Reservoirs and Hydrogeochemical Characterizations of the Yanggao Geothermal Field in Shanxi Province, China
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Methods
4. Results and Discussion
4.1. Hydrochemical Characteristics
4.2. Geothermometer-Based Temperature Estimates
4.2.1. Geothermometer Selection
4.2.2. SiO2 Geothermometers
4.2.3. Multimineral Equilibrium Diagram
4.2.4. Mixing Fraction of Shallow Groundwater
4.3. Recharge Sources of Geothermal Water
4.4. Water–Rock Interactions
4.5. Conceptual Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, G.L.; Zhang, W.; Liang, J.Y.; Lin, W.J.; Liu, Z.M.; Wang, W.L. Evaluation of Geothermal Resources Potential in China. Acta Geosci. Sin. 2017, 38, 449–459. (In Chinese) [Google Scholar]
- Fagundo-Castillo, J.R.; Carrillo-Rivera, J.J.; Antigüedad-Auzmendi, I.; González-Hernández, P.; Peláez-Díaz, R.; Hernández-Díaz, R.; Cáceres-Govea, D.; Hernández-Santana, J.R.; Suárez-Muñoz, M.; Melián-Rodríguez, C.; et al. Chemical and Geological Control of Spring Water in Eastern Guaniguanico Mountain Range, Pinar Del Rìo, Cuba. Environ. Geol. 2008, 55, 247–267. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, K.; Lu, X.; Huang, X.; Liu, K.; Wu, X. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Wang, G.L.; Liu, Y.G.; Zhu, X.; Zhang, W. The status and development trend of geothermal resources in China. Earth Sci. Front. 2020, 27, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Wang, G.L.; Liu, Z.M.; Lin, W.J. Tectonic Control of Geothermal Resources in the Peripheral of Ordos Basin. Acta Geosci. Sin. 2004, 78, 44–51. (In Chinese) [Google Scholar]
- Wang, G.L.; Lin, W.J.; Liu, F.; Gan, H.N.; Wang, S.Q.; Yue, G.F.; Long, X.T.; Liu, Y.G. Theory and survey practice of deep heat accumulation in geothermal system and exploration practice. Acta Geol. Sin. 2023, 97, 639–660. (In Chinese) [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. J. Volcanol. Geotherm. Res. 2012, 215–216, 61–73. [Google Scholar] [CrossRef]
- Wang, G.L.; Lin, W.J. Main hydo-geothermal systems and their genetic models in China. Acta Geol. Sin. 2020, 94, 1923–1937. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Q.; Su, C.; Ma, T. Strontium Isotope Characterization and Major Ion Geochemistry of Karst Water Flow, Shentou, Northern China. J. Hydrol. 2006, 328, 592–603. (In Chinese) [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, X.; He, D.; Li, X.; Guo, S. Isotope Constraint for Genetic Types of Geothermal Water in the Center Part of Guanzhong Basin, NW China. J. Civ. Eng. Constr. 2015, 4, 96–108. [Google Scholar]
- Gong, L.M.; He, T. Distribution and exploitation of geothermal resources in Shanxi Province. Huabei Land Resour. 2018, 6, 19–20. (In Chinese) [Google Scholar]
- Yang, J.Z. On geothermal resources evaluation of P1 geothermal wells at Pingshan village of Yanggao county. Shanxi Archit. 2014, 40, 238–240. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, H.Y. Distribution and characteristics of geothermal resources in sedimentary basins in Shanxi Province. Huabei Land Resour. 2016, 6, 115–116. (In Chinese) [Google Scholar]
- Zhang, B. Preliminary study on calculation of geothermal water resources in the geothermal anomaly area of Datong Basin. Huabei Land Resour. 2021, 4, 44–45+48. (In Chinese) [Google Scholar]
- Jin, G.L. The Formative causes of Majuanxiang Geothermal Field in Tianzhen county Shanxi Province. J. Xi’an Coll. Geol. 1996, 18, 43–49. (In Chinese) [Google Scholar] [CrossRef]
- Duan, J.F. Hydro-Geochemical Characteristics and Origin of the Geothermal Waters in Yanggao County, Shanxi Province. Yellow River 2023, 45, 96–101. (In Chinese) [Google Scholar]
- Zheng, X.Q.; Li, Y.M.; Chen, Z.; Jin, G.L.; Dong, Z.Y. Majuanxiang Underground Thermal Water System in Yanggao-tianzhen Basin. J. Taiyuan Univ. Technol. 2000, 31, 68–71. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, W.; Hu, X.; Guo, H.; Liu, S.; Liu, S.; Yang, B. Three-Dimensional Magnetotelluric Inversion Reveals the Typical Geothermal Structure of Yanggao Geothermal Field in Datong Basin, Northern China. Geothermics 2022, 105, 102505. [Google Scholar] [CrossRef]
- He, Y.D.; Jia, X.F.; Zhang, Z.B.; Song, J.; Guo, J.; Liu, P.L.; Zhang, S.Q.; Duan, J.F. A study of the formation mechanism and resource development prospect of the high temperature geothermal system in the Yanggao-Tianzhen area. Hydrogeol. Eng. Geol. 2023, 50, 39–49. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, W.; Hu, X.; Yan, S.; Guo, H.; Chen, W.; Liu, S.; Miao, C. Genetic Analysis of Geothermal Resources and Geothermal Geological Characteristics in Datong Basin, Northern China. Energies 2020, 13, 1792. [Google Scholar] [CrossRef]
- Luo, Q.X.; Li, C.Y.; Ren, G.X.; Li, X.N.; Ma, Z.F.; Dong, J.Y. The Late Quaternary Activity Features and Slip Rate of the Yanggao-Tianzhen Fault. Seismol. Geol. 2020, 2, 399–413. (In Chinese) [Google Scholar]
- Jiang, J.W. Geological characteristics and metallogenic potential analysis of Gushan Tungsten-bismuth silver deposit in Yanggao County, Shanxi Province. Huabei Land Resour. 2017, 6, 76–77. (In Chinese) [Google Scholar]
- DZ/T 0331-2020; Methods for Examination of Drinking Natural Mineral Water. Ministry of Geology and Mineral Resources of the People’s Republic of China: Beijing, China, 2020. (In Chinese)
- DZ/T 0064.64-1993; Groundwater Test Methods. Ministry of Geology and Mineral Resources of the People’s Republic of China: Beijing, China, 1993. (In Chinese)
- Wei, S.; Liu, F.; Zhang, W.; Zhang, H.; Zhao, J.; Liao, Y.; Yan, X. Typical Geothermal Waters in the Ganzi–Litang Fault, Western Sichuan, China: Hydrochemical Processes and the Geochemical Characteristics of Rare-Earth Elements. Environ. Earth Sci. 2022, 81, 538. [Google Scholar] [CrossRef]
- He, W.; Gu, S.Y. Hydrochemical Characteristics and Water-rock Reaction of Hot spring in Metamorphic Rock Area of Southeast Guizhou. J. Guizhou Univ. (Nat. Sci. Ed.) 2018, 35, 40–44. (In Chinese) [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Sci. New Ser. 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Yan, X.X.; Gan, H.N.; Yue, G.F. Hydrogeochemical characteristics and genesis of typical geothermal fileds from Huangshadong to Conghua in Guangdong. Geol. Rev. 2019, 65, 743–754. (In Chinese) [Google Scholar] [CrossRef]
- Kortatsi, B.K. Hydrochemical Framework of Groundwater in the Ankobra Basin, Ghana. Aquat. Geochem. 2007, 13, 41–74. [Google Scholar] [CrossRef]
- Han, D.M.; Liang, X.; Jin, M.G.; Currell, M.J.; Song, X.F.; Liu, C.M. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. J. Volcanol. Geotherm. Res. 2010, 189, 92–104. [Google Scholar] [CrossRef]
- Barzegar, R.; Asghari Moghaddam, A.; Adamowski, J.; Nazemi, A.H. Assessing the Potential Origins and Human Health Risks of Trace Elements in Groundwater: A Case Study in the Khoy Plain, Iran. Environ. Geochem. Health 2019, 41, 981–1002. [Google Scholar] [CrossRef] [PubMed]
- Mgbenu, C.N.; Egbueri, J.C. The Hydrogeochemical Signatures, Quality Indices and Health Risk Assessment of Water Resources in Umunya District, Southeast Nigeria. Appl. Water Sci. 2019, 9, 22. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, W.J.; Liu, Z.; Liu, Z.M.; Hu, X.C.; Wang, G.L. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2014, 41, 382–392. (In Chinese) [Google Scholar]
- He, D.; Ma, Z.Y.; Wang, J.X.; Zheng, L. Isotopic Evidence of Remaining Sedimentary Water in the Deep Geothermal Water of Guanzhong Basin. J. Earth Sci. Environ. 2014, 36, 117–126. (In Chinese) [Google Scholar]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Hasan, M.A.; Sracek, O.; Smith, E.; Ahmed, K.M.; Von Brömssen, M.; Huq, S.M.I.; Naidu, R. Groundwater Chemistry and Arsenic Mobilization in the Holocene Flood Plains in South-Central Bangladesh. Environ. Geochem. Health 2009, 31, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Nath, B.; Bhattacharya, P.; Halder, D.; Kundu, A.K.; Mandal, U.; Mukherjee, A.; Chatterjee, D.; Mörth, C.-M.; Jacks, G. Hydrogeochemical Contrast between Brown and Grey Sand Aquifers in Shallow Depth of Bengal Basin: Consequences for Sustainable Drinking Water Supply. Sci. Total Environ. 2012, 431, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Sircar, A.; Shaikh, N.; Patel, K.; Thakar, V.; Sharma, D.; Sarkar, P.; Vaidya, D. Groundwater Analysis of Dholera Geothermal Field, Gujarat, India for Suitable Applications. Groundw. Sustain. Dev. 2018, 7, 143–156. [Google Scholar] [CrossRef]
- Zhi, C.; Cao, W.; Zhang, Z.; Li, Z.; Ren, Y. Hydrogeochemical Characteristics and Processes of Shallow Groundwater in the Yellow River Delta, China. Water 2021, 13, 534. [Google Scholar] [CrossRef]
- Sun, H.Y.; Wang, C.S.; Wei, X.F.; Zhu, X.Y.; Huang, X.K. Hydrochemical characteristics and driving factors in the water of the Bayingaole Basin, Southern Great Xing’an Range. Environ. Chem. 2020, 39, 2507–2519. (In Chinese) [Google Scholar]
- Zhang, C.; Li, X.; Wang, Z.; Hou, X.; Ma, J.; Gao, M.; Bai, Z.; Fu, C.; Gui, C.; Zuo, X. Combining Stable Isotope (2H, 18O, and 87Sr/86Sr) and Hydrochemistry to Understand Hydrogeochemical Processes in Karst Groundwater System, Xin’an, Northern China. Environ. Earth Sci. 2023, 82, 224. [Google Scholar] [CrossRef]
- Mariner, R.H.; Evans, W.C.; Young, H.W. Comparison of Circulation Times of Thermal Waters Discharging from the Idaho Batholith Based on Geothermometer Temperatures, Helium Concentrations, and 14C Measurements. Geothermics 2006, 35, 3–25. [Google Scholar] [CrossRef]
- Choi, H.S.; Koh, Y.K.; Bae, D.S.; Park, S.S.; Hutcheon, I.; Yun, S.-T. Estimation of Deep-Reservoir Temperature of CO2-Rich Springs in Kangwon District, South Korea. J. Volcanol. Geotherm. Res. 2005, 141, 77–89. [Google Scholar] [CrossRef]
- Arnórsson, S.; Gunnlaugsson, E.; Svavarsson, H. The Chemistry of Geothermal Waters in Iceland. III. Chemical Geothermometry in Geothermal Investigations. Geochim. Cosmochim. Acta 1983, 47, 567–577. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H. Isotopic and Chemical Composition of Parbati Valley Geothermal Discharges, North-West Himalaya, India. Geothermics 1983, 12, 199–222. [Google Scholar] [CrossRef]
- Awaleh, M.O.; Boschetti, T.; Soubaneh, Y.D.; Baudron, P.; Kawalieh, A.D.; Dabar, O.A.; Ahmed, M.M.; Ahmed, S.I.; Daoud, M.A.; Egueh, N.M.; et al. Geochemical Study of the Sakalol-Harralol Geothermal Field (Republic of Djibouti): Evidences of a Low Enthalpy Aquifer between Manda-Inakir and Asal Rift Settings. J. Volcanol. Geotherm. Res. 2017, 331, 26–52. [Google Scholar] [CrossRef]
- Yu, M.X.; Wang, G.L.; Ma, F.; Zhang, W.; Lin, W.J.; Zhu, X.; Zhang, H.X. Geochemical Characteristics of Geothermal Fluids of a Deep Ancient Buried Hill in the Xiong’an New Area of China. Water 2022, 14, 3182. [Google Scholar] [CrossRef]
- Giggenbach, F.; Sheppard, D.S. Geochemical structure and position of the Waiotapu geothermal field, New Zealand. Geothermics 1994, 23, 599–644. [Google Scholar] [CrossRef]
- Wang, J.; Jin, M.; Jia, B.; Kang, F. Hydrochemical Characteristics and Geothermometry Applications of Thermal Groundwater in Northern Jinan, Shandong, China. Geothermics 2015, 57, 185–195. [Google Scholar] [CrossRef]
- Liu, Y.G.; Liu, B.; Lu, C.; Zhu, X.; Wang, G.L. Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers. J. Groundw. Sci. Eng. 2017, 5, 173–181. [Google Scholar] [CrossRef]
- Chai, R.; Wang, H.; Liu, Y. Application of Multi Mineral Balance Method to Estimation of Geothermal Temperature. Coal Sci. Technol. 2010, 4, 100–103. (In Chinese) [Google Scholar]
- Morey, G.W.; Fournier, R.O.; Rowe, J.J. The solubility of quartz in water in the temperature interval from 25° to 300° C. Geochim. Cosmochim. Acta 1962, 26, 1029–1043. [Google Scholar] [CrossRef]
- Fournier, R.O.; Rowe, J.J. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. Am. J. Sci. 1966, 264, 685–697. [Google Scholar] [CrossRef]
- Ahmad, M.; Akram, W.; Ahmad, N.; Tasneem, M.A.; Rafiq, M.; Latif, Z. Assessment of Reservoir Temperatures of Thermal Springs of the Northern Areas of Pakistan by Chemical and Isotope Geothermometry. Geothermics 2002, 31, 613–631. [Google Scholar] [CrossRef]
- Fournier, R.O.; Truesdell, A.H. Geochemical Indicators of Subsurface Temperature: Part 2, Estimation of Temperature and Fraction of Hot Water Mixed with Cold Water. J. Res. U. S. Geol. Surv. 1974, 2, 263–270. [Google Scholar]
- Duan, M.Y.; Li, J.X.; Xie, X.J. Analysis on the Hydrochemical and Isotopic Characteristics of the High Arsenic Groundwater in a Small-scale Field from Datong Basin. Saf. Environ. Eng. 2013, 20, 1–5+11. (In Chinese) [Google Scholar]
- Appelo, C.A.J.; Parkhurst, D.L.; Post, V.E.A. quations for Calculating Hydrogeochemical Reactions of Minerals and Gases Such as CO2 at High Pressures and Temperatures. Geochim. Cosmochim. Acta 2014, 125, 49–67. [Google Scholar] [CrossRef]
- Alsemgeest, J.; Auqué, L.F.; Gimeno, M.J. Verification and Comparison of Two Thermodynamic Databases through Conversion to PHREEQC and Multicomponent Geothermometrical Calculations. Geothermics 2021, 91, 102036. [Google Scholar] [CrossRef]
- Bozau, E.; Häußler, S.; Van Berk, W. Hydrogeochemical Modelling of Corrosion Effects and Barite Scaling in Deep Geothermal Wells of the North German Basin Using PHREEQC and PHAST. Geothermics 2015, 53, 540–547. [Google Scholar] [CrossRef]
Water Type | Sample | PH | Ca2+ | Mg2+ | K+ | Na+ | Cl+ | SO42− | HCO3− | NO3− | F− | Hydrochemical Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | ||||
Thermal spring water | WQ01 | 8.21 | 13.43 | 2.25 | 11.82 | 177.9 | 145.7 | 103.9 | 135.2 | 4.1 | 5.17 | Na–Cl–HCO3 |
Geothermal well water | DR02 | 8.36 | 13.3 | 2.28 | 5.48 | 109.5 | 75.28 | 63.62 | 129 | 1.79 | 3.79 | Na–Cl–HCO3 |
DR01 | 8.87 | 6.49 | 0.62 | 4.38 | 79.17 | 39.92 | 34.02 | 98.31 | 2.47 | 4.4 | Na–HCO3 | |
DR03 | 8.18 | 17.5 | 1.25 | 5.23 | 111 | 69.7 | 67 | 155 | 0.53 | 2.87 | Na–HCO3–Cl | |
DR04 | 8.37 | 14.4 | 1.87 | 4.29 | 112 | 69.7 | 70.9 | 133 | 0.56 | 2.87 | Na–HCO3–Cl | |
DR05 | 8.29 | 25.4 | 6.06 | 8.16 | 81.2 | 57.4 | 70 | 145 | 4.02 | 1.1 | Na–HCO3–Cl | |
Well water | GW01 | 8.06 | 71.62 | 19.58 | 2.87 | 16 | 26.61 | 47.33 | 221.2 | 38.07 | 0.29 | Ca–Mg–HCO3 |
GW02 | 7.37 | 31.82 | 26.19 | 1.19 | 15.87 | 8.05 | 22.5 | 209.5 | 18.18 | 0.64 | Ca–Mg–HCO3 | |
GW03 | 7.85 | 41.14 | 31.98 | 1.91 | 47.11 | 30.81 | 34.03 | 288.8 | 28.64 | 0.97 | Ca–Mg–HCO3 | |
GW04 | 7.88 | 38.49 | 29.81 | 2.02 | 47.41 | 26.61 | 32.94 | 279.6 | 26.01 | 1.11 | Na–Ca–HCO3 | |
GW05 | 7.83 | 53.1 | 20.88 | 2.7 | 98.98 | 51.12 | 53.17 | 374.2 | 2.14 | 1.36 | Na–Ca–HCO3 | |
Spring water | Q01 | 7.52 | 72.48 | 24.71 | 3.48 | 12.58 | 5.95 | 97.62 | 240.3 | 13.82 | 0.3 | Ca–HCO3 |
Q02 | 8.47 | 25.45 | 54.7 | 2.88 | 16.46 | 5.6 | 75.34 | 271.6 | 5.31 | 0.47 | Ca–HCO3 | |
Rain water | YS01 | 7.15 | 20.1 | 1.97 | 2.54 | 1.56 | 4.2 | 23.96 | 30.72 | 14.56 | 0.55 | Ca–HCO3 |
Water Type | Sample | γNa+/γCl− | γSO42− × 100/γCl− | γCa2+/γMg2+ |
---|---|---|---|---|
Thermal water | WQ01 | 1.88 | 25.83 | 3.58 |
Geothermal well water | DR02 | 2.25 | 30.61 | 3.5 |
DR01 | 3.06 | 30.87 | 6.28 | |
YG1 | 2.46 | 34.82 | 8.4 | |
YG2 | 2.48 | 36.85 | 4.62 | |
YG6 | 2.18 | 44.18 | 2.51 | |
Well water | GW01 | 0.93 | 64.43 | 2.19 |
GW03 | 2.36 | 40.01 | 0.77 | |
GW04 | 2.75 | 44.84 | 0.77 | |
GW05 | 2.99 | 37.68 | 1.53 | |
Spring water | Q01 | 3.26 | 594.33 | 1.76 |
Q02 | 4.54 | 487.35 | 0.28 | |
Rain water | YS | 0.57 | 206.65 | 6.12 |
Geothermometer | Empirical Formula |
---|---|
Quartz (conduction cooling) | T = [1309/(5.19 − lgS)] − 273 |
Chalcedony | T = [1032/(4.69 − lgS)] − 273 |
Temperature (°C) | Pressure (Bars) | Enthalpy (cal/g) | SiO2 Content (mg/L) |
---|---|---|---|
50 | 0.12 | 50 | 13.5 |
75 | 0.39 | 75 | 26.6 |
100 | 1.01 | 100.1 | 48 |
125 | 2.32 | 125.4 | 80 |
150 | 4.76 | 151 | 125 |
175 | 8.92 | 177 | 185 |
200 | 15.54 | 203.6 | 265 |
225 | 25.48 | 230.9 | 365 |
250 | 39.73 | 259.2 | 486 |
Tgw | TQ | TC | TMul | TS-E | |
---|---|---|---|---|---|
WQ-01 | 39.5 | 73.79 | 53.36 | 85 | 80 |
DR-02 | 40 | 87.52 | 68.49 | 98 | 120 |
DR-01 | 38.4 | 91.26 | 73.21 | 72 | 135 |
YG1 | 28.7 | 95.02 | 78.42 | 90 | 175 |
YG2 | 30 | 92.54 | 74.91 | 79 | 172 |
YG6 | 34 | 89.56 | 71.01 | 82 | 145 |
Water Type | Sample | δ2HVSMOW (‰) | δ18OVSMOW (‰) | Elevation (m a.s.l.) | Recharge Elevation (m a.s.l.) |
---|---|---|---|---|---|
Thermal water | WQ-01 | −81 | −10.4 | 1069 | 1134 |
Geothermal well water | DR-02 | −82 | −11 | 1069 | 1136 |
DR-01 | −86 | −11.7 | 1087 | 1157 | |
YG1 | −80 | −10.4 | 1065 | 1130 | |
YG2 | −82 | −10.6 | 1064 | 1129 | |
YG6 | −74 | −9.5 | 1083 | 1144 |
Albite | Calcite | Chalcedony | Dolomite | Gypsum | K-Feldspar | Halite | Kaolinite | Muscovite | |
---|---|---|---|---|---|---|---|---|---|
WQ01 | 4.05 × 10−3 | −2.23 × 10−3 | 8.02 × 102 | −5.74 × 10−4 | −9.69 × 10−4 | −4.01 × 102 | 3.14 × 10−3 | −4.01 × 102 | 4.01 × 102 |
DR01 | 2.56 × 10−3 | −1.01 × 10−3 | 4.09 × 102 | −3.54 × 10−4 | −8.15 × 10−4 | −2.05 × 102 | 5.71 × 10−4 | −2.05 × 102 | 2.05 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wei, S.; Zhang, W.; Liu, F.; Liao, Y. Reservoirs and Hydrogeochemical Characterizations of the Yanggao Geothermal Field in Shanxi Province, China. Water 2024, 16, 669. https://doi.org/10.3390/w16050669
Yan X, Wei S, Zhang W, Liu F, Liao Y. Reservoirs and Hydrogeochemical Characterizations of the Yanggao Geothermal Field in Shanxi Province, China. Water. 2024; 16(5):669. https://doi.org/10.3390/w16050669
Chicago/Turabian StyleYan, Xiaoxue, Shuaichao Wei, Wei Zhang, Feng Liu, and Yuzhong Liao. 2024. "Reservoirs and Hydrogeochemical Characterizations of the Yanggao Geothermal Field in Shanxi Province, China" Water 16, no. 5: 669. https://doi.org/10.3390/w16050669
APA StyleYan, X., Wei, S., Zhang, W., Liu, F., & Liao, Y. (2024). Reservoirs and Hydrogeochemical Characterizations of the Yanggao Geothermal Field in Shanxi Province, China. Water, 16(5), 669. https://doi.org/10.3390/w16050669