Adsorption of Sb(III) from Solution by Immobilized Microcystis aeruginosa Microspheres Loaded with Magnetic Nano-Fe3O4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Immobilized Microcystis aeruginosa Microspheres Loaded with Magnetic Nano-Fe3O4 Adsorbent Materials
2.2. Orthogonal Experimental Design
2.3. Characterisation Methods and Sb(III) Concentration Determination
2.4. Adsorption Probe Test
2.5. Adsorption Isotherm Model and Adsorption Kinetics Experiment
2.6. Desorption Test
3. Results and Discussion
3.1. Optimal Preparation Conditions for Immobilized Microcystis aeruginosa Microspheres Loaded with Magnetic Nano-Fe3O4 Adsorbent Materials
3.2. Morphology and Performance Characterization of Immobilized Microcystis aeruginosa Microspheres
3.3. Effect of pH on Adsorption Performance
3.4. Influence of Adsorption Material Dosage and Adsorption Time on the Adsorption Process
3.5. Characteristics of Isothermal Adsorption Model
3.6. Adsorption Kinetics Characteristics
3.7. Adsorption Mechanism of Sb(III) by Adsorbent Materials
3.8. Desorption Characteristics of Immobilized Microcystis aeruginosa Microspheres
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Filella, M.; Belzile, N.; Chen, Y. Antimony in the environment: A review focused on natural waters I. Occurrence. Earth-Sci. Rev. Int. Geol. J. Bridg. Gap Between Res. Artic. Textb. 2002, 57, 125–176. [Google Scholar]
- Wu, F.; Zheng, J.; Pan, X.; Li, W.; Deng, Q.; Mo, C.; Zhu, J.; Liu, B.; Shao, S.; Guo, J. Prospect of Environmental Biogeochemical Cycle and Effect of Antimony. Adv. Earth Sci. 2008, 23, 350–356. (In Chinese) [Google Scholar]
- Indika, H.; Meththika, V.; Jochen, B. Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut. 2017, 223, 545–559. [Google Scholar]
- Li, Z.; Yang, J.; Sun, C.; Bai, R. Research progress in the treatment methods for antimony pollution in water. Ind. Water Treat. 2018, 38, 12–16. (In Chinese) [Google Scholar]
- Du, X.; Qu, F.; Liang, H.; Li, K.; Yu, H.; Bai, L.; Li, G. Removal of antimony (III) from polluted surface water using a hybrid coagulation–flocculation–ultrafiltration (CF–UF) process. Chem. Eng. J. 2014, 254, 293–301. [Google Scholar] [CrossRef]
- Deng, R.; Jing, C.; Hou, B.; Tang, Z.; REN, B. Research progress of microorganism treating antimony-containing wastewater. Environ. Pollut. Control 2018, 40, 465–472. (In Chinese) [Google Scholar]
- He, M.; Wang, N.; Long, X.; Zhang, C.; Ma, C.; Zhong, Q.; Wang, A.; Wang, Y.; Aneesa, P.; Shan, J. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects. J. Environ. Sci. 2019, 75, 14–39. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wu, Z.; He, M. Removal of antimony(V) and antimony (III) from drinking water by coagulation–flocculation–sedimentation (CFS). Water Res. 2009, 43, 4327–4335. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Dang, Q.; Liu, C.; Yang, J.; Fan, B.; Cai, J.; Li, J. Preparation and characterization of carboxyl-functionalized chitosan magnetic microspheres and submicrospheres for Pb2+ removal. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 353–364. [Google Scholar] [CrossRef]
- Gan, Y.; Ding, C.; Xu, B.; Liu, Z.; Zhang, S.; Cui, Y.; Wu, B.; Huang, W.; Song, X. Antimony (Sb) pollution control by coagulation and membrane filtration in water/wastewater treatment: A comprehensive review. J. Hazard. Mater. 2023, 442, 130072. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, D.; Sinha, R.; Faggio, C. Advances in biological methods for the sequestration of heavy metals from water bodies: A review. Environ. Toxicol. Pharmacol. 2022, 94, 103927. [Google Scholar] [CrossRef]
- Li, R.; Wang, B.; Niu, A.; Cheng, N.; Chen, M.; Zhang, X.; Yu, Z.; Wang, S. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review. Sci. Total Environ. 2022, 837, 155563. [Google Scholar] [CrossRef]
- Bustos-Terrones, Y.A.; Bandala, E.R.; Moeller-Chávez, G.E.; Bustos-Terrones, V. Enhanced biological wastewater treatment using sodium alginate-immobilized microorganisms in a fluidized bed reactor. Water Sci. Eng. 2022, 15, 125–133. [Google Scholar] [CrossRef]
- Wu, M.; Li, Y.; Li, J.; Wang, Y.; Xu, H.; Zhao, Y. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials. J. Hazard. Mater. 2019, 368, 412–420. [Google Scholar] [CrossRef]
- Guo, Q.; Erick R, B.; Ashantha, G.; Hong, N.; Li, Y.; Liu, A. Application of Chlorella pyrenoidosa embedded biochar beads for water treatment. J. Water Process Eng. 2021, 40, 101892. [Google Scholar] [CrossRef]
- Si, S.; Ke, Y.; Xue, B.; Zhang, Z.; Zhu, X. Immobilized sulfate reducing bacteria (SRB) enhanced passivation performance of biochar for Zn. Sci. Total Environ. 2023, 892, 164556. [Google Scholar] [CrossRef] [PubMed]
- Zan, F.; Huo, S.; Xi, B.; Zhao, X. Characteristics of biosorption of Cd2+ and Cu2+ by free and immobilized Saccharomyces cerevisiae. Chin. J. Environ. Eng. 2011, 5, 2473–2480. (In Chinese) [Google Scholar]
- An, Q.; Ran, B.; Deng, S.; Jin, N.; Zhao, B.; Song, J.; Fu, S. Peanut shell biochar immobilized Pseudomonas hibiscicola strain L1 to remove electroplating mixed-wastewater. J. Environ. Chem. Eng. 2023, 11, 109411. [Google Scholar] [CrossRef]
- Gong, Y.; Niu, Q.; Liu, Y.; Dong, J.; Xia, M. Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review. Environ. Pollut. 2022, 314, 120232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, J.; Deng, Y.; Tian, Y.; Zhang, G.; Liao, J.; Yang, J.; Yang, Y.; Liu, N.; Sun, Q. Uranium(VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J. Clean. Prod. 2019, 236, 117624. [Google Scholar] [CrossRef]
- Chen, W.; Cheng, Y.; Gary, O.; Chen, Z. Self-immobilized bio-nanomaterials based on hybridized green reduced graphene and Burkholderia vietnamiensis C09V for enhanced removal of Sb species from mine wastewater. Chem. Eng. J. 2023, 472, 145002. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Ni, M.; Zhang, X.; Chen, Y.; Liu, S.; Li, H. Studies on Adsorption Properties of Pb2+ by Modified Sodium Alginate Microspheres. Environ. Sci. Technol. 2019, 42, 100–104. (In Chinese) [Google Scholar]
- Fares, M.M.; AbuAl-Rub, F.A.; Talafha, T. Diblock Sodium Alginate Grafted Poly (N-vinylimidazole) in blank copolymeric beads and immobilized algal beads for water treatment. Chem. Eng. Res. Des. 2020, 153, 603–612. [Google Scholar] [CrossRef]
- Shen, H.; Pan, S.; Zhang, Y.; Huang, X.; Gong, H. A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu(II), Cr(VI) co-existing water system. Chem. Eng. J. 2012, 183, 180–191. [Google Scholar] [CrossRef]
- Liu, P.; Rao, D.; Zou, L.; Teng, Y.; Yu, H. Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars. Sci. Total Environ. 2021, 767, 145447. [Google Scholar] [CrossRef] [PubMed]
- Zhadra, T.; Sagdat, T.; Wojciech, K.; Bolatkhan, Z.; Kuanyshbek, M. Peculiarities of adsorption of Cr (VI) ions on the surface of Chlorella vulgaris ZBS1 algae cells. Heliyon 2022, 8, e10468. [Google Scholar]
- Zhang, C.; Lai, M.; Zhang, L.; Yu, S.; Li, Y.; Guo, J. Capturing effects of filamentous fungi Aspergillus flavus ZJ-1 on microalgae Chlorella vulgaris WZ-1 and the application of their co-integrated fungi-algae pellets for Cu(II) adsorption. J. Hazard. Mater. 2023, 442, 130105. [Google Scholar] [CrossRef]
- He, W.; Han, W.; Hui, Z.; Qun, Y. Adsorption and Fenton-like removal of chelated nickel from Zn-Ni alloy electroplating wastewater using activated biochar composite derived from Taihu blue algae. Chem. Eng. J. 2020, 379, 122372. [Google Scholar]
- Muhammad, M.H.; Jianxu, W.; Irshad, B.; Muhammad, S.; Nabeel, K.N.; Jibran, I.; Ishaq, A.M.; Sabry, M.S.; Safdar, B.; Noor, S.S.; et al. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. J. Hazard. Mater. 2021, 403, 124027. [Google Scholar]
- Ungureanu, G.; Filote, C.; Santos, S.C.R.; Boaventura, R.A.R.; Volf, I.; Botelho, C.M.S. Antimony oxyanions uptake by green marine macroalgae. J. Environ. Chem. Eng. 2016, 4, 3441–3450. [Google Scholar]
- Wu, F.; Sun, F.; Wu, S.; Yan, Y.; Xing, B. Removal of antimony(III) from aqueous solution by freshwater cyanobacteria Microcystis biomass. Chem. Eng. J. 2012, 183, 172–179. [Google Scholar] [CrossRef]
- Sun, F.; Wu, F.; Liao, H.; Xing, B. Biosorption of antimony(V) by freshwater cyanobacteria Microcystis biomass: Chemical modification and biosorption mechanisms. Chem. Eng. J. 2011, 171, 1082–1090. [Google Scholar] [CrossRef]
- Yang, N.; Yang, X.; Ren, L.; Qian, X.; Xiao, L. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu. J. Lake Sci. 2019, 31, 18–27. (In Chinese) [Google Scholar]
- Sun, F.; Hu, X.; Guo, F.; Wu, F. Biosorption Characteristics of Sb(III) by Microcystis Biosorbent. Res. Environ. Sci. 2016, 29, 1857–1864. (In Chinese) [Google Scholar]
- Gabriela, U.; Silvia, S.; Rui, B.; Cidalia, B. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar]
- Gu, S.; Lan, C.Q. Effects of culture pH on cell surface properties and biosorption of Pb(II), Cd(II), Zn(II) of green alga Neochloris oleoabundans. Chem. Eng. J. 2023, 468, 143579. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ju, N.; Jia, H.; Sun, Z.; Liang, J.; Guo, R.; Niu, D.; Sun, H. High capacity adsorption of antimony in biomass-based composite and its consequential utilization as battery anode. J. Environ. Sci. 2023, 126, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Du, C.; Yuan, H.; Zhang, J.; Chen, H.; Yu, G.; Hu, X.; Peng, X. Adsorption of Cd2+ in wastewater through modified magnetic nanoparticles immobilizing endogenous bacterium Bacillus nealsonii. Acta Sci. Circumstantiae 2016, 36, 4376–4383. (In Chinese) [Google Scholar]
- Basit, A.K.; Mahtab, A.; Sajid, I.; Fath, U.; Nanthi, B.; Zakaria, M.S.; Munib, A.S.; Kadambot, H.M.S. Adsorption and immobilization performance of pine-cone pristine and engineered biochars for antimony in aqueous solution and military shooting range soil: An integrated novel approach. Environ. Pollut. 2023, 317, 120723. [Google Scholar]
- Yin, K.; Wang, J.; Zhai, S.; Xu, X.; Li, T.; Sun, S.; Xu, S.; Zhang, X.; Wang, C.; Hao, Y. Adsorption mechanisms for cadmium from aqueous solutions by oxidant-modified biochar derived from Platanus orientalis Linn leaves. J. Hazard. Mater. 2022, 428, 128261. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Li, Y.; Zeng, W.; Yang, G.; Zeng, J.; Nie, J.; Zhou, Y. Synergistic adsorption and oxidation of trivalent antimony from groundwater using biochar supported magnesium ferrite: Performances and mechanisms. Environ. Pollut. 2023, 323, 121318. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Xiang, T.; Huang, X.; Li, C.; Zhao, W.; Zhang, Q.; Zhao, C. Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals. Carbohydr. Polym. 2015, 133, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Xu, Y.; Dai, Y.; Luo, W.; Dai, L. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake. J. Hazard. Mater. 2012, 215–216, 17–24. [Google Scholar] [CrossRef]
- Ahmad, R.B.; Mehrorang, G.; Arash, A.; Ali, A.B.; Ramin, J. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: Experimental design methodology. Ultrason. Sonochem. 2017, 34, 294–304. [Google Scholar]
- Tella, M.; Pokrovski G, S. Antimony(III) complexing with O-bearing organic ligands in aqueous solution: An X-ray absorption fine structure spectroscopy and solubility study. Geochim. Cosmochim. Acta 2009, 73, 268–290. [Google Scholar] [CrossRef]
Level | Mass Fraction of Sodium Alginate A | Mass Fraction of Nano Fe3O4 B | Mass Fraction of Microcystis Suspension C |
---|---|---|---|
1 | 2.5% | 1.5% | 50% |
2 | 2.0% | 1% | 30% |
3 | 1.5% | 0.5% | 15% |
4 | 1.0% | 0 | 0 |
Numbers | Factors | Removal Rate (%) | ||
---|---|---|---|---|
A | B | C | ||
1 | 1 | 1 | 1 | 90.5% |
2 | 1 | 2 | 2 | 87.4% |
3 | 1 | 3 | 3 | 79.8% |
4 | 1 | 4 | 4 | 60.2% |
5 | 2 | 1 | 2 | 86.8% |
6 | 2 | 2 | 1 | 84.2% |
7 | 2 | 3 | 4 | 66.7% |
8 | 2 | 4 | 3 | 68.5% |
9 | 3 | 1 | 3 | 73.2% |
10 | 3 | 2 | 4 | 73.0% |
11 | 3 | 3 | 1 | 82.9% |
12 | 3 | 4 | 2 | 70.0% |
13 | 4 | 1 | 4 | 72.6% |
14 | 4 | 2 | 3 | 77.5% |
15 | 4 | 3 | 2 | 76.4% |
16 | 4 | 4 | 1 | 70.8% |
K1 | 317.8% | 323.1% | 328.4% | |
K2 | 306.2% | 322.2% | 320.6% | |
K3 | 299.2% | 305.7% | 299.0% | |
K4 | 297.3% | 269.5% | 272.5% | |
R | 5.13% | 13.39% | 13.99% |
Source of Variance | Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Intercept | 9.310 | 1 | 9.310 | 8586.664 | 0.000 |
Mass fraction of sodium alginate A | 0.006 | 3 | 0.002 | 1.992 | 0.217 |
Mass fraction of Nano-Fe3O4 B | 0.047 | 3 | 0.016 | 14.452 | 0.004 |
Mass fraction of Microcystis suspension C | 0.047 | 3 | 0.016 | 14.495 | 0.004 |
Residual | 0.007 | 6 | 0.001 |
T/K | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|
qm (mg/g) | KL | RL | R2 | KF | 1/n | R2 | |
293 | 12.1622 | 0.0446 | 0.1008~0.8177 | 0.9782 | 1.4154 | 0.4295 | 0.9639 |
298 | 13.4515 | 0.0452 | 0.0996~0.8157 | 0.9849 | 1.5242 | 0.4358 | 0.9373 |
303 | 9.7630 | 0.0582 | 0.0791~0.7746 | 0.9866 | 1.4454 | 0.3864 | 0.9649 |
Pseudo-First Order Kinetic Model | Pseudo-Second Order Kinetic Model | ||||
---|---|---|---|---|---|
k1 (min−1) | qe (mg/g) | R2 | k2 (min−1) | qe (mg/g) | R2 |
1.0741 | 1.9935 | 0.9943 | 0.7481 | 2.1751 | 0.9948 |
Surface Diffusion | Endodiffusion | ||||
---|---|---|---|---|---|
kp (mg·g−1·h0.5) | Cp | R2 | kp (mg·g−1·h0.5) | Cp | R2 |
0.7800 | 0.5033 | 0.8885 | 0.0782 | 1.7788 | 0.7122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Jiao, Y.; Zou, J.; Zheng, Z.; Zhu, G.; Deng, R.; Wang, C.; Peng, Y.; Wang, J. Adsorption of Sb(III) from Solution by Immobilized Microcystis aeruginosa Microspheres Loaded with Magnetic Nano-Fe3O4. Water 2024, 16, 681. https://doi.org/10.3390/w16050681
Zhou S, Jiao Y, Zou J, Zheng Z, Zhu G, Deng R, Wang C, Peng Y, Wang J. Adsorption of Sb(III) from Solution by Immobilized Microcystis aeruginosa Microspheres Loaded with Magnetic Nano-Fe3O4. Water. 2024; 16(5):681. https://doi.org/10.3390/w16050681
Chicago/Turabian StyleZhou, Saijun, Yong Jiao, Jiarong Zou, Zhijie Zheng, Guocheng Zhu, Renjian Deng, Chuang Wang, Yazhou Peng, and Jianqun Wang. 2024. "Adsorption of Sb(III) from Solution by Immobilized Microcystis aeruginosa Microspheres Loaded with Magnetic Nano-Fe3O4" Water 16, no. 5: 681. https://doi.org/10.3390/w16050681
APA StyleZhou, S., Jiao, Y., Zou, J., Zheng, Z., Zhu, G., Deng, R., Wang, C., Peng, Y., & Wang, J. (2024). Adsorption of Sb(III) from Solution by Immobilized Microcystis aeruginosa Microspheres Loaded with Magnetic Nano-Fe3O4. Water, 16(5), 681. https://doi.org/10.3390/w16050681