Study on Hydrochemical Characteristics and Interactions between Groundwater and Surface Water in the Dongting Lake Plain
Abstract
:1. Introduction
2. Overview of the Study Area
3. Materials and Methods
3.1. Sample Collection and Testing
3.2. Data Processing and Methods
4. Results and Analysis
4.1. Characterization of the Hydrochemical Composition in Groundwater and Surface Water
4.2. Types of Water Chemistry
4.3. Interrelationships of Chemical Indicators
4.4. Hydrogen and Oxygen Isotope Characterization
5. Discussion
5.1. Water Chemical Ion Sources and Control Factors
5.2. Transformational Ratio between Groundwater and Surface Water
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, P.; Qian, H. Water resources research to support as sustainable China. Int. J. Water Resour. Dev. 2018, 34, 327–336. [Google Scholar]
- Gao, Z.; Wan, Z.; He, K.; Wei, K.; Liu, J. Hydro-chemical characteristics and controlling factors of karst groundwater in middle and upper reaches of Dawen River basin. Bull. Geol. Sci. Technol. 2022, 41, 264–272. [Google Scholar]
- Chen, J.; Jiang, S.; Yang, X.; Wang, H.; Liu, W. Study on hydro-chemical characteristics and controlling factors of the upper reach of Dagu River basin. Geol. Rev. 2022, 68, 1853–1862. [Google Scholar]
- Wang, G.; Zhang, Y.; Gou, Q.; Zhang, Z.; Sun, J. Hydro-chemical characteristics of surface water and groundwater in oasis edge in the middle reaches of the Heihe River basin. Sci. Geogr. Sin. 2022, 42, 1818–1828. [Google Scholar]
- Yi, B.; Liu, J.; Lu, X.; He, W.; Zhu, L. Hydro-chemical and Isotopic Evidence for Groundwater Conversion of Surface Water in Alpine Ard Areas: A Case Study of the Datong River Basin. Environ. Sci. 2023, 44, 752–760. [Google Scholar]
- Pei, S.; Duan, L.; Miao, P.; Pan, H.; Cui, C. Water Chemical isotope Characteristics and Water Transformation Relationship in Mongolian Section of the Yellow River Basin. Environ. Sci. 2023, 44, 4863–4873. [Google Scholar] [CrossRef]
- Lambs, L. Interactions between groundwater and surface water at river banks and the confluence of rivers. J. Hydrol. 2004, 288, 312–326. [Google Scholar] [CrossRef]
- Nie, Z.; Chen, Z.; Cheng, X.; Hao, M.; Zhang, G. The chemical information of the interaction of unconfined Groundwater and Surface water along the Heihe River, northwestern China. J. Jilin Univ. (Earth Sci. Ed.) 2005, 35, 48–53. [Google Scholar]
- Xiao, Y.; Shao, J.; Cui, Y. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, Northwest China. J. Earth Syst. Sci. 2017, 126, 26. [Google Scholar]
- Liang, B. The Application of Hydro-Chemical Characteristics on Transform Relationship between Surface Water and Groundwater in the Hotan River Basin; Xinjiang University: Wulumuqi, China, 2018. [Google Scholar]
- Yang, H.; Wei, J.; Ren, Q. Interaction between surface water and groundwater and hydro-chemical characteristics in the typical watersheds of the Qaidam Basin. Arid Zone Res. 2022, 39, 1543–1554. [Google Scholar]
- Busico, G.; Cuoco, E.; Kazakis, N. Multivariate statistical analysis to characterize discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environ. Pollut. 2018, 234, 260–269. [Google Scholar] [CrossRef]
- Dong, J.; Duan, Q.; Zhao, D. A combined method for the source apportionment of sediment organic carbon in rivers. Sci. Total Environ. 2021, 752, 141840. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Lai, C.; Ding, Y.; Wang, Z.; Cheng, Z. Natural water chemistry change in the surface water of Chengdu and impact factors. Environ. Sci. 2021, 42, 5364–5374. [Google Scholar]
- Liu, W.; Gao, Z.; Xu, Y.; Han, C.; Luo, Z.; Zhao, Z. Hydro-chemical characteristics and water quality evaluation of karst groundwater in Jinan City. Carsologica Sin. 2022, 42, 220–232. [Google Scholar]
- Lu, J.; An, Y.; Wu, Q.; Luo, J.; Jiang, H. Hydro-chemical Characteristics and Sources of Qingshuijiang River Basin at Wet Season in Guizhou Province. Environ. Sci. 2015, 36, 1565–1572. [Google Scholar]
- Song, J.; Cheng, D.; Zhang, J. Estimating spatial pattern of hyporheic water exchange in slack water pool. J. Geogr. Sci. 2019, 29, 377–388. [Google Scholar]
- Schmalz, B.; Springer, P.; Fohrer, N. Variability of water quality in a riparian wetland with interacting shallow groundwater and surface water. J. Plant Nutr. Soil Sci. 2009, 172, 757–768. [Google Scholar] [CrossRef]
- Kong, X.; Wang, S.; Liu, B. Impact of water transfer on interaction between surface water and groundwater in the lowland area of North China Plain. Hydrol. Process. 2018, 32, 2044–2057. [Google Scholar] [CrossRef]
- Lei, M.; Zhou, J.; Zhang, J.; Chen, Y.; Teng, J. Hydro-chemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River basin, Xinjiang. Environ. Sci. 2022, 43, 1873–1884. [Google Scholar]
- Ping, J.; Cao, J.; Su, X.; Ye, X.; Jiang, J. Application of isotopic technique in the research of the affected range of lateral seepage of the down-Yellow River water. J. Jilin Univ. (Earth Sci. Ed.) 2004, 34, 400–404. [Google Scholar]
- Zhao, W.; Ma, J.; He, J. Groundwater recharge and geochemical evolution in the Dunhuang basin of Danghe River, northwest. China. Arid Land Geogr. 2015, 38, 1133–1141. [Google Scholar]
- Zhang, H.; Yu, K.; Li, Z.; Li, P.; Zhao, B. Characteristics of hydrogen and oxygen isotopes in different water bodies in hilly and gully regions of the loess plateau. Environ. Sci. 2019, 40, 3030–3038. [Google Scholar]
- Zhu, P.; Su, X.; Zhang, S.; Huang, Y.; Yang, F. Study on the Interaction Relationship Between Surface Water and Groundwater in Nalingguole River Alluvial-Proluvial Fan. Yellow River 2014, 36, 60–64. [Google Scholar]
- Zhang, B.; Song, X.; Zhang, Y. A study of the interrelation between surface water and groundwater using isotopes and chlorofluorocarbons in Sanjiang plain, Northeast China. Environ. Earth Sci. 2014, 72, 3901–3913. [Google Scholar]
- Freitas, J.G.; Furquim, A.C.; Aravena, R. Interaction between lakes’ surface water and groundwater in the Pantanal wetland, Brazil. Environ. Earth Sci. 2019, 78, 139. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Zhang, L. Watershed scale spatiotemporal nitrogen transport and source tracing using dual isotopes among surface water, sediments and groundwater in the Yiluo River Watershed, middle of China. Sci. Total Environ. 2022, 833, 155180. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, X.; Xia, J.; Yu, J.; Tang, C. A study of interaction between surface water and Groundwater using environmental isotope in Huaisha River basin. Sci. China Ser. D Earth Sci. 2006, 49, 1299–1310. [Google Scholar]
- Lei, Y.; Cao, S.; Cao, G.; Yang, Y.; Lan, K.; Ji, Y.; Li, H. Study on surface water and groundwater interaction of Shaliu River basin in Qinghai Lake in different periods. J. Nat. Resour. 2020, 35, 2528–2538. [Google Scholar]
- Hao, S.; Li, F.; Li, Y.; Gu, C.; Zhang, Q.; Qiao, Y.; Jiao, L.; Zhu, N. Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin. Sci. Total Environ. 2018, 657, 1041–1050. [Google Scholar]
- Li, J. Optimization of Water Resources Utilization in the Process of Urbanization in Dongting Lake District; Hunan Normal University: Changsha, China, 2013. [Google Scholar]
- Zhang, J.; Xu, K.; Yang, Y.; Qi, L.; Hayashi, S.; Watanabe, M. Measuring water storage fluctuations in lake Dongting, China, by topex/poseidon satellite altimetry. Environ. Monit. Assess. 2006, 115, 23–37. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, S.; Huang, G.; Zhang, R. Analysis of Long-Term Water Level Variation in Dongting Lake, China. Water 2016, 8, 306. [Google Scholar] [CrossRef]
- Wang, H.; Huang, L.; Guo, Q.; Zhu, Y.; Yang, H.; Jiao, X.; Zhou, H. Evaluation of ecohydrological regime and its driving forces in the Dongting Lake, China. J. Hydrol. Reg. Stud. 2022, 41, 101067. [Google Scholar] [CrossRef]
- Hu, C.; Fang, C.; Cao, W. Shrinking of Dongting Lake and its weakening connection with the Yangtze River: Analysis of the impact on flooding. Int. J. Sediment Res. 2015, 30, 256–262. [Google Scholar]
- Dai, M.; Wang, J.; Zhang, M.; Chen, X. Impact of the Three Gorges Project operation on the water exchange between Dongting Lake and the Yangtze River. Int. J. Sediment Res. 2017, 32, 506–514. [Google Scholar] [CrossRef]
- Sun, X.; Du, Y.; Deng, Y.; Fan, H.; Ma, T. Contrasting lacustrine groundwater discharge and associated2 nutrient loads in different geological conditions. Hydrol. Earth Syst. Sci. 2021. [Google Scholar] [CrossRef]
- Sun, X.; Du, Y.; Deng, Y.; Fan, H.; Ma, T.; Gan, Y. Contrasting nutrients input along with groundwater discharge to east Dongting Lake, central China: A geological perspective. Ecol. Indic. 2022, 145, 109658. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, W.; Xiao, P.; Guan, Y.; Yao, T. Discussion on Compilation Thought and Mothodology of 1:450000 Hydrogeological Map of the Jianghan-Dongting Plain. South China Geol. 2020, 36, 396–403. [Google Scholar]
- Lu, S.; Zhou, N.; Jiang, S.; Zheng, X. Combining hydrochemistry and environmental isotopes to study hydrogeochemical evolution of karst groundwater in the Jinci spring area, North China. Carbonates Evaporites 2023, 38, 36. [Google Scholar] [CrossRef]
- Zheng, T.; Qin, X.; Wu, J. Hydrochemical Characteristics and Its Origin of Surface Water and Groundwater in Dianbu River Basin. Environ. Sci. 2024, 45, 813–825. [Google Scholar]
- Zhang, T.; Cai, W.; Li, Y. Major Ionic Features and Their Possible Controls in the Water of the Niyang River Basin. Environ. Sci. 2017, 38, 4537–4545. [Google Scholar]
- Ren, C.; Zhang, Q. Groundwater chemical characteristics and controlling factors in a region of Northern China with intensive human activity. Int. J. Environ. Res. Public Health 2020, 17, 9126. [Google Scholar] [CrossRef] [PubMed]
- CRAIG, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [PubMed]
- Zhang, P. Hydrogen-Oxygen Isotope Geochemistry and Environmental Indication of River Water in the Dabieshan Area, the Upper Watershed of Huaihe River, China; China University of Geosciences: Beijing, China, 2019. [Google Scholar]
- Zhang, L.; Chen, Z.; Nie, Z.; Liu, F.; Jia, Y.; Zhang, X. Correlation between 18O in precipitation and surface air temperature on different time-scale in China. Nucl. Tech. 2008, 31, 715–720. [Google Scholar]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar]
- Gaillardet, J.; Dupre, B.; Louvat, P. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar]
- Li, S.; Han, X.; Wang, W.; Li, Z. Hydro-chemical characteristics and controlling factors of surface water and groundwater in Wuding River basin. Environ. Seience 2022, 43, 220–229. [Google Scholar]
- Wen, G.; Wang, W.; Duan, L.; Gu, X.; Li, Y.; Zhao, J. Quantitative evaluation of the transformation relationship between surface water and groundwater in Bayin River Basin Based on hydrochemistry and stable isotopes. Arid. Area Geogrsphy 2018, 41, 734–743. [Google Scholar]
- Sun, X.; Du, Y.; Deng, Y.; Tao, Y.; Ma, T. Contribution and Its Temporal variation of Groundwater Discharge to the Water Mass Balance of Dongting Lake from 1996 to 2017. Earth Sci. 2021, 46, 2555–2564. [Google Scholar]
- He, Q.; Yu, D.; Yu, S.; Li, C.; Luo, W.; Yang, L.; Zou, J. Changes of Water Resources amount in Dongting Lake before and after the Operation of the Three Gorges Reservoir. Earth Sci. 2021, 46, 293–307. [Google Scholar]
- Lewandowski, J.; Meinikmann, K.; Krause, S. Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water 2020, 12, 296. [Google Scholar] [CrossRef]
- Turner, J.V. Estimation and Prediction of the Exchange of Groundwater and Surface Water: Field Methodologies; E Water Technical Report; E Water Cooperative Research Centre: Canberra, Australia, 2009. [Google Scholar]
- Vrzel, J.; Kip Solomon, D.; Blažeka, Ž.; Ogrinc, N. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia). J. Hydrol. 2018, 556, 384–396. [Google Scholar]
- Langhoff, J.H.; Rasmussen, K.R.; Christensen, S. Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J. Hydrol. 2006, 320, 342–358. [Google Scholar]
Type of Water Body | Statistical Value | PH | Total Hardness | TDS | K+ | Na+ | Ca2+ | Mg2+ | HCO3− | SO42− | Cl− | PO43− | NO3− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass Concentration ρ (mg/L) | ||||||||||||||
“The Three Inlets” water system | Surface water | mean | 7.29 | 161.46 | 224.77 | 3.61 | 13.52 | 43.02 | 13.06 | 164.15 | 36.18 | 20.09 | 0.12 | 6.30 |
min | 6.81 | 79.00 | 145.00 | 0.28 | 8.69 | 16.30 | 7.49 | 112.00 | 0.72 | 0.26 | 0.04 | 0.00 | ||
max | 7.53 | 187.00 | 245.00 | 7.58 | 16.50 | 47.50 | 16.60 | 225.00 | 42.00 | 44.90 | 0.19 | 8.46 | ||
std | 0.17 | 11.38 | 12.28 | 1.85 | 1.76 | 2.98 | 1.48 | 25.54 | 9.75 | 7.88 | 0.06 | 2.86 | ||
CV (%) | 2.27 | 7.05 | 5.46 | 51.11 | 13.01 | 6.92 | 11.35 | 15.56 | 26.94 | 39.23 | 53.19 | 45.37 | ||
Groundwater | mean | 7.27 | 288.15 | 407.75 | 5.35 | 24.37 | 75.77 | 24.01 | 380.45 | 29.87 | 20.50 | 0.83 | 12.20 | |
min | 6.81 | 79.00 | 145.00 | 0.28 | 8.69 | 16.30 | 7.49 | 112.00 | 0.72 | 0.26 | 0.04 | 0.00 | ||
max | 7.72 | 763.00 | 938.00 | 21.20 | 57.50 | 215.00 | 57.90 | 912.00 | 109.00 | 70.90 | 6.04 | 95.60 | ||
std | 0.23 | 194.54 | 211.55 | 6.04 | 11.90 | 55.50 | 14.29 | 230.78 | 31.41 | 20.77 | 1.30 | 21.81 | ||
CV (%) | 3.13 | 67.51 | 51.88 | 112.77 | 48.84 | 73.25 | 59.52 | 60.66 | 105.17 | 101.35 | 156.76 | 178.76 | ||
“The Four Rivers” Water system | Surface water | mean | 7.60 | 125.21 | 199.61 | 2.69 | 7.69 | 35.97 | 8.61 | 124.97 | 25.08 | 10.07 | 0.09 | 4.72 |
min | 7.00 | 57.40 | 82.60 | 1.23 | 2.27 | 17.20 | 3.32 | 65.20 | 11.20 | 2.34 | 0.02 | 0.22 | ||
max | 8.26 | 175.00 | 327.00 | 8.18 | 16.70 | 49.20 | 15.00 | 170.00 | 43.70 | 25.30 | 0.17 | 7.76 | ||
std | 0.33 | 39.16 | 70.60 | 1.65 | 5.66 | 9.78 | 4.10 | 38.84 | 12.91 | 7.80 | 0.05 | 2.45 | ||
CV (%) | 4.33 | 31.28 | 35.37 | 61.38 | 73.58 | 27.18 | 47.66 | 31.08 | 51.48 | 77.40 | 53.28 | 51.82 | ||
Groundwater | mean | 6.91 | 112.47 | 186.27 | 4.84 | 12.72 | 30.64 | 8.72 | 125.79 | 19.43 | 11.64 | 0.30 | 16.20 | |
min | 6.45 | 19.90 | 69.70 | 0.41 | 2.45 | 3.45 | 2.13 | 8.77 | 1.15 | 0.38 | 0.02 | 0.00 | ||
max | 7.56 | 382.00 | 507.00 | 24.00 | 32.80 | 104.00 | 36.90 | 627.00 | 74.10 | 43.70 | 2.59 | 103.00 | ||
std | 0.31 | 85.27 | 104.71 | 5.20 | 8.28 | 26.31 | 6.61 | 119.17 | 18.16 | 11.12 | 0.52 | 22.29 | ||
CV (%) | 4.56 | 75.81 | 56.21 | 107.52 | 65.10 | 85.87 | 75.76 | 94.74 | 93.48 | 95.48 | 172.82 | 137.66 | ||
Dongting Lake water | Surface water | mean | 7.55 | 130.92 | 335.79 | 2.92 | 9.03 | 36.95 | 9.40 | 135.41 | 24.92 | 11.65 | 0.07 | 4.00 |
min | 7.26 | 32.80 | 59.40 | 2.03 | 2.96 | 9.62 | 2.13 | 35.10 | 8.17 | 2.47 | 0.02 | 0.00 | ||
max | 7.87 | 194.00 | 914.00 | 6.33 | 16.20 | 51.60 | 16.50 | 247.00 | 42.40 | 21.70 | 0.13 | 7.58 | ||
std | 0.21 | 46.66 | 238.91 | 1.15 | 5.54 | 11.75 | 4.42 | 51.97 | 11.48 | 7.51 | 0.04 | 2.35 | ||
CV (%) | 2.72 | 35.64 | 71.15 | 39.38 | 61.42 | 31.80 | 47.09 | 38.38 | 46.08 | 64.45 | 50.12 | 58.80 |
Index | “The Three Inlets” Water System | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | NO3− | Soluble SiO2 | TDS | |
K+ | 1 | −0.706 ** | −0.130 | 0.816 ** | 0.694 ** | −0.900 ** | 0.329 | −0.841 ** | −0.424 | −0.015 |
Na+ | −0.116 | 1 | 0.136 | −0.467 | −0.431 | 0.804 ** | −0.272 | 0.663 ** | 0.339 | 0.330 |
Ca2+ | −0.124 | 0.095 | 1 | 0.410 | −0.733 ** | −0.012 | 0.876** | 0.275 | 0.696 ** | 0.875 ** |
Mg2+ | −0.281 | 0.146 | 0.930 ** | 1 | 0.271 | −0.841 ** | 0.761 ** | −0.664 ** | −0.097 | 0.457 |
Cl− | 0.236 | 0.370 | 0.659 ** | 0.614 ** | 1 | −0.574 * | −0.385 | −0.811 ** | −0.869 ** | −0.567 * |
SO42− | 0.276 | 0.384 * | 0.642 ** | 0.469 * | 0.799 ** | 1 | −0.477 * | 0.899 ** | 0.468 | 0.059 |
HCO3− | −0.318 | 0.117 | 0.940 ** | 0.950 ** | 0.448 * | 0.400 * | 1 | −0.161 | 0.427 | 0.754 ** |
NO3− | 0.424 * | 0.369 | −0.154 | −0.179 | 0.527 ** | 0.383 * | −0.380 * | 1 | 0.768 ** | 0.254 |
Soluble SiO2 | 0.105 | 0.453 * | −0.337 | −0.202 | −0.191 | −0.221 | −0.215 | 0.217 | 1 | 0.656 ** |
TDS | −0.093 | 0.299 | 0.971 ** | 0.937 ** | 0.747 ** | 0.702 ** | 0.912 ** | −0.009 | −0.181 | 1 |
Index | “The Four Rivers” Water System | |||||||||
K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | NO3− | Soluble SiO2 | TDS | |
K+ | 1 | 0.425 | 0.110 | 0.515 * | 0.696 ** | −0.072 | 0.309 | −0.527 * | −0.463 * | −0.142 |
Na+ | 0.040 | 1 | 0.651 ** | 0.850 ** | 0.940 ** | 0.682 ** | 0.697 ** | 0.149 | −0.094 | 0.313 |
Ca2+ | 0.349 * | 0.086 | 1 | 0.795 ** | 0.601 * | 0.895 ** | 0.903 ** | 0.319 | −0.050 | 0.334 |
Mg2+ | 0.077 | 0.612 ** | 0.615 ** | 1 | 0.882 ** | 0.693 ** | 0.931 ** | 0.021 | −0.185 | 0.381 |
Cl− | 0.323 * | 0.440 ** | 0.107 | 0.320 * | 1 | 0.535 * | 0.712 ** | −0.057 | −0.272 | 0.181 |
SO42− | 0.494 ** | 0.081 | 0.493 ** | 0.158 | 0.456 ** | 1 | 0.754 ** | 0.401 | 0.145 | 0.465 * |
HCO3− | 0.153 | 0.347 * | 0.845 ** | 0.756 ** | −0.126 | 0.116 | 1 | 0.094 | −0.254 | 0.286 |
NO3− | 0.102 | 0.145 | −0.032 | 0.249 | 0.592 ** | 0.263 | −0.276 | 1 | 0.703 ** | 0.524 * |
Soluble SiO2 | 0.013 | 0.408 ** | 0.117 | 0.157 | −0.249 | −0.065 | 0.350 * | −0.281 * | 1 | 0.794 ** |
TDS | 0.374 * | 0.467 ** | 0.900 ** | 0.837 ** | 0.319 * | 0.503 ** | 0.847 ** | 0.169 | 0.250 | 1 |
Index | Dongting Lake Water | |||||||||
K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | NO3− | Soluble SiO2 | TDS | |
K+ | 1 | 0.399 | 0.511 * | 0.680 ** | 0.619 ** | 0.015 | 0.774 ** | −0.756 ** | −0.448 * | −0.279 |
Na+ | 1 | 0.845 ** | 0.891 ** | 0.957 ** | 0.898 ** | 0.772 ** | −0.284 | −0.713 ** | −0.375 | |
Ca2+ | 1 | 0.926 ** | 0.835 ** | 0.773 ** | 0.919 ** | −0.344 | −0.575 ** | −0.183 | ||
Mg2+ | 1 | 0.929 ** | 0.718 ** | 0.958 ** | −0.451 * | −0.585 ** | −0.227 | |||
Cl− | 1 | 0.748 ** | 0.854 ** | −0.430 * | −0.765 ** | −0.432 * | ||||
SO42− | 1 | 0.559 ** | 0.055 | −0.468 * | −0.124 | |||||
HCO3− | 1 | −0.558 ** | −0.606 ** | −0.279 | ||||||
NO3− | 1 | 0.506 * | 0.419 * | |||||||
Soluble SiO2 | 1 | 0.871 ** | ||||||||
TDS | 1 |
Type of Water Body | Statistical Value | δD (‰) | δ18O (‰) | d (‰) | |
---|---|---|---|---|---|
“The Three Inlets” water system | Surface water | mean | −52.92 | −7.83 | 9/71 |
min | −67.2 | −9.87 | 0 | ||
max | −15.7 | −2.07 | 13.76 | ||
std | 17.21 | 2.72 | 4.75 | ||
Groundwater | mean | −39.0 | −6.2 | 10.6 | |
min | −51.4 | −7.44 | 5.7 | ||
max | −28.6 | −4.28 | 15.2 | ||
std | 5.55 | 0.79 | 2.93 | ||
“The Four Rivers” Water system | Surface water | mean | −43.16 | −7.01 | 12.94 |
min | −72.89 | −10.60 | 10.53 | ||
max | −32.55 | −5.62 | 14.62 | ||
std | 12.43 | 1.52 | 1.36 | ||
Groundwater | mean | −36.75 | −6.11 | 12.17 | |
min | −76.20 | −10.68 | 6.07 | ||
max | −21.11 | −3.40 | 15.85 | ||
std | 9.72 | 1.20 | 2.12 | ||
Dongting Lake water | Surface water | mean | −45.87 | −7.12 | 11.08 |
min | −73.79 | −11.05 | 3.96 | ||
max | −19.48 | −2.93 | 14.64 | ||
std | 15.92 | 2.30 | 3.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Wan, J.; Cheng, J.; Wang, X.; Zhao, X. Study on Hydrochemical Characteristics and Interactions between Groundwater and Surface Water in the Dongting Lake Plain. Water 2024, 16, 964. https://doi.org/10.3390/w16070964
Xiao P, Wan J, Cheng J, Wang X, Zhao X. Study on Hydrochemical Characteristics and Interactions between Groundwater and Surface Water in the Dongting Lake Plain. Water. 2024; 16(7):964. https://doi.org/10.3390/w16070964
Chicago/Turabian StyleXiao, Pan, Junwei Wan, Jinhua Cheng, Xinfeng Wang, and Xingyuezi Zhao. 2024. "Study on Hydrochemical Characteristics and Interactions between Groundwater and Surface Water in the Dongting Lake Plain" Water 16, no. 7: 964. https://doi.org/10.3390/w16070964
APA StyleXiao, P., Wan, J., Cheng, J., Wang, X., & Zhao, X. (2024). Study on Hydrochemical Characteristics and Interactions between Groundwater and Surface Water in the Dongting Lake Plain. Water, 16(7), 964. https://doi.org/10.3390/w16070964