 5217–5242. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to Assess Land Use Impact on Water Resources in an East African Watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- de Moraes, T.C.; dos Santos, V.J.; Calijuri, M.L.; Torres, F.T.P. Effects on Runoff Caused by Changes in Land Cover in a Brazilian Southeast Basin: Evaluation by HEC-HMS and HEC-GEOHMS. Environ. Earth Sci. 2018, 77, 250. [Google Scholar] [CrossRef]
- Pandey, B.K.; Khare, D.; Kawasaki, A.; Meshesha, T.W. Integrated Approach to Simulate Hydrological Responses to Land Use Dynamics and Climate Change Scenarios Employing Scoring Method in Upper Narmada Basin, India. J. Hydrol. 2021, 598, 126429. [Google Scholar] [CrossRef]
Parameters | Descriptions | Range Value | Fit Value |
---|---|---|---|
r__CN2.mgt | Initial SCS runoff curve no. for moisture condition II | −0.2–0.2 | −0.18 |
v__ALPHA_BF.gw | Baseflow alpha factor (days) | 0–1 | 0.7 |
v__GW_DELAY.gw | Groundwater delay (days) | 1–1 | 1 |
v__GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0–1500 | 1141.5 |
v__GW_REVAP.gw | Groundwater “revap” coefficient | 0.02–0.2 | 0.005 |
v__ESCO.hru | Soil evaporation compensation factor (-) | 0–1 | 0.084 |
v__EPCO.hru | Plant uptake compensation factor (-) | 0–1 | 0.173 |
r__SOL_AWC().sol | Available water capacity of the soil layer (mm mm−1) | −0.3–0.3 | −0.23 |
v__RCHRG_DP.gw | Deep aquifer percolation fraction | 0–1 | 0.57 |
r__SOL_K().sol | Saturated hydraulic conductivity (mm/h) | −0.2–0.2 | −0.18 |
r__SOL_BD().sol | Moist bulk density | −0.2–0.3 | −0.12 |
v__REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” to occur (mm) | 0–500 | 274.5 |
r__HRU_SLP.hru | Average slope steepness (m/m) | 0–0.2 | 0.076 |
r__OV_N.hru | Manning’s “n” value for overland flow | −0.2–0.2 | −0.037 |
r__SLSUBBSN.hru | Surface runoff lag coefficient | −0.2–0.2 | −0.02 |
Year | 2000 | 2013 | 2022 | |||
---|---|---|---|---|---|---|
Statistical variable | Calibration | Validation | Calibration | Validation | Calibration | Validation |
R2 | 0.91 | 0.86 | 0.90 | 0.85 | 0.90 | 0.86 |
NSE | 0.90 | 0.82 | 0.89 | 0.78 | 0.89 | 0.80 |
PBIAS | 11.3 | −10.4 | 7.4 | −17.6 | 8.3 | −15.9 |
Hydrological Components | LULC-2000 | LULC-2013 | LULC-2022 |
---|---|---|---|
Precipitation, mm | 1266.8 | 1266.8 | 1266.8 |
Surface runoff, mm (%) | 218.48 (17.25) | 263.5 (20.80) | 252.69 (19.96) |
Lateral flow, mm (%) | 289.48 (22.85) | 289.54 (22.86) | 288.33 (22.76) |
Water yield, mm (%) | 711.17 (56.14) | 733.06 (57.87) | 729.84 (57.61) |
Recharge, mm (%) | 208.18 (16.43) | 184.84 (14.59) | 193.63 (15.28) |
ET, mm (%) | 549.3 (43.36) | 528.3 (41.70) | 531.6 (41.96) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ware, H.H.; Chang, S.W.; Lee, J.E.; Chung, I.-M. Assessment of Hydrological Responses to Land Use and Land Cover Changes in Forest-Dominated Watershed Using SWAT Model. Water 2024, 16, 528. https://doi.org/10.3390/w16040528
Ware HH, Chang SW, Lee JE, Chung I-M. Assessment of Hydrological Responses to Land Use and Land Cover Changes in Forest-Dominated Watershed Using SWAT Model. Water. 2024; 16(4):528. https://doi.org/10.3390/w16040528
Chicago/Turabian StyleWare, Hiyaw Hatiya, Sun Woo Chang, Jeong Eun Lee, and Il-Moon Chung. 2024. "Assessment of Hydrological Responses to Land Use and Land Cover Changes in Forest-Dominated Watershed Using SWAT Model" Water 16, no. 4: 528. https://doi.org/10.3390/w16040528
APA StyleWare, H. H., Chang, S. W., Lee, J. E., & Chung, I. -M. (2024). Assessment of Hydrological Responses to Land Use and Land Cover Changes in Forest-Dominated Watershed Using SWAT Model. Water, 16(4), 528. https://doi.org/10.3390/w16040528