A Combination of UV and Disinfectant for Inactivating Viable but Nonculturable State Pseudomonas aeruginosa: Efficiency and Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Setting
2.2. Reagents
2.3. Cultivation of P. aeruginosa Cells
2.4. Experimental Setup of the Combined Disinfection Processes
2.5. Quantification of the Culturable and VBNC Cells
2.6. Bacterial Reactivation Experiment
2.7. Application of Quenchers with Radicals
2.8. Estimation of the Contributions of UV/Disinfectant to Inactivate P. aeruginosa
3. Results
3.1. Enhanced Inactivation of P. aeruginosa by Combination Disinfection
3.2. Inactivation Mechanisms
3.3. Assessing the Risk of Reactivation after UV/NaClO, UV/PDS, and UV/PAA
3.4. Assessing the Effects of Water Matrices on Inactivation
4. Discussion
- Methodological refinement is necessary. Although utilizing longer gene segments, our study more accurately quantified the cell count of VBNC P. aeruginosa after disinfection. The PMA-qPCR method still presents other challenges in assessing the VBNC pathogens in water. Firstly, the PMA-qPCR process involves multiple steps, including sample pretreatment, DNA extraction, PMA treatment, and PCR amplification, necessitating automation for efficiency. Secondly, the sensitivity of the PMA-qPCR method, currently limited to 3.191 log CFU/mL, varies depending on factors such as target DNA concentration, PMA penetration efficiency, and sample inhibitors. Hence, there is a need to optimize detection methods for enhanced accuracy and convenience.
- Enhancing the depth of research is imperative. The probe method and quenching method were used to explore the disinfection mechanism of UV-AOPs combined disinfection, which needs to be further explored. Future research should integrate transcriptomic, proteomic, and metabolomic analyses to elucidate bacterial response mechanisms to disinfectants, providing insight into the inactivation mechanism of P. aeruginosa by UV-AOPs combined disinfection.
- Expanding research breadth is essential. While this study systematically examines the disinfection effects and mechanisms of three UV-AOPs combined disinfection treatments on VBNC P. aeruginosa, broadening the research scope is crucial. Future studies should encompass additional pathogenic bacteria such as Legionella, include environmental factors like water quality parameters (pH, temperature, water age/stasis, disinfectant residue, or soil and sediment presence), and explore diverse scenarios, such as city utility water processing or in high-risk building water distribution systems.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Kiruthika, A.R. Photocatalytic Disinfection of Micro-Organisms: Mechanisms and Applications. Environ. Technol. Innov. 2021, 24, 101909. [Google Scholar] [CrossRef]
- Nj, A. Microbial Contamination of Drinking Water and Human Health from Community Water Systems. Curr. Environ. Health Rep. 2015, 2, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Jarvis, K.G.; Ottesen, A.R.; McFarland, M.A.; Brown, E.W. Recent and Emerging Innovations in Salmonella Detection: A Food and Environmental Perspective. Microb. Biotechnol. 2016, 9, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Habeeb Rahman, A.P.; Pranjal; Kumar Behera, S.; Mishra, A.; Stålsby Lundborg, C.; Tripathy, S.K. Transcriptomic Regulation of Salmonella Typhimurium during Sonophotocatalysis and the Effect of Stress Adaptation on the Antibiotic Resistance and Tolerance Post-Treatment. Chem. Eng. J. 2022, 446, 137442. [Google Scholar] [CrossRef]
- Savas, S.; Saricam, M. Rapid Method for Detection of Vibrio cholerae from Drinking Water with Nanomaterials Enhancing Electrochemical Biosensor. J. Microbiol. Methods 2024, 216, 106862. [Google Scholar] [CrossRef]
- Rattanakul, S.; Oguma, K. Inactivation Kinetics and Efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and Surrogate Microorganisms. Water Res. 2018, 130, 31–37. [Google Scholar] [CrossRef]
- Wang, J.; Qu, D.; Bu, L.; Zhu, S. Inactivation Efficiency of P. aeruginosa and ARGs Removal in UV/NH2Cl Process: Comparisons with UV and NH2Cl. Sep. Purif. Technol. 2023, 305, 122473. [Google Scholar] [CrossRef]
- Qi, Z.; Huang, Z.; Liu, C. Metabolism Differences of Biofilm and Planktonic Pseudomonas aeruginosa in Viable but Nonculturable State Induced by Chlorine Stress. Sci. Total Environ. 2022, 821, 153374. [Google Scholar] [CrossRef] [PubMed]
- Lomholt, J.A.; Poulsen, K.; Kilian, M. Epidemic Population Structure of Pseudomonas aeruginosa: Evidence for a Clone That Is Pathogenic to the Eye and That Has a Distinct Combination of Virulence Factors. Infect. Immun. 2001, 69, 6284–6295. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.; Hreha, T.N.; Hunstad, D.A. Pathophysiology, Treatment, and Prevention of Catheter-Associated Urinary Tract Infection. Top. Spinal Cord Inj. Rehabil. 2019, 25, 228–240. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef] [PubMed]
- García-Villada, L.; Degtyareva, N.P.; Brooks, A.M.; Goldberg, J.B.; Doetsch, P.W. A Role for the Stringent Response in Ciprofloxacin Resistance in Pseudomonas aeruginosa. Sci. Rep. 2024, 14, 8598. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Silva, Y.J.; Cunha, A.; Gomes, N.C.M.; Ackermann, H.-W.; Almeida, A. Phage Therapy to Control Multidrug-Resistant Pseudomonas aeruginosa Skin Infections: In Vitro and Ex Vivo Experiments. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Ye, Y.; Li, F.; Zhang, J.; Guo, W. Prevalence and Genetic Characterization of Pseudomonas aeruginosa in Drinking Water in Guangdong Province of China. LWT Food Sci. Technol. 2016, 69, 24–31. [Google Scholar] [CrossRef]
- Farhan, S.M.; Ibrahim, R.A.; Mahran, K.M.; Hetta, H.F.; El-Baky, R.M.A. Antimicrobial Resistance Pattern and Molecular Genetic Distribution of Metallo-β-Lactamases Producing Pseudomonas aeruginosa Isolated from Hospitals in Minia, Egypt. Infect. Drug Resist. 2019, 12, 2125–2133. [Google Scholar] [CrossRef]
- Vukić Lušić, D.; Maestro, N.; Cenov, A.; Lušić, D.; Smolčić, K.; Tolić, S.; Maestro, D.; Kapetanović, D.; Marinac-Pupavac, S.; Tomić Linšak, D.; et al. Occurrence of P. aeruginosa in Water Intended for Human Consumption and in Swimming Pool Water. Environments 2021, 8, 132. [Google Scholar] [CrossRef]
- Breidenstein, E.B.M.; de la Fuente-Núñez, C.; Hancock, R.E.W. Pseudomonas aeruginosa: All Roads Lead to Resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, A.; Kerem, E.; Assous, M.V.; Picard, E.; Bar-Meir, M. Is Infection with Hypermutable Pseudomonas aeruginosa Clinically Significant? J. Cyst. Fibros. 2015, 14, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ye, C.; Guo, L.; Chen, C.; Kong, X.; Chen, Y.; Shu, L.; Wang, P.; Yu, X.; Fang, J. Assessment of the UV/Chlorine Process in the Disinfection of Pseudomonas aeruginosa: Efficiency and Mechanism. Environ. Sci. Technol. 2021, 55, 9221–9230. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, S.; Robben, C.; Alter, T.; Rossmanith, P.; Mester, P. How to Evaluate Non-Growing Cells-Current Strategies for Determining Antimicrobial Resistance of VBNC Bacteria. Antibiotics 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Jing, Z.; Zhao, Z.; Yin, R.; Santoro, D.; Mao, T.; Lu, Z. Dose–Response Behavior of Pathogens and Surrogate Microorganisms across the Ultraviolet-C Spectrum: Inactivation Efficiencies, Action Spectra, and Mechanisms. Environ. Sci. Technol. 2023, 57, 10891–10900. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Zhang, D.; Fang, C.; Ding, J.; Duan, Y.; Chu, W. The Formation and Control of Disinfection By-Products by Two-Step Chlorination for Sewage Effluent: Role of Organic Chloramine Decomposition among Molecular Weight Fractions. Water Res. 2024, 253, 121302. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, M.; Huo, Y.; Zhou, Y.; Jiang, J.; Xie, J.; He, M. Differences in the Degradation Behavior of Disinfection By-Products in UV/PDS and UV/H2O2 Processes and the Effect of Their Chemical Properties. Chemosphere 2023, 345, 140457. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cevallos, D.; Hurtado, A.; Mackey, E.; Wang, C.; Hofmann, R. Predicting Chlorine Demand by Peracetic Acid in Drinking Water Treatment. Water Res. 2023, 243, 120361. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ye, C.; Yu, X.; Horn, H. Induction of Bacteria in Biofilm into a VBNC State by Chlorine and Monitoring of Biofilm Structure Changes by Means of OCT. Sci. Total Environ. 2023, 891, 164294. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.; Oliveira, V.; Baptista, I.; Henriques, I.; Gomes, N.C.M.; Almeida, A.; Correia, A.; Cunha, Â. Wavelength Dependence of Biological Damage Induced by UV Radiation on Bacteria. Arch. Microbiol. 2013, 195, 63–74. [Google Scholar] [CrossRef]
- Wen, G.; Xu, X.; Zhu, H.; Huang, T.; Ma, J. Inactivation of Four Genera of Dominant Fungal Spores in Groundwater Using UV and UV/PMS: Efficiency and Mechanisms. Chem. Eng. J. 2017, 328, 619–628. [Google Scholar] [CrossRef]
- Fan, Z.; Zhu, H.; Tao, C.; Deng, N.; Huang, X. Quantitative Detection of VBNC State Pseudomonas aeruginosa Contributing to Accurate Assessment of Microbial Inactivation in Drinking Water Disinfection. Water 2024, 16, 236. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Lee, J.-I.; Kang, D.-H. Inactivation of Foodborne Pathogenic Bacteria in Water and Stainless Steel Surfaces by Vacuum-UV Amalgam Lamp and Low-Pressure Mercury UV Lamp Irradiation. Innov. Food Sci. Emerg. Technol. 2023, 84, 103297. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, Q.; Lai, L.; Yao, G.; Lai, B. Degradation of p-Nitrophenol (PNP) in Aqueous Solution by mFe/Cu-Air-PS System. Chin. Chem. Lett. 2019, 30, 1129–1132. [Google Scholar] [CrossRef]
- Lei, Y.; Yu, Y.; Lei, X.; Liang, X.; Cheng, S.; Ouyang, G.; Yang, X. Assessing the Use of Probes and Quenchers for Understanding the Reactive Species in Advanced Oxidation Processes. Environ. Sci. Technol. 2023, 57, 5433–5444. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Hua, Z.; Wu, Z.; Chen, C.; Hou, S.; Huang, B.; Wang, Y.; Wang, D.; Li, X.; Li, C.; et al. Insights into the Effects of Bromide at Fresh Water Levels on the Radical Chemistry in the UV/Peroxydisulfate Process. Water Res. 2021, 197, 117042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ye, C.; Lin, H.; Lv, L.; Yu, X. UV Disinfection Induces a Vbnc State in Escherichia Coli and Pseudomonas aeruginosa. Environ. Sci. Technol. 2015, 49, 1721–1728. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.; Zhang, Y.; Cheng, X.; Zhou, P.; Deng, J.; Wang, J.; Li, W. Highly Efficient Removal of Trimethoprim Based on Peroxymonosulfate Activation by Carbonized Resin with Co Doping: Performance, Mechanism and Degradation Pathway. Chem. Eng. J. 2019, 356, 717–726. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.; Fu, K.; Deng, H.; Shi, J. Degradation of Metronidazole by UV/Chlorine Treatment: Efficiency, Mechanism, Pathways and DBPs Formation. Chemosphere 2019, 224, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Luo, L.; Zhu, S.; Yin, K.; Bu, L.; Zhou, S. Revealing the Crucial Role of Carbon-Centered Radicals in UV/PAA Process for Trace Amounts of Organic Contaminants Removal. Chem. Eng. J. 2023, 475, 146254. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.; Mejia-Tickner, B.; Kissel, J.; Xie, X.; Huang, C.-H. Inactivation of Bacteria by Peracetic Acid Combined with Ultraviolet Irradiation: Mechanism and Optimization. Environ. Sci. Technol. 2020, 54, 9652–9661. [Google Scholar] [CrossRef] [PubMed]
- Deller, S.; Mascher, F.; Platzer, S.; Reinthaler, F.F.; Marth, E. Effect of Solar Radiation on Survival of Indicator Bacteria in Bathing Waters. Cent. Eur. J. Public Health 2006, 14, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y. Effects of UV Intensity and Water Turbidity on Microbial Indicator Inactivation. J. Environ. Sci. 2006, 18, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.D.; Dagher, M.; Linden, K. Induction of Escherichia Coli and Salmonella Typhimurium into the Viable but Nonculturable State Following Chlorination of Wastewater. J. Water Health 2005, 3, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.D. Recent Findings on the Viable but Nonculturable State in Pathogenic Bacteria. FEMS Microbiol. Rev. 2010, 34, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Phattarapattamawong, S.; Chareewan, N.; Polprasert, C. Comparative Removal of Two Antibiotic Resistant Bacteria and Genes by the Simultaneous Use of Chlorine and UV Irradiation (UV/Chlorine): Influence of Free Radicals on Gene Degradation. Sci. Total Environ. 2021, 755, 142696. [Google Scholar] [CrossRef] [PubMed]
- Fukuzaki, S. Mechanisms of Actions of Sodium Hypochlorite in Cleaning and Disinfection Processes. Biocontrol. Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Ling, Y.; Sun, W.; Liu, C.; Mao, T.; Ao, X.; Huang, T. Antibiotics Degradation by UV/Chlor(Am)Ine Advanced Oxidation Processes: A Comprehensive Review. Environ. Pollut. 2022, 308, 119673. [Google Scholar] [CrossRef] [PubMed]
Quantum Yield | Free Radical Generation Efficiency (This Study) | ||
---|---|---|---|
[HO•]ss (M) | [SO4•–]ss (M) | ||
UV/NaClO | 1.0 mol Es−1 [35] | 5.32 × 10−13 | |
UV/PDS | 0.7 mol Es−1 [35] | 2.92 × 10−13 | 9.04 × 10−14 |
UV/PAA | 0.88 mol Es−1 [36] | 5.40 × 10−13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhu, H.; Tao, C.; Wang, Z.; Deng, N.; Huang, X. A Combination of UV and Disinfectant for Inactivating Viable but Nonculturable State Pseudomonas aeruginosa: Efficiency and Mechanisms. Water 2024, 16, 1302. https://doi.org/10.3390/w16091302
Zhao J, Zhu H, Tao C, Wang Z, Deng N, Huang X. A Combination of UV and Disinfectant for Inactivating Viable but Nonculturable State Pseudomonas aeruginosa: Efficiency and Mechanisms. Water. 2024; 16(9):1302. https://doi.org/10.3390/w16091302
Chicago/Turabian StyleZhao, Jinfeng, Huichao Zhu, Chen Tao, Zhiquan Wang, Ning Deng, and Xin Huang. 2024. "A Combination of UV and Disinfectant for Inactivating Viable but Nonculturable State Pseudomonas aeruginosa: Efficiency and Mechanisms" Water 16, no. 9: 1302. https://doi.org/10.3390/w16091302
APA StyleZhao, J., Zhu, H., Tao, C., Wang, Z., Deng, N., & Huang, X. (2024). A Combination of UV and Disinfectant for Inactivating Viable but Nonculturable State Pseudomonas aeruginosa: Efficiency and Mechanisms. Water, 16(9), 1302. https://doi.org/10.3390/w16091302