Water Quality Estimation Using Gaofen-2 Images Based on UAV Multispectral Data Modeling in Qinba Rugged Terrain Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Multispectral Data Acquisition and Preprocessing for UAVs
2.3. Water Sample Collection
2.4. Data Acquisition and Processing of Gaofen-2 Data
2.5. Establishment of UAV Multispectral Water Quality Estimation Model
2.6. Comparison of Multispectral Images from UAVs and Gaofen-2
3. Results
3.1. Relative Deviation between UAV and Gaofen-2 Multispectral Images
3.2. Establishment of Water Quality Estimation Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Bing, H.; Peng, J.; Dong, F.; Gao, J.; Arhonditsis, G. Characterizing the river water quality in China: Recent progress and on-going challenges. Water Res. 2021, 201, 117309. [Google Scholar] [CrossRef] [PubMed]
- The Ministry of Ecological Environment Announced the Environmental Quality of Surface Water in the Fourth Quarter of 2022 and from January to December in China. Available online: https://www.mee.gov.cn/ywdt/xwfb/202301/t20230129_1014067.shtml (accessed on 29 January 2023).
- Frumin, G.T.; Gildeeva, I.M. Eutrophication of water bodies—A global environmental problem. Russ. J. Gen. Chem. 2014, 84, 2483–2488. [Google Scholar] [CrossRef]
- Chen, T. Design and Implementation of Water Pollution Monitoring Visualization Based on IDL. Master’s Degree, University of Electronic Science and Technology of China, Chengdu, China, 2010. [Google Scholar]
- Wang, X.; Shi, Q.; Abdusalih, N.; Pan, X. Review on Monitoring of Lake Water Quality with the Remote Sensing Technology in Arid Areas of the West China. J. Agric. Sci. 2005, 26, 70–74. [Google Scholar]
- Bouraoui, F.; Grizzetti, B. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total Environ. 2014, 468, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Branch, R.A. Remote Sensing of Water Surface Variability Near River Mouths. Doctoral Dissertation, University of Washington, Seattle, WA, USA, 2020. [Google Scholar]
- Chu, H.-J.; He, Y.-C.; Chusnah, W.N.; Jaelani, L.M.; Chang, C.-H. Multi-Reservoir Water Quality Mapping from Remote Sensing Using Spatial Regression. Sustainability 2021, 13, 6416. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, H.; Sun, D.; Yue, J.; Yang, G.; Hu, J. An automated, high-performance approach for detecting and characterizing broccoli based on UAV remote-sensing and transformers: A case study from Haining, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103055. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, K.; Feng, H.; Fang, Y. Inversion of water quality elements in small and micro-size water region using multispectral image by UAV. J. Environ. Sci. 2019, 39, 1241–1249. [Google Scholar]
- Shi, R.; Zhang, H.; Yue, R.; Zhang, X.; Wang, M.; Mei, S. A wavelet theory based remote sensing inversion of chlorophyll a concentrations for inland lakes in arid areas using TM image data. Acta Ecol. Sin. 2017, 37, 1043–1053. [Google Scholar]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- Li, Y.; He, B. A Semi-Empirical Retrieval Method of Above-Ground Live Forest Fuel Loads by Combining SAR and Optical Data. Remote Sens. 2023, 15, 5. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, X.; Jiang, S. Study on the artificial neural network model for water quality remote sensing inversion in the Wei River. Remote Sens. Technol. Appl. 2009, 24, 63–67. [Google Scholar]
- Wang, X.; Zhou, Z.; Yan, J. Application of GA-SVM for multispectral remote sensing inversion of water quality parameters in the Wei River. J. Remote Sens. 2009, 13, 740–744. [Google Scholar]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Li, A.; Fan, M.; Qin, G.; Xu, Y.; Wang, H. Comparative Analysis of Machine Learning Algorithms in Automatic Identification and Extraction of Water Boundaries. Appl. Sci. 2021, 11, 10062. [Google Scholar] [CrossRef]
- Zhao, S.; Hou, Y.; Zhang, A.; Wang, H.; Ma, J. Remote sensing inversion of water quality of Fuyang river based on UAV multi-spectrral images. Geomat. Spat. Inf. Technol. 2022, 3, 81–85. [Google Scholar]
- Jia, Z.; Lv, T. Geological Characteristics and Stone-bearing Coal Analysis of Dove Formation in Shuanglong Area, Ankang City. Coal 2014, 23, 52–53. [Google Scholar]
- Gong, H.; Xu, Y.; Chen, H.; Ke, H. Temporal and Spatial Variation and Influencing Factors of Heavy Metals in the Water of the Chenjiagou River in a Certain Place. Northwestern Geol. 2023, 4, 169–183. [Google Scholar]
- Yang, X.; Ma, H. Thought on the characteristics and comprehensive utilization of stone coal. Shaanxi Coal 2013, 1, 11–13. [Google Scholar]
- Jia, Z. Geological Characteristics of the Stone Coal Belt in Haoping, Ankang City. Value Eng. 2014, 33, 310–311. [Google Scholar]
- Choosumrong, S.; Hataitara, R.; Sujipuli, K.; Chitpan, M. Bananas diseases and insect infestations monitoring using multi-spectral camera RTK UAV images. Spat. Inf. Res. 2023, 31, 371–380. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Jin, X.; Yuan, H.; Li, Z.; Zhou, C.; Yang, G.; Tian, Q. A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera. Remote Sens. 2018, 10, 1138. [Google Scholar] [CrossRef]
- GB 11893-89; Water Quality-Determination of Total Phosphorus-Ammonium Molybdate Spectrophotometric Method. China Environmental Science Press Co., Ltd.: Beijing, China, 1990.
- HJ 828-2017; Water Quality-Determination of the Chemical Oxygen Demand-Dichromate Method. China Environmental Science Press Co., Ltd.: Beijing, China, 2017.
- HJ 636-2012; Water Quality-Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. China Environmental Science Press Co., Ltd.: Beijing, China, 2012.
- Liang, S.; Wei, H.; Gan, F.; Chen, L.; Xiao, C. Preliminary Application Evaluation of GF-2 Satellite Data in Remote Sensing Geological Survey. Spacecr. Recovery Remote Sens. 2015, 4, 63–72. [Google Scholar]
- Prieto-Amparan, J.A.; Villarreal-Guerrero, F.; Martinez-Salvador, M.; Manjarrez-Domínguez, C.; Santellano-Estrada, E.; Pinedo-Alvarez, A. Atmospheric and Radiometric Correction Algorithms for the Multitemporal Assessment of Grasslands Productivity. Remote Sens. 2018, 10, 219. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Q.; Chen, Q.; Liu, X. Variational Pansharpening for Hyperspectral Imagery Constrained by Spectral Shape and Gram–Schmidt Transformation. Sensors 2018, 18, 4330. [Google Scholar] [CrossRef]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Zhao, Q.; Han, L.; Wang, S.; Zhang, D.; Fan, J.; Sun, G.; Yang, J.; Li, Y.; Wang, X. Study on the inversion of COD in water bodies in Guangzhou based on remote sensing. Sci. Technol. Innov. 2021, 9, 38–39. [Google Scholar]
- Liu, J.; Kuang, R.; Li, J.; Hu, M. Inversion Model of TN, TP Concentration Based on Measured Spectral Reflectance Data in Poyang Lake. Southwest China J. Agric. Sci. 2020, 9, 2088–2094. [Google Scholar]
- GB 3838-2002; Environmental Quality Standards for Surface Water. China Environmental Science Press Co., Ltd.: Beijing, China, 2002.
- DB61-262-1997; Dividing the Functional Zones of Surface Water Bodies in the Hanjiang River System (Shaanxi Section). China Environmental Science Press Co., Ltd.: Beijing, China, 1998.
- Xu, Y.; Chen, H.; Ke, H.; Gong, H.; Cheng, X.; Zhang, M.; Wang, X.; Zhao, Z. Analysis of White Pollution of River Aluminum in Stone Coalmining Area in Haoping River Basin and Its Causes. Northwestern Geol. 2023, 4, 128–140. [Google Scholar]
- Zhang, F.; Chan, N.W.; Liu, C.; Wang, X.; Shi, J.; Kung, H.-T.; Li, X.; Guo, T.; Wang, W.; Cao, N. Water Quality Index (WQI) as a Potential Proxy for Remote Sensing Evaluation of Water Quality in Arid Areas. Water 2021, 13, 3250. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Mu, X.; Chen, P.; Wang, B.; Choi, J.; Park, H.; Xu, S.; Wu, Y.; Yang, H. Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data. Ecol. Indic. 2021, 133, 108434. [Google Scholar] [CrossRef]
- Koparan, C.; Koc, A.B.; Privette, C.V.; Sawyer, C.B. In Situ Water Quality Measurements Using an Unmanned Aerial Vehicle (UAV) System. Water 2018, 10, 264. [Google Scholar] [CrossRef]
- Essam, S.; Zhang, Y.; Suliman, A. Mapping concentrations of surface water quality parameters using a novel remote sensing and artificial intelligence framework. Int. J. Remote Sens. 2017, 38, 1023–1042. [Google Scholar]
- Sandau, R.; Bries, K.; D’Errico, M. Small satellites for global coverage: Potential and limits. ISPRS J. Photogramm. Remote Sens. 2010, 65, 492–504. [Google Scholar] [CrossRef]
- Xi, X.; Zhao, G.; Gao, P.; Cui, K.; Li, T. Inversion of soil salinity in coastal winter wheat growing area based on sentinel satellite and unmanned aerial vehicle multi-spectrum: A case study in kenli district of the Yellow River Deltae. Sci. Agric. Sin. 2020, 53, 5005. [Google Scholar]
- Yang, X.; Zan, M.; Munige, M. Estimation of above ground biomass of Populus euphratica forest using UAV and satellite remotesensing. Trans. Chin. Soc. Agric. Eng. 2021, 37, 77. [Google Scholar]
- Gao, Y.; Liang, Z.; Wang, B.; Wu, Y.; Liu, S. UAV and satellite re-mote sensing images based above ground biomass inversion in the meadows of Shengjin Lake. J. Lake Sci. 2019, 31, 517. [Google Scholar]
- Cillero, C.; Domínguez, G.; Delgado, M. An UAV and satellite multispectral data approach to monitor water quality in small reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Qu, S.; Meng, Q.; Bo, L. Monitoring analysis and evaluation of physical and chemical indicators of Yinghu water quality. China Fish. 2023, 6, 68–70. [Google Scholar]
Multispectral Bands (nm) | Spatial Resolution (cm) | Focal Length (mm) | Field of VIEW (°) | Aperture |
---|---|---|---|---|
450/560/650/730/840 | 10 | 5.74 | 62.7 | f/2.2 |
Sensors | Bands | Spectral Range (nm) | Spatial Resolution of Subsatellite Point (m) | Swath Width (km) | Sway (°) | Pass Frequency (Day−1) |
---|---|---|---|---|---|---|
PAN | 1 | 450~900 | 0.8 | 20 | ±26 | 1 |
MSI | 1 | 450~520 | 3.2 | 20 | ±26 | 1 |
2 | 520~590 | |||||
3 | 630~690 | |||||
4 | 770~890 |
Parameters | Models | R2 |
---|---|---|
Chemical oxygen demand (COD) | 0.804 | |
Total phosphorus (TP) | 0.808 | |
Total nitrogen (TN) | 0.9177 |
Class I | Class II | Class III | Class IV | Class V | |
---|---|---|---|---|---|
COD | ≤15 | ≤15 | ≤20 | ≤30 | ≤40 |
TP | ≤0.02 | ≤0.1 | ≤0.2 | ≤0.3 | ≤0.4 |
TN | ≤0.2 | ≤0.5 | ≤1.0 | ≤1.5 | ≤2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Cao, Y.; Yang, F.; Zhang, X.; Yang, M. Water Quality Estimation Using Gaofen-2 Images Based on UAV Multispectral Data Modeling in Qinba Rugged Terrain Area. Water 2024, 16, 732. https://doi.org/10.3390/w16050732
Han D, Cao Y, Yang F, Zhang X, Yang M. Water Quality Estimation Using Gaofen-2 Images Based on UAV Multispectral Data Modeling in Qinba Rugged Terrain Area. Water. 2024; 16(5):732. https://doi.org/10.3390/w16050732
Chicago/Turabian StyleHan, Dianchao, Yongxiang Cao, Fan Yang, Xin Zhang, and Min Yang. 2024. "Water Quality Estimation Using Gaofen-2 Images Based on UAV Multispectral Data Modeling in Qinba Rugged Terrain Area" Water 16, no. 5: 732. https://doi.org/10.3390/w16050732
APA StyleHan, D., Cao, Y., Yang, F., Zhang, X., & Yang, M. (2024). Water Quality Estimation Using Gaofen-2 Images Based on UAV Multispectral Data Modeling in Qinba Rugged Terrain Area. Water, 16(5), 732. https://doi.org/10.3390/w16050732