Direct-Injection UHPLC-MS/MS Method for Simultaneous Determination of 78 Illegal Drugs and Psychoactive Substances in Domestic Wastewater
Abstract
:1. Introduction
2. Experimental Section
2.1. Instruments and Equipments
2.2. Materials and Reagents
2.3. Solution Preparation
2.4. Sample Collection
2.5. Sample Pre-Treatment
2.6. Experimental Conditions
2.6.1. Chromatographic Conditions
2.6.2. Mass Spectrometric Conditions
2.7. Method Validation
2.7.1. Selectivity
2.7.2. Calibration Curves and Range, Limit of Detection (LOD), and Limit of Quantitation (LOQ)
2.7.3. Accuracy and Precision
2.7.4. Filtration Recovery and Matrix Effect
2.7.5. Stability
3. Results and Discussion
3.1. Method Optimization
3.2. Selectivity
3.3. Calibration Curve, LOD, and LOQ
3.4. Precision and Accuracy
3.5. Filtration Recovery and Matrix Effect
3.6. Stability
3.7. Application to Wastewater Samples
3.8. Comparison with Previous Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Office on Drugs and Crime (UNODC). World Drug Report 2023. Available online: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html (accessed on 26 June 2023).
- Restrepo-Vieira, L.H.; Busetti, F.; Linge, K.L.; Joll, C.A. Development and validation of a direct injection liquid chromatography-tandem mass spectrometry method for the analysis of illicit drugs and psychopharmaceuticals in wastewater. J. Chromatogr. A 2022, 1685, 463562. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New psychoactive substances: A review and updates. Ther. Adv. Psychopharmacol. 2020, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Peacock, A.; Bruno, R.; Gisev, N.; Degenhardt, L.; Hall, W.; Sedefov, R.; White, J.; Thomas, K.V.; Farrell, M.; Griffiths, P. New psychoactive substances: Challenges for drug surveillance, control, and public health responses. Lancet 2019, 394, 1668–1684. [Google Scholar] [CrossRef] [PubMed]
- Hall, W. The future of the international drug control system and national drug prohibitions. Addiction 2018, 113, 1210–1223. [Google Scholar] [CrossRef] [PubMed]
- Reuter, P.; Pardo, B. Can new psychoactive substances be regulated effectively? Assess. Br. Psychoact. Subst. Bill. Addict. 2017, 112, 25–31. [Google Scholar]
- Gravely, S.; Driezen, P.; Ouimet, J.; Quah, A.C.; Cummings, K.M.; Thompson, M.E.; Boudreau, C.; Hammond, D.; McNeill, A.; Borland, R.; et al. Prevalence of awareness, ever-use and current use of nicotine vaping products (NVPs) among adult current smokers and ex-smokers in 14 countries with differing regulations on sales and marketing of NVPs: Cross-sectional findings from the ITC Project. Addiction 2019, 114, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Zancanaro, I.; Limberger, R.P.; Bohel, P.O.; dos Santos, M.K.; De Boni, R.B.; Pechansky, F.; Caldas, E.D. Prescription and illicit psychoactive drugs in oral fluid—LC–MS/MS method development and analysis of samples from Brazilian drivers. Forensic Sci. Int. 2012, 223, 208–216. [Google Scholar] [CrossRef]
- López-García, E.; Mastroianni, N.; Postigo, C.; Valcárcel, Y.; González-Alonso, S.; Barceló, D.; de Alda, M.L. Simultaneous LC–MS/MS determination of 40 legal and illegal psychoactive drugs in breast and bovine milk. Food Chem. 2018, 245, 159–167. [Google Scholar] [CrossRef]
- Christophoridis, C.; Veloutsou, S.; Mitsika, E.; Zacharis, C.K.; Christia, C.; Raikos, N.; Fytianos, K. Determination of illicit drugs and psychoactive pharmaceuticals in wastewater from the area of Thessaloniki (Greece) using LC–MS/MS: Estimation of drug consumption. Environ. Monit. Assess. 2021, 193, 249. [Google Scholar] [CrossRef]
- Wang, J.; Qi, L.; Hou, C.; Zhang, T.; Chen, M.; Meng, H.; Su, M.; Xu, H.; Hua, Z.; Wang, Y.; et al. Automatic analytical approach for the determination of 12 illicit drugs and nicotine metabolites in wastewater using on-line SPE-UHPLC-MS/MS. J. Pharm. Anal. 2021, 11, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Hummel, D.; Löffler, D.; Fink, G.; Ternes, T.A. Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry. Environ. Sci. Technol. 2006, 40, 7321–7328. [Google Scholar] [CrossRef] [PubMed]
- Borova, V.L.; Maragou, N.C.; Gago-Ferrero, P.; Pistos, C.; Τhomaidis, Ν.S. Highly sensitive determination of 68 psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 4273–4285. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Illicit drugs and pharmaceuticals in the environment—Forensic applications of environmental data. Part 1: Estimation of the usage of drugs in local communities. Environ. Pollut. 2009, 157, 1773–1777. [Google Scholar] [CrossRef] [PubMed]
- Margot, J.; Rossi, L.; Barry, D.A.; Holliger, C. A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdiscip. Rev. Water 2015, 2, 457–487. [Google Scholar] [CrossRef]
- Shao, X.T.; Yu, H.; Lin, J.G.; Kong, X.P.; Wang, Z.; Wang, D.G. Presence of the ketamine analog of 2-fluorodeschloroketamine residues in wastewater. Drug Test. Anal. 2021, 13, 1650–1657. [Google Scholar] [CrossRef]
- Milan, S.; Lelario, F.; Scrano, L.; Ottati, C.; Bufo, S.A.; Alpendurada, M.d.F. Detection of Eight Cannabinoids and One Tracer in Wastewater and River Water by SPE-UPLC–ESI-MS/MS. Water 2022, 14, 588. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, X.; Wang, R.; Luo, R.; Shi, Y.; Shen, B.; Liu, W.; Yu, Z.; Xiang, P. Simultaneous determination of 11 illicit drugs and metabolites in wastewater by UPLC-MS/MS. Water Sci. Technol. 2020, 82, 1771–1780. [Google Scholar] [CrossRef]
- Mercier, B.; Scala-Bertola, J.; Pape, E.; Kolodziej, A.; Gibaja, V.; Bisch, M.; Jouzeau, J.-Y.; Gambier, N. Online SPE UPLC-MS/MS method for the simultaneous determination of 33 psychoactive drugs from swab-collected human oral fluid samples. Anal. Bioanal. Chem. 2022, 414, 4203–4215. [Google Scholar] [CrossRef]
- Sang, D.; Cimetiere, N.; Giraudet, S.; Tan, R.; Wolbert, D.; Le Cloirec, P. Online SPE-UPLC-MS/MS for herbicides and pharmaceuticals compounds’ determination in water environment: A case study in France and Cambodia. Environ. Adv. 2022, 8, 100212. [Google Scholar] [CrossRef]
- Togola, A.; Baran, N.; Coureau, C. Advantages of online SPE coupled with UPLC/MS/MS for determining the fate of pesticides and pharmaceutical compounds. Anal. Bioanal. Chem. 2014, 406, 1181–1191. [Google Scholar] [CrossRef]
- Bade, R.; Eaglesham, G.; Shimko, K.M.; Mueller, J. Quantification of new psychoactive substances in Australian wastewater utilising direct injection liquid chromatography coupled to tandem mass spectrometry. Talanta 2023, 251, 123767. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Yuan, S.; Zheng, J.; Luo, R.; Qiang, H.; Duan, W.; Zhao, Y.; Xiang, P. Direct injection ultra-performance liquid chromatography-tandem mass spectrometry for the high-throughput determination of 11 illicit drugs and metabolites in wastewater. J. Chromatogr. A 2022, 1685, 463587. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.R.; Kasprzyk-Hordern, B. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 1620–1631. [Google Scholar] [CrossRef] [PubMed]
- Postigo, C.; de Alda, M.J.; Barceló, D. Drugs of abuse and their metabolites in the Ebro River basin: Occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environ. Int. 2010, 36, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Terzic, S.; Senta, I.; Ahel, M. Illicit drugs in wastewater of the city of Zagreb (Croatia)—Estimation of drug abuse in a transition country. Environ. Pollut. 2010, 158, 2686–2693. [Google Scholar] [CrossRef] [PubMed]
- Tscharke, B.J.; Chen, C.; Gerber, J.P.; White, J.M. Temporal trends in drug use in Adelaide, South Australia by wastewater analysis. Sci. Total Environ. 2016, 565, 384–391. [Google Scholar] [CrossRef] [PubMed]
- van Nuijs, A.L.; Abdellati, K.; Bervoets, L.; Blust, R.; Jorens, P.G.; Neels, H.; Covaci, A. The stability of illicit drugs and metabolites in wastewater, an important issue for sewage epidemiology? J. Hazard. Mater. 2012, 239, 19–23. [Google Scholar] [CrossRef]
- Gracia-Lor, E.; Zuccato, E.; Castiglioni, S. Refining correction factors for back-calculation of illicit drug use. Sci. Total Environ. 2016, 573, 1648–1659. [Google Scholar] [CrossRef]
- Fontanals, N.; Pocurull, E.; Borrull, F.; Marcé, R.M. Role of solid-phase extraction in wastewater-based epidemiology. Curr. Opin. Environ. Sci. Health 2019, 9, 26–33. [Google Scholar] [CrossRef]
- Ng, K.T.; Rapp-Wright, H.; Egli, M.; Hartmann, A.; Steele, J.C.; Sosa-Hernández, J.E.; Melchor-Martínez, E.M.; Jacobs, M.; White, B.; Regan, F.; et al. High-throughput multi-residue quantification of contaminants of emerging concern in wastewaters enabled using direct injection liquid chromatography-tandem mass spectrometry. J. Hazard. Mater. 2020, 398, 122933. [Google Scholar] [CrossRef] [PubMed]
- Hue, T.T.; Zheng, Q.; Anh, N.T.; Binh, V.N.; Trung, N.Q.; Trang, H.T.; Chinh, P.Q.; Minh, L.Q.; Thai, P.K. Prevalence of illicit drug consumption in a population of Hanoi: An estimation using wastewater-based epidemiology. Sci. Total Environ. 2022, 815, 152724. [Google Scholar] [CrossRef] [PubMed]
- Martínez Bueno, M.J.; Uclés, S.; Hernando, M.D.; Fernández-Alba, A.R. Development of a solvent-free method for the simultaneous identification/quantification of drugs of abuse and their metabolites in environmental water by LC–MS/MS. Talanta 2011, 85, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Eaglesham, G.; Tscharke, B.J.; O’Brien, J.W.; Li, J.; Thompson, J.; Shimko, K.M.; Reeks, T.; Gerber, C.; Thomas, K.V.; et al. Determination of anabasine, anatabine, and nicotine biomarkers in wastewater by enhanced direct injection LC-MS/MS and evaluation of their in-sewer stability. Sci. Total Environ. 2020, 743, 140551. [Google Scholar] [CrossRef]
- Lei Xiong, I.M. Improved LC-MRM Quantification Sensitivity for Cyclic Peptides from the Natriuretic Peptide Family. Available online: https://sciex.com/tech-notes/biopharma/improved-lc-mrm-quantification-sensitivity-for-cyclic-peptides-f (accessed on 26 September 2022).
- Wiśnik-Sawka, M.; Maziejuk, M.; Fabianowski, W.; Karpińska, U.; Szwast, M.; Weremczuk, J. Capillary sensor for detection of amphetamine precursors in sewage water. Polymers 2021, 13, 1846. [Google Scholar] [CrossRef]
Target | RT (min) | Precursor Ion (m/z) | Product Ion (m/z) | Collision Energy (eV) | Internal Standard |
---|---|---|---|---|---|
1-BP | 3.15 | 177.2 | 91.1 | 30 | CAT-D5 |
65.1 | 61 | ||||
2C-E | 4.77 | 210.1 | 193.1 | 25 | COC-D3 |
178.1 | 25 | ||||
2-oxo-PCE | 4.06 | 218.2 | 91.1 | 39 | KET-D4 |
173.2 | 17 | ||||
AB-FUBINACA | 6.61 | 369.1 | 253.1 | 33 | ET-D5 |
109 | 55 | ||||
ADB-PINACA | 7.46 | 345.3 | 215.2 | 34 | ET-D5 |
300.3 | 20 | ||||
AZ | 5.99 | 309.5 | 281.2 | 39 | ET-D5 |
205.1 | 55 | ||||
AM | 3.59 | 136.1 | 91.1 | 22 | AM-D5 |
119.1 | 11 | ||||
2-BDCK | 4.16 | 282.1 | 172.2 | 25 | KET-D4 |
264.1 | 20 | ||||
BZE | 3.89 | 290.1 | 168.1 | 27 | BZE-D3 |
105 | 41 | ||||
CAT | 3.2 | 150.1 | 117.1 | 30 | CAT-D5 |
105.1 | 35 | ||||
2-MDCK | 4.16 | 218.2 | 105 | 38 | KET-D4 |
159 | 28 | ||||
ClZ | 6.05 | 316.2 | 270.1 | 36 | ET-D5 |
214.1 | 52 | ||||
COC | 4.62 | 304.2 | 182.1 | 29 | COC-D3 |
150.1 | 35 | ||||
COD | 3.38 | 300.1 | 165.1 | 52 | COD-D3 |
215.1 | 35 | ||||
DMO | 5.15 | 272.3 | 147.2 | 42 | COC-D3 |
213.3 | 37 | ||||
DZC | 4.32 | 246.2 | 147.1 | 27 | AM-D5 |
97.1 | 22 | ||||
DZ | 6.97 | 285.1 | 193.2 | 40 | ET-D5 |
154.1 | 36 | ||||
EDDP | 5.72 | 278.2 | 234.3 | 41 | EDDP-D3 |
249.3 | 33 | ||||
EPD | 3.33 | 166.1 | 133.1 | 27 | MA-D5 |
117 | 30 | ||||
EC | 3.61 | 178.1 | 160.1 | 18 | CAT-D5 |
130.1 | 25 | ||||
ET | 6.58 | 245.2 | 141 | 15 | ET-D5 |
105.2 | 25 | ||||
ETA | 3.48 | 217.1 | 113 | 13 | ETA-D5 |
95 | 34 | ||||
2-FDCK | 3.83 | 222.2 | 191.1 | 20 | KET-D4 |
109 | 40 | ||||
FT | 5.27 | 337.2 | 188.3 | 31 | FT-D5 |
105.2 | 55 | ||||
FNZ | 6.36 | 314.1 | 268.2 | 35 | ET-D5 |
239.2 | 45 | ||||
HRI | 4.39 | 370.1 | 268.1 | 38 | MOR-D5 |
165 | 63 | ||||
KET | 4.06 | 238.1 | 125 | 39 | KET-D4 |
207.1 | 21 | ||||
LSD | 4.74 | 324.2 | 223.1 | 32 | COC-D3 |
208.1 | 40 | ||||
MA | 3.76 | 150.1 | 91.1 | 26 | MA-D5 |
119.1 | 13 | ||||
MDA | 3.68 | 180 | 105.1 | 30 | MDA-D5 |
133.1 | 23 | ||||
MDMA | 3.83 | 194 | 163.1 | 18 | MDMA-D5 |
105.1 | 34 | ||||
PTD | 4.61 | 248.3 | 220.3 | 30 | MA-D5 |
174.1 | 28 | ||||
MD | 3.96 | 178.2 | 145.2 | 26 | AM-D5 |
160.2 | 18 | ||||
MTD | 5.97 | 310.2 | 265.2 | 20 | MTD-D3 |
105.1 | 35 | ||||
MQ | 6.36 | 251.1 | 132.1 | 35 | ET-D5 |
91.1 | 58 | ||||
MC | 3.37 | 164 | 146 | 18 | CAT-D5 |
131.1 | 27.5 | ||||
MET | 6.09 | 231.1 | 127 | 23 | ET-D5 |
95 | 30 | ||||
MOR | 2.67 | 286.1 | 201.1 | 34 | MOR-D3 |
165.1 | 50 | ||||
NMZ | 6.42 | 296.1 | 250.2 | 36 | ET-D5 |
222.1 | 38 | ||||
NK | 3.95 | 224.1 | 125 | 35 | NK-D4 |
179 | 22 | ||||
NFT | 4.01 | 233.2 | 84 | 36 | FT-D5 |
150.1 | 25 | ||||
6-MAM | 3.62 | 328.2 | 165.1 | 48 | 6-MAM-D3 |
211.1 | 34 | ||||
MOP | 4.1 | 180.2 | 149 | 20 | MDMA-D5 |
121 | 30 | ||||
OCD | 3.59 | 316.2 | 298.2 | 26 | MA-D5 |
241.1 | 40 | ||||
PMMA | 3.9 | 180.1 | 91 | 43 | MDMA-D5 |
121 | 28 | ||||
PHMA | 2.85 | 166.1 | 107.1 | 30 | MA-D5 |
135.1 | 20 | ||||
PEPD | 3.32 | 166.1 | 117 | 26 | MA-D5 |
133.1 | 27 | ||||
RFT | 4.62 | 377.2 | 317.2 | 23 | FT-D5 |
228.1 | 29 | ||||
SC-104 | 8.56 | 358.2 | 213.1 | 34 | ET-D5 |
298.2 | 21 | ||||
SC-105 | 7.52 | 363.2 | 218.1 | 22 | ET-D5 |
144 | 55 | ||||
SC-109 | 7.06 | 331.2 | 201.1 | 35 | ET-D5 |
145 | 56 | ||||
SLGL | 4.27 | 188.1 | 91.1 | 25 | MA-D5 |
119.2 | 16 | ||||
SFT | 5.8 | 387.2 | 355.2 | 26 | FT-D5 |
238.1 | 27 | ||||
THC-COOH | 8.06 | 343.2 | 299.1 | −30 | THC-COOH-D3 |
245.1 | −36 | ||||
TM | 3.85 | 224.1 | 179.1 | 15 | MA-D5 |
151.1 | 25 | ||||
TRD | 4.37 | 264.1 | 58.1 | 20 | MA-D5 |
246.1 | 13 | ||||
TZ | 6.06 | 343.2 | 308.2 | 36 | ET-D5 |
315.2 | 36 | ||||
NBNP | 4.7 | 414.2 | 223.1 | 59 | COD-D3 |
187 | 53 | ||||
AFPM | 3.89 | 206.2 | 133.1 | 23 | BZE-D3 |
105 | 31 | ||||
MPD | 4.35 | 234.1 | 84.1 | 26 | COC-D3 |
174.1 | 30 | ||||
PTM | 3.72 | 150.1 | 133.1 | 13 | MDA-D5 |
91.1 | 30 | ||||
SC-78 | 7.73 | 377.2 | 232.1 | 20 | ET-D5 |
144 | 55 | ||||
SC-111 | 7.09 | 343.2 | 298.2 | 20 | ET-D5 |
171.1 | 53 | ||||
SC-096 | 7.9 | 364.2 | 219.1 | 33 | ET-D5 |
304.2 | 20 | ||||
SC-099 | 7.56 | 361.2 | 243.1 | 16 | ET-D5 |
145 | 56 | ||||
SC-106 | 8.04 | 391.2 | 232.2 | 23 | ET-D5 |
144 | 58 | ||||
SC-107 | 8.98 | 370.2 | 135.1 | 29 | ET-D5 |
93.1 | 71 | ||||
SC-110 | 7.73 | 377.2 | 144 | 54 | ET-D5 |
232.1 | 22 | ||||
SC-043 | 8.14 | 378.2 | 233.1 | 33 | ET-D5 |
318.2 | 22 | ||||
SC-095 | 7.57 | 383.2 | 252.1 | 21 | ET-D5 |
109 | 47 | ||||
SC-113 | 9.16 | 374.2 | 215.1 | 35 | ET-D5 |
300.3 | 22 | ||||
SC-100 | 9.73 | 400.2 | 135.1 | 29 | ET-D5 |
107.1 | 67 | ||||
SC-098 | 7.58 | 411.2 | 232.1 | 23 | ET-D5 |
144 | 57 | ||||
SC-094 | 8.84 | 350.2 | 109 | 60 | ET-D5 |
125.1 | 30 | ||||
2-FXE | 4.01 | 236.1 | 163.1 | 22 | K-D4 |
109.1 | 51 | ||||
MDA-19 | 8.87 | 350.2 | 105 | 25 | ET-D5 |
77 | 80 | ||||
5C-MDA-19 | 8.53 | 336.2 | 105 | 25 | ET-D5 |
77 | 73 | ||||
5F-MDA-19 | 7.76 | 354.2 | 105 | 25 | ET-D5 |
77 | 76 | ||||
AM-D5 | 3.58 | 141.1 | 93.1 | 24 | / * |
124.1 | 12 | ||||
BZE-D3 | 3.88 | 293.1 | 171.1 | 28 | / |
105 | 42 | ||||
CAT-D5 | 3.18 | 155.1 | 122.1 | 30 | / |
110.1 | 24 | ||||
COC-D3 | 4.62 | 307.2 | 185.1 | 29 | / |
153.1 | 35 | ||||
COD-D3 | 3.38 | 303.1 | 165.1 | 63 | / |
215.1 | 38 | ||||
EDDP-D3 | 5.72 | 281.2 | 234.3 | 41 | / |
249.3 | 33 | ||||
ETA-D5 | 3.47 | 222.2 | 113 | 13 | / |
95 | 34 | ||||
ET-D5 | 6.56 | 250.1 | 141 | 15 | / |
95 | 35 | ||||
FT-D5 | 5.26 | 342.2 | 188.3 | 31 | / |
105.2 | 31 | ||||
KET-D4 | 4.05 | 242.1 | 129 | 40 | / |
211.1 | 22 | ||||
MA-D5 | 3.75 | 155.2 | 92.1 | 27 | / |
121.1 | 14 | ||||
MDA-D5 | 3.67 | 185.1 | 110.1 | 31 | / |
138.1 | 24 | ||||
MTD-D3 | 5.97 | 313.2 | 268.2 | 22 | / |
105.1 | 38 | ||||
MDMA-D5 | 3.82 | 199 | 165.1 | 19 | / |
107.1 | 35 | ||||
MOR-D3 | 2.66 | 289.1 | 201.1 | 36 | / |
165.1 | 57 | ||||
NK-D4 | 3.94 | 228.1 | 129 | 36 | / |
211.1 | 17 | ||||
6-MAM-D3 | 3.62 | 331.2 | 165.1 | 49 | / |
211.1 | 35 | ||||
THC-COOH-D3 | 8.1 | 346.3 | 302.2 | −30 | / |
248.2 | −36 |
Target Compound | LOD/ (ng/L) | LOQ/ (ng/L) | Linearity Range/(ng/L) | Regression Equations | R2 | Added Concentration/(ng/L) | Accuracy/(%) | Precision/(%) | Filtration Recovery/(%) | Matrix Effects/(%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | ||||||||||
1-BP | 0.5 | 1 | 1–500 | y = 0.00488x − 0.000509 | 0.9996 | 5 | 98.1 | 3.1 | 5.2 | 99.8 | −4.6 |
50 | 98.9 | 3.0 | 6.6 | 111.8 | −15.3 | ||||||
200 | 102.5 | 2.3 | 3.4 | 106.4 | −9.1 | ||||||
2-CE | 0.2 | 0.5 | 0.5–500 | y = 0.01451x + 0.00323 | 0.9992 | 5 | 108.8 | 6.2 | 7.5 | 115.7 | 1.0 |
50 | 107.1 | 1.8 | 4.9 | 112.0 | −19.4 | ||||||
200 | 115.0 | 7.3 | 8.3 | 115.1 | −6.8 | ||||||
2-oxo-PCE | 0.5 | 1 | 1–500 | y = 0.000177x + 0.0033 | 0.9999 | 5 | 102.9 | 2.0 | 8.9 | 100.1 | 4.0 |
50 | 100.9 | 6.3 | 7.3 | 90.0 | −1.1 | ||||||
200 | 101.4 | 1.3 | 4.7 | 82.4 | 15.5 | ||||||
5-MeO-DiPT | 0.1 | 0.2 | 0.2–500 | y = 0.03212x + 0.000327096 | 0.9999 | 5 | 103.7 | 3.8 | 10.9 | 101.9 | −3.0 |
50 | 96.6 | 3.6 | 7.8 | 109.3 | −1.8 | ||||||
200 | 92.9 | 4.6 | 5.7 | 107.2 | 12.7 | ||||||
AB-FUBINACA | 0.2 | 0.5 | 0.5–500 | y = 0.00189x + 0.000261893 | 0.9994 | 5 | 89.9 | 3.8 | 10.8 | 98.8 | −8.3 |
50 | 104.5 | 1.0 | 5.3 | 99.4 | 9.9 | ||||||
200 | 107.4 | 1.3 | 3.2 | 97.1 | −1.5 | ||||||
ADB-PINACA | 0.1 | 0.2 | 0.2–500 | y = 0.00413x + 0.000605504 | 0.9991 | 5 | 89.0 | 1.6 | 10.3 | 83.6 | 3.8 |
50 | 107.1 | 3.3 | 4.5 | 100.1 | 2.0 | ||||||
200 | 100.5 | 1.7 | 3.8 | 95.6 | −15.5 | ||||||
AZ | 0.5 | 1 | 1–500 | y = 0.00000628798x + 0.0000155935 | 0.9994 | 5 | 106.7 | 4.8 | 8.6 | 98.8 | −7.4 |
50 | 97.8 | 3.7 | 5.6 | 86.3 | 3.5 | ||||||
200 | 105.4 | 4.1 | 6.4 | 102.9 | −15.9 | ||||||
AM | 0.2 | 0.5 | 0.5–500 | y = 0.00311x + 0.000191977 | 0.9995 | 5 | 90.8 | 7.4 | 9.4 | 91.9 | −3.3 |
50 | 111.9 | 5.2 | 6.4 | 108.4 | 3.1 | ||||||
200 | 108.9 | 5.0 | 7.4 | 106.1 | 4.4 | ||||||
BDCK | 0.2 | 0.5 | 0.5–500 | y = 0.01118x + 0.00544 | 0.9994 | 5 | 107.9 | 7.4 | 9.4 | 112.1 | 12.3 |
50 | 106.6 | 5.2 | 6.4 | 105.5 | 3.7 | ||||||
200 | 101.9 | 5.0 | 7.4 | 105.0 | −3.7 | ||||||
BZE | 0.2 | 0.5 | 0.5–500 | y = 0.01753x + 0.00501 | 0.9996 | 5 | 105.6 | 5.9 | 7.1 | 107.4 | −4.3 |
50 | 114.4 | 6.6 | 6.9 | 115.0 | 5.5 | ||||||
200 | 113.6 | 3.0 | 4.3 | 111.7 | −2.2 | ||||||
CAT | 0.2 | 0.5 | 0.5–500 | y = 0.0214x + 0.00211 | 0.9997 | 5 | 111.5 | 2.8 | 4.2 | 106.7 | 2.9 |
50 | 109.5 | 3.4 | 5.3 | 105.0 | −0.2 | ||||||
200 | 110.9 | 6.0 | 6.6 | 109.1 | 3.3 | ||||||
2-FXE | 0.1 | 0.2 | 0.2–500 | y = 0.03446x + 0.000533496 | 0.9985 | 5 | 111.1 | 6.1 | 8.7 | 108.6 | −0.8 |
50 | 109.2 | 5.3 | 7.4 | 112.8 | −2.7 | ||||||
200 | 105.7 | 7.6 | 8.2 | 106.9 | 2.4 | ||||||
2-MDCK | 0.1 | 0.2 | 0.2–500 | y = 0.03113x + 0.00479 | 0.9979 | 5 | 107.8 | 5.2 | 8.2 | 104.5 | 0.6 |
50 | 110.7 | 8.1 | 10.2 | 108.2 | −11.4 | ||||||
200 | 104.8 | 4.5 | 10.9 | 100.1 | −3.5 | ||||||
ClZ | 0.2 | 0.5 | 0.5–500 | y = 0.000623596x − 0.0000502649 | 0.9999 | 5 | 106.2 | 4.7 | 9.5 | 109.8 | 8.7 |
50 | 98.5 | 6.1 | 8.8 | 99.4 | −9.9 | ||||||
200 | 103.1 | 5.9 | 9.1 | 102.7 | −8.4 | ||||||
COC | 0.2 | 0.5 | 0.5–500 | y = 0.01869x + 0.06946 | 0.9998 | 5 | 97.2 | 8.6 | 10.9 | 101.5 | 3.5 |
50 | 100.4 | 3.4 | 4.2 | 109.7 | −14 | ||||||
200 | 107.1 | 2.4 | 3.4 | 106.3 | 6.1 | ||||||
COD | 0.2 | 0.5 | 0.5–500 | y = 0.03039x + 0.00195 | 0.9996 | 5 | 98.7 | 5.6 | 14.0 | 102.4 | −5.0 |
50 | 116.3 | 5.5 | 6.3 | 111.7 | −9.6 | ||||||
200 | 113.1 | 7.2 | 8.0 | 112.1 | −4.4 | ||||||
DMO | 0.2 | 0.5 | 0.5–500 | y = 0.00265x + 0.0000982837 | 0.9999 | 5 | 84.3 | 6.7 | 10.2 | 93.1 | −59.8 |
50 | 87.8 | 1.8 | 10.8 | 99.0 | −29.6 | ||||||
200 | 96.3 | 4.7 | 10.7 | 94.9 | 1.8 | ||||||
DZC | 0.2 | 0.5 | 0.5–500 | y = 0.00116x + 0.000497194 | 0.9981 | 5 | 103.8 | 4.7 | 10.5 | 100.7 | −12.6 |
50 | 95.4 | 4.8 | 9.4 | 98.3 | −8.7 | ||||||
200 | 95.2 | 5.9 | 9.9 | 102.5 | −36.6 | ||||||
DZ | 0.2 | 0.5 | 0.5–500 | y = 0.00089018x − 0.0000298905 | 0.9998 | 5 | 100.9 | 3.9 | 10.1 | 97.8 | −7.3 |
50 | 99.0 | 3.4 | 5.7 | 93.9 | −14.8 | ||||||
200 | 104.4 | 2.6 | 4.1 | 100.5 | −15.2 | ||||||
EDDP | 0.1 | 0.2 | 0.2–500 | y = 0.01918x + 0.00237 | 0.9995 | 5 | 97.4 | 1.9 | 7.1 | 103.0 | 8.5 |
50 | 97.7 | 2.7 | 4.1 | 107.3 | 9.2 | ||||||
200 | 91.5 | 0.9 | 2.3 | 102.8 | 6.7 | ||||||
EPD | 0.1 | 0.2 | 0.2–500 | y = 0.02086x − 0.000624722 | 0.9994 | 5 | 99.6 | 4.8 | 10.6 | 105.4 | 5.6 |
50 | 110.7 | 4.3 | 10.7 | 111.5 | 15.4 | ||||||
200 | 112.2 | 9.2 | 9.9 | 106.6 | 7.4 | ||||||
EC | 0.2 | 0.5 | 0.5–500 | y = 0.08437x + 0.02064 | 0.9995 | 5 | 102.7 | 5.8 | 8.9 | 100.2 | −3.8 |
50 | 108.5 | 4.9 | 6.4 | 99.1 | −16.8 | ||||||
200 | 108.8 | 7.0 | 7.4 | 102.9 | −4.6 | ||||||
ETA | 0.2 | 0.5 | 0.5–500 | y = 0.0169x + 0.00358 | 0.9999 | 5 | 105.7 | 2.9 | 5.5 | 109.6 | 9.8 |
50 | 102.6 | 3.4 | 6.5 | 109.1 | 9.3 | ||||||
200 | 99.6 | 2.8 | 4.7 | 111.4 | 4.9 | ||||||
ET | 0.1 | 0.2 | 0.2–500 | y = 0.02322x + 0.01151 | 0.9986 | 5 | 97.4 | 1.9 | 2.8 | 108.4 | 6.9 |
50 | 98.4 | 1.1 | 3.7 | 108.4 | 8.8 | ||||||
200 | 97.7 | 1.4 | 2.7 | 107.1 | 6.5 | ||||||
FDCK | 0.1 | 0.2 | 0.2–500 | y = 0.01963x + 0.00234 | 0.9996 | 5 | 109.9 | 6.1 | 9.8 | 98.0 | 7.9 |
50 | 107.7 | 4.8 | 10.2 | 109.5 | 11.8 | ||||||
200 | 108.9 | 4.9 | 7.3 | 104.4 | 10.1 | ||||||
FT | 0.1 | 0.2 | 0.2–500 | y = 0.02289x + 0.01493 | 0.9996 | 5 | 110.4 | 4.5 | 8.5 | 95.7 | −12.7 |
50 | 93.8 | 1.8 | 3.0 | 115.9 | 12.2 | ||||||
200 | 101.2 | 0.9 | 2.0 | 108.8 | 9.4 | ||||||
FNZ | 0.1 | 0.2 | 0.2–500 | y = 0.00172x + 0.0000995641 | 0.9998 | 5 | 107.9 | 2.7 | 8.6 | 114.5 | 6.9 |
50 | 94.7 | 1.5 | 3.4 | 106.2 | 5.1 | ||||||
200 | 95.9 | 1.8 | 1.9 | 111.0 | 9.8 | ||||||
HRI | 0.2 | 0.5 | 0.5–500 | y = 0.002285x + 0.01622 | 0.9993 | 5 | 97.8 | 4.8 | 11.4 | 89.9 | −61.6 |
50 | 91.0 | 3.7 | 11.1 | 83.8 | −87.1 | ||||||
200 | 100.6 | 4.1 | 12.3 | 88.7 | −84.1 | ||||||
KET | 0.1 | 0.2 | 0.2–500 | y = 0.02473x + 0.00532 | 0.9998 | 5 | 105.7 | 6.2 | 8.8 | 104.9 | 12 |
50 | 101.1 | 2.6 | 4.5 | 107.9 | 7.8 | ||||||
200 | 102.3 | 4.0 | 5.5 | 108.3 | 6.7 | ||||||
LSD | 0.1 | 0.2 | 0.2–500 | y = 0.00606x + 0.00035567 | 0.9995 | 5 | 103.8 | 4.6 | 8.1 | 100.2 | −51.6 |
50 | 109.1 | 1.8 | 6.2 | 103.4 | −65.4 | ||||||
200 | 115.4 | 6.2 | 7.5 | 109.7 | −62.5 | ||||||
MA | 0.1 | 0.2 | 0.2–500 | y = 0.03283x + 0.02160 | 0.9993 | 5 | 96.3 | 7.7 | 8.7 | 97.4 | 0.5 |
50 | 100.3 | 3.3 | 5.9 | 92.9 | −5.7 | ||||||
200 | 102.8 | 3.3 | 5.2 | 102.8 | 2.2 | ||||||
MDA | 0.1 | 0.2 | 0.2–500 | y = 0.0209x + 0.00652 | 0.9998 | 5 | 92.4 | 9.3 | 9.6 | 104.4 | 3.5 |
50 | 108.3 | 6.6 | 8.4 | 105.9 | −1.7 | ||||||
200 | 108.1 | 4.9 | 7.6 | 113.6 | −2.4 | ||||||
MDMA | 0.1 | 0.2 | 0.2–500 | y = 0.0202x + 0.00033487 | 0.9998 | 5 | 105.5 | 7.3 | 7.5 | 111.5 | 17.7 |
50 | 100.2 | 4.6 | 7.5 | 103.9 | 8.0 | ||||||
200 | 95.2 | 3.8 | 6.7 | 106.0 | 0.5 | ||||||
SC-104 | 0.1 | 0.2 | 0.2–500 | y = 0.00496x + 0.00166 | 0.9983 | 5 | 88.9 | 6.0 | 11.3 | 95.3 | −7.9 |
50 | 105.1 | 7.2 | 12.3 | 103.3 | −16.7 | ||||||
200 | 111.3 | 5.3 | 9.1 | 107.2 | −27.3 | ||||||
PTD | 0.1 | 0.2 | 0.2–500 | Y = 0.01721x + 0.00406 | 0.9992 | 5 | 95.1 | 4.9 | 10.8 | 91.3 | −83.4 |
50 | 88.1 | 3.9 | 8.1 | 84.4 | −85.7 | ||||||
200 | 98.5 | 4.6 | 8.2 | 85.8 | −74.7 | ||||||
MD | 0.2 | 0.5 | 0.5–500 | y = 0.000311955x + 0.000214614 | 0.9987 | 5 | 97.8 | 6.9 | 10.2 | 89.5 | −6.4 |
50 | 86.1 | 5.6 | 10.4 | 82.8 | −23.9 | ||||||
200 | 91.5 | 5.9 | 11.2 | 83.5 | −18.3 | ||||||
MTD | 0.1 | 0.2 | 0.2–500 | y = 0.02181x + 0.00279 | 0.9986 | 5 | 84.9 | 4.1 | 4.9 | 90.7 | −69.1 |
50 | 94.2 | 2.0 | 3.8 | 88.5 | −32.3 | ||||||
200 | 95.2 | 2.1 | 2.4 | 85.7 | −26.6 | ||||||
MQ | 0.2 | 0.5 | 0.5–500 | y = 0.00717x + 0.000741914 | 0.9997 | 5 | 102.4 | 1.5 | 8.9 | 102.3 | 5.4 |
50 | 92.0 | 1.2 | 3.9 | 97.2 | 6.5 | ||||||
200 | 91.2 | 1.7 | 3.8 | 103.4 | 10.5 | ||||||
MC | 0.2 | 0.5 | 0.5–500 | y = 0.09423x + 0.03338 | 0.9991 | 5 | 94.2 | 7.0 | 9.3 | 95.9 | −2.9 |
50 | 105.7 | 4.8 | 9.8 | 98.3 | −16.9 | ||||||
200 | 107.3 | 4.7 | 8.4 | 100.8 | −2.6 | ||||||
MET | 0.1 | 0.2 | 0.2–500 | y = 0.00778x + 0.000411085 | 0.9999 | 5 | 108.8 | 2.3 | 2.7 | 109.8 | −5.3 |
50 | 103.9 | 1.1 | 1.6 | 105.7 | −16.3 | ||||||
200 | 107.2 | 1.3 | 1.7 | 109.9 | −12.3 | ||||||
MOR | 0.1 | 0.2 | 0.2–500 | y = 0.02472x + 0.00319 | 0.9999 | 5 | 98.4 | 5.8 | 8.0 | 106.5 | 8.3 |
50 | 96.9 | 4.1 | 5.1 | 105.8 | 6.3 | ||||||
200 | 95.5 | 4.0 | 4.3 | 108.2 | 6.0 | ||||||
NMZ | 0.2 | 0.5 | 0.5–500 | y = 0.00624x + 0.000780312 | 0.9999 | 5 | 108.9 | 2.8 | 13.0 | 99.0 | 11.9 |
50 | 107.0 | 2.3 | 4.3 | 101.0 | 7.8 | ||||||
200 | 106.4 | 2.8 | 3.4 | 100.9 | 8.4 | ||||||
NK | 0.1 | 0.2 | 0.2–500 | y = 0.02854x + 0.00275 | 0.9999 | 5 | 100.5 | 3.2 | 6.9 | 105.7 | 6.6 |
50 | 98.4 | 5.7 | 6.6 | 105.9 | 5.5 | ||||||
200 | 95.3 | 3.9 | 7.0 | 105.1 | 2.9 | ||||||
NFT | 0.2 | 0.5 | 0.5–500 | y = 0.00892x − 0.00239 | 0.9981 | 5 | 96.1 | 6.2 | 13.3 | 108.8 | −7.5 |
50 | 90.0 | 5.4 | 14.2 | 117.7 | 15.2 | ||||||
200 | 86.4 | 6.0 | 13.3 | 108.8 | 14.8 | ||||||
6-MAM | 0.2 | 0.5 | 0.5–500 | y = 0.02506x − 0.00115 | 0.9999 | 5 | 100.8 | 7.1 | 11.8 | 103.8 | −3.6 |
50 | 104.3 | 4.5 | 6.7 | 109.6 | 13.6 | ||||||
200 | 99.6 | 3.8 | 10.9 | 110.4 | 10.6 | ||||||
MOP | 0.1 | 0.2 | 0.2–500 | y = 0.01739x + 0.00142 | 0.9999 | 5 | 104.5 | 8.0 | 9.2 | 102.3 | −11.3 |
50 | 114.1 | 7.2 | 8.4 | 112.2 | −18.5 | ||||||
200 | 111.2 | 5.0 | 7.4 | 110.9 | −13.4 | ||||||
OCD | 0.2 | 0.5 | 0.5–500 | y = 0.02409x + 0.00176 | 0.9999 | 5 | 100.1 | 3.7 | 8.0 | 87.0 | −84.9 |
50 | 94.3 | 7.4 | 10.9 | 92.7 | −88.0 | ||||||
200 | 103.9 | 2.9 | 6.1 | 104.4 | −82.8 | ||||||
PMMA | 0.1 | 0.2 | 0.2–500 | y = 0.00437x + 0.00422 | 0.9992 | 5 | 102.6 | 7.6 | 10.6 | 99.6 | 2.4 |
50 | 104.9 | 4.8 | 7.0 | 105.2 | −10.3 | ||||||
200 | 97.3 | 5.1 | 9.4 | 103.6 | −20.6 | ||||||
PEPD | 0.1 | 0.2 | 0.2–500 | y = 0.00129x + 0.0000528161 | 0.9991 | 5 | 99.8 | 4.4 | 9.8 | 100.4 | 4.0 |
50 | 96.3 | 5.5 | 7.0 | 96.4 | 0.5 | ||||||
200 | 98.0 | 3.1 | 5.0 | 101.3 | 4.9 | ||||||
PHMA | 0.1 | 0.2 | 0.2–500 | y = 0.02333x + 0.0000697922 | 0.9997 | 5 | 95.7 | 4.0 | 6.0 | 102.6 | 1.1 |
50 | 105.6 | 4.2 | 4.5 | 105.0 | 11.3 | ||||||
200 | 109.7 | 7.9 | 8.6 | 108.3 | 8.0 | ||||||
RFT | 0.1 | 0.2 | 0.2–500 | y = 0.04546x + 0.01092 | 0.9967 | 5 | 108.5 | 1.9 | 8.9 | 94.1 | −15.7 |
50 | 109.6 | 2.5 | 7.7 | 98.7 | −9.6 | ||||||
200 | 112.1 | 2.1 | 12.2 | 96.6 | −10.8 | ||||||
SC-105 | 0.1 | 0.2 | 0.2–500 | y = 0.02111x + 0.00362 | 0.9955 | 5 | 99.4 | 2.4 | 11.2 | 93.0 | 10.1 |
50 | 112.3 | 2.4 | 2.7 | 104.2 | 11.1 | ||||||
200 | 112.9 | 1.5 | 1.6 | 104.4 | −2.5 | ||||||
SC-109 | 0.2 | 0.2 | 0.2–500 | y = 0.00589x + 0.000772020 | 0.9993 | 5 | 99.6 | 4.0 | 9.7 | 99.4 | 3.5 |
50 | 98.7 | 2.6 | 5.2 | 96.2 | 4.2 | ||||||
200 | 100.6 | 1.2 | 3.6 | 94.4 | −4.9 | ||||||
SLGL | 0.1 | 0.2 | 0.2–500 | y = 0.02149x + 0.0019 | 0.9996 | 5 | 98.4 | 4.1 | 9.4 | 98.7 | 28.3 |
50 | 83.7 | 1.6 | 6.0 | 106.1 | 16.0 | ||||||
200 | 83.3 | 6.8 | 6.9 | 113.1 | 39.4 | ||||||
SFT | 0.1 | 0.2 | 0.2–500 | y = 0.02381x + 0.0029 | 0.9996 | 5 | 84.0 | 5.7 | 8.2 | 83.8 | 16.1 |
50 | 94.3 | 6.4 | 11.4 | 82.0 | 20.6 | ||||||
200 | 100.0 | 1.7 | 8.1 | 84.9 | −4.8 | ||||||
TM | 0.2 | 0.5 | 0.5–500 | y = 0.01902x + 0.01675 | 0.9999 | 5 | 105.4 | 3.7 | 5.3 | 93.7 | −8.8 |
50 | 96.3 | 3.3 | 4.2 | 104.2 | 0.9 | ||||||
200 | 94.4 | 4.6 | 6.7 | 112.0 | 10.7 | ||||||
TRA | 0.2 | 0.5 | 0.5–500 | y = 0.00886x + 0.0000594916 | 0.9996 | 5 | 101.6 | 5.5 | 7.3 | 103.0 | 7.2 |
50 | 107.8 | 6.2 | 7.4 | 109.6 | 0.7 | ||||||
200 | 115.0 | 3.9 | 7.0 | 114.5 | 13.2 | ||||||
TRZ | 0.2 | 0.5 | 0.5–500 | y = 0.00425x + 0.000483134 | 0.9993 | 5 | 99.3 | 5.3 | 7.2 | 107.0 | 8.9 |
50 | 109.5 | 2.3 | 4.5 | 105.0 | 13.3 | ||||||
200 | 108.0 | 2.1 | 2.8 | 103.3 | 3.8 | ||||||
NBNP | 0.5 | 1 | 1–500 | y = 0.00348x + 0.00336 | 0.9999 | 5 | 102.2 | 5.8 | 9.2 | 100.9 | 15.0 |
50 | 101.4 | 5.0 | 8.2 | 104.0 | −3.4 | ||||||
200 | 108.5 | 8.2 | 10.8 | 111.0 | −8.5 | ||||||
AFPM | 0.2 | 0.5 | 0.5–500 | y = 0.01038x + 0.000498992 | 0.9996 | 5 | 94.2 | 5.1 | 10.9 | 96.4 | 29.0 |
50 | 87.2 | 2.2 | 6.6 | 86.2 | 2.3 | ||||||
200 | 84.2 | 1.8 | 6.0 | 83.6 | 6.4 | ||||||
MPD | 0.2 | 0.5 | 0.5–500 | y = 0.02489x + 0.00879 | 0.9998 | 5 | 105.4 | 3.5 | 9.7 | 115.6 | 14.5 |
50 | 107.2 | 2.8 | 4.3 | 113.7 | 25.3 | ||||||
200 | 108.9 | 4.7 | 9.9 | 106.9 | 26.2 | ||||||
SC-078 | 0.1 | 0.2 | 0.2–500 | y = 0.94981x + 0.24285 | 0.9993 | 5 | 109.6 | 2.6 | 9.0 | 99.6 | 13.1 |
50 | 109.4 | 4.0 | 5.3 | 106.2 | 5.9 | ||||||
200 | 105.0 | 2.7 | 3.2 | 105.0 | −0.6 | ||||||
PTM | 0.5 | 1 | 1–500 | y = 0.01142x + 0.00615 | 0.9999 | 5 | 100.1 | 5.3 | 8.5 | 95.5 | 4.4 |
50 | 105.0 | 2.9 | 4.1 | 105.6 | −10.9 | ||||||
200 | 99.2 | 2.5 | 3.8 | 104.4 | 21.5 | ||||||
SC-111 | 0.2 | 0.5 | 0.5–500 | y = 0.0216x + 0.00256 | 0.9999 | 5 | 101.8 | 2.7 | 9.0 | 95.8 | 5.1 |
50 | 102.6 | 4.1 | 9.7 | 101.8 | 4.2 | ||||||
200 | 90.3 | 3.1 | 3.9 | 105.4 | 8.4 | ||||||
SC-096 | 0.1 | 0.2 | 0.2–500 | y = 0.0064x + 0.000718749 | 0.9995 | 5 | 102.3 | 2.1 | 8.6 | 99.5 | −2.3 |
50 | 105.3 | 2.4 | 4.7 | 101.3 | −12.3 | ||||||
200 | 110.1 | 2.0 | 3.0 | 107.7 | −19.1 | ||||||
SC-099 | 0.1 | 0.2 | 0.2–500 | y = 0.00731x + 0.000757787 | 0.9976 | 5 | 108.2 | 3.7 | 9.8 | 109.1 | 0.8 |
50 | 106.3 | 3.2 | 4.0 | 108.3 | −12 | ||||||
200 | 108.2 | 2.8 | 4.2 | 104.5 | −13.3 | ||||||
SC-106 | 0.1 | 0.2 | 0.2–500 | y = 0.00483x + 0.000983932 | 0.9959 | 5 | 98.6 | 5.0 | 10.7 | 86.7 | −15.9 |
50 | 105.8 | 3.6 | 7.7 | 97.7 | −17.1 | ||||||
200 | 111.8 | 5.5 | 7.5 | 104.8 | −8.1 | ||||||
SC-107 | 0.1 | 0.2 | 0.2–500 | y = 0.00252x + 0.0000380955 | 0.9971 | 5 | 87.7 | 2.3 | 7.0 | 87.2 | −9.7 |
50 | 104.8 | 4.1 | 4.5 | 100.3 | −17.2 | ||||||
200 | 107.2 | 2.9 | 3.4 | 106.7 | −27.5 | ||||||
SC-110 | 0.1 | 0.2 | 0.2–500 | y = 0.07654x + 0.0093 | 0.9993 | 5 | 110.0 | 3.6 | 9.0 | 104.0 | −7.7 |
50 | 108.5 | 3.4 | 7.2 | 105.7 | −12.3 | ||||||
200 | 107.7 | 1.2 | 4.4 | 104.3 | −23.8 | ||||||
SC-043 | 0.1 | 0.2 | 0.2–500 | y = 0.36224x + 0.00747 | 0.9994 | 5 | 100.9 | 2.5 | 9.4 | 108.6 | 23 |
50 | 106.1 | 3.9 | 6.1 | 105.0 | 1.4 | ||||||
200 | 106.1 | 3.6 | 7.6 | 106.0 | −5.8 | ||||||
SC-095 | 0.1 | 0.2 | 0.2–500 | y = 0.05979x + 0.00957 | 0.9992 | 5 | 110.7 | 3.8 | 11.4 | 103.4 | 0.1 |
50 | 106.7 | 4.8 | 9.0 | 104.1 | 4.0 | ||||||
200 | 101.4 | 2.6 | 5.2 | 104.7 | −16.3 | ||||||
SC-113 | 0.1 | 0.2 | 0.2–500 | y = 0.05644x + 0.00703 | 0.9961 | 5 | 91.3 | 3.9 | 8.8 | 84.6 | −26.7 |
50 | 110.0 | 4.9 | 6.7 | 99.5 | −29.7 | ||||||
200 | 102.0 | 0.6 | 1.7 | 104.9 | −39.0 | ||||||
SC-100 | 0.2 | 0.5 | 0.5–500 | y = 0.01741x + 0.00503 | 0.9985 | 5 | 97.8 | 4.1 | 8.0 | 102.2 | −12.2 |
50 | 110.0 | 5.5 | 7.0 | 110.2 | −28.1 | ||||||
200 | 99.3 | 2.1 | 3.1 | 104.8 | −38.5 | ||||||
SC-098 | 0.1 | 0.2 | 0.2–500 | y = 0.05759x + 0.01369 | 0.9997 | 5 | 107.0 | 3.5 | 11.1 | 108.3 | −1.1 |
50 | 105.9 | 4.2 | 6.2 | 107.3 | −3.7 | ||||||
200 | 106.6 | 2.0 | 4.1 | 107.7 | −19.0 | ||||||
SC-094 | 0.1 | 0.2 | 0.2–500 | y = 0.00886x + 0.000102981 | 0.9981 | 5 | 90.5 | 2.1 | 4.1 | 105.3 | −6.1 |
50 | 109.3 | 3.5 | 7.2 | 104.2 | −25.2 | ||||||
200 | 101.9 | 1.0 | 3.4 | 103.9 | −38.5 | ||||||
MDA-19 | 0.2 | 0.5 | 0.5–500 | y = 0.02099x + 0.0061 | 0.9997 | 5 | 108.1 | 3.9 | 7.7 | 97.3 | −9.0 |
50 | 111.3 | 5.7 | 6.9 | 110.4 | −13.8 | ||||||
200 | 105.5 | 0.7 | 2.8 | 107.5 | −23.9 | ||||||
5C-MDA-19 | 0.1 | 0.2 | 0.2–500 | y = 0.03856x + 0.0034 | 0.9990 | 5 | 99.2 | 3.6 | 4.8 | 105.9 | 3.3 |
50 | 108.3 | 1.6 | 5.5 | 109.2 | −3.2 | ||||||
200 | 103.6 | 0.5 | 1.6 | 108.4 | −18.7 | ||||||
5F-MDA-19 | 0.2 | 0.5 | 0.5–500 | y = 0.03642x + 0.001091 | 0.9985 | 5 | 102.1 | 5.5 | 10.5 | 96.6 | 1.3 |
50 | 108.4 | 4.9 | 8.2 | 107.2 | −6.2 | ||||||
200 | 104.1 | 1.9 | 7.4 | 99.8 | −18.0 | ||||||
THC-COOH | 1 | 5 | 5–500 | y = 0.00195x + 0.0012 | 0.9996 | 5 | 104.5 | 7.0 | 9.0 | 110.7 | 9.1 |
50 | 105.7 | 9.0 | 10.5 | 105.2 | −5.2 | ||||||
200 | 101.3 | 6.8 | 7.7 | 107.3 | −8.4 |
No. | COD | MOR | MA | KET | ET | TRD | ETA | EDDP | DZ | CAT | EPD | TM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 10.48 | 15.46 | 1.05 | 2.35 | 6.49 | 29.23 | 71.8 | <LOD | 0.76 | <LOD | 291.26 | 3.18 |
S2 | 6.49 | 4.39 | 1.8 | <LOD | <LOD | 3.65 | <LOD | 6.61 | 2.26 | 0.61 | 220.33 | <LOD |
S3 | 4.27 | 2.73 | 1.07 | <LOD | <LOD | <LOD | <LOD | 1.41 | 2.81 | <LOD | 125.24 | <LOD |
S4 | 4.11 | 4.99 | <LOD | <LOD | 5.3 | 2.46 | 55.47 | 0.53 | <LOD | <LOD | 224.09 | <LOD |
S5 | 3.93 | 1.86 | 2.3 | 0.54 | <LOD | 6.71 | 4.37 | 1.83 | 3.08 | <LOD | 276.57 | <LOD |
S6 | 11.21 | 4.27 | 6.61 | <LOD | <LOD | 2.58 | <LOD | 4 | 3.8 | <LOD | 50.96 | <LOD |
S7 | 10.45 | 8.65 | 2.51 | 2.51 | 2.28 | 11.55 | 36.69 | 0.64 | 0.9 | <LOD | 320.37 | <LOD |
S8 | 11.5 | <LOD | 9.82 | 2.23 | <LOD | 11.93 | <LOD | 13.66 | 4.72 | <LOD | 157.72 | 7.06 |
S9 | 1.73 | 1.76 | 2.34 | <LOD | <LOD | 2.62 | <LOD | 0.57 | 0.91 | <LOD | 206 | <LOD |
S10 | 3.73 | 3.56 | <LOD | <LOD | <LOD | 12.65 | 2.44 | <LOD | 1.87 | <LOD | 92.97 | <LOD |
S11 | 6.81 | 3.84 | 1.94 | <LOD | <LOD | 8.63 | 1.42 | <LOD | 0.51 | 0.97 | 375.34 | <LOD |
S12 | 4.27 | 2.73 | 1.07 | <LOD | <LOD | <LOD | <LOD | 1.41 | 2.81 | <LOD | 125.24 | <LOD |
S13 | 6.55 | 6.07 | 1.18 | 2.02 | 7.81 | 17.32 | 32.13 | 0.7 | 5.84 | <LOD | 190.88 | <LOD |
S14 | 9.84 | 37.88 | 1.1 | 0.83 | <LOD | 16.56 | <LOD | <LOD | 1.52 | <LOD | 365.28 | <LOD |
S15 | 5.9 | 22.29 | 4.51 | <LOD | <LOD | 18.21 | <LOD | 1.5 | 3.52 | 0.66 | 205.94 | <LOD |
S16 | 6.53 | 13.87 | <LOD | <LOD | <LOD | 2.6 | 0.69 | <LOD | 1.36 | <LOD | 141.55 | <LOD |
S17 | 12.45 | 14.59 | 1.25 | <LOD | <LOD | 6.76 | 9.19 | 7.94 | 2.12 | <LOD | 328 | 0.74 |
S18 | 19.55 | 0.79 | 1.17 | <LOD | <LOD | 18.07 | 3.69 | <LOD | 3.87 | <LOD | 404.3 | <LOD |
S19 | 3.6 | 1.85 | 3.54 | <LOD | <LOD | 6.14 | 23.6 | 1.1 | 2.2 | <LOD | 171.94 | <LOD |
S20 | 6.09 | 7.06 | <LOD | <LOD | <LOD | 8.8 | 62.87 | 0.95 | 1.96 | <LOD | 276.9 | <LOD |
Maximum value | 19.55 | 37.88 | 9.82 | 2.51 | 7.81 | 29.23 | 71.8 | 13.66 | 5.84 | 0.97 | 404.3 | 7.06 |
Detection rate (%) | 100.00 | 95.00 | 80.00 | 30.00 | 20.00 | 90.00 | 60.00 | 70.00 | 95.00 | 15.00 | 100.00 | 15.00 |
Target | Pretreatment Method | Sample Volume | Injection Volume | LOQ (ng/L) | Analytical Operations Time (min) | Reference |
---|---|---|---|---|---|---|
78 illegal drugs and psychoactive substances | direct injection | 4.95 mL | 20 μL | 0.2–5 | 12 | This work |
MA, AM and other 9 illicit drugs | direct injection | 1 mL | 30 μL | 1–5 | 11.5 | [25] |
MA, AM and other 11 illicit drugs | Online-SPE (Oasis HLB) | 5 mL | 2 mL | 0.5 | 13 | [12] |
32 new psychoactive substances | direct injection | 3 mL | 10 μL | 0.5–195 | 18.5 | [24] |
MA, AM and other 9 illicit drugs | direct injection | unknown | 1 mL | 3–60 | 10 | [34] |
22 drugs of abuse | direct injection | unknown | 10 μL | 10–700 | 26 | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Hu, Y.; Jiang, Y.; Han, X.; Liu, X.; Du, M. Direct-Injection UHPLC-MS/MS Method for Simultaneous Determination of 78 Illegal Drugs and Psychoactive Substances in Domestic Wastewater. Water 2024, 16, 1315. https://doi.org/10.3390/w16091315
Li K, Hu Y, Jiang Y, Han X, Liu X, Du M. Direct-Injection UHPLC-MS/MS Method for Simultaneous Determination of 78 Illegal Drugs and Psychoactive Substances in Domestic Wastewater. Water. 2024; 16(9):1315. https://doi.org/10.3390/w16091315
Chicago/Turabian StyleLi, Kan, Yiling Hu, Yuke Jiang, Xing Han, Xin Liu, and Mingluo Du. 2024. "Direct-Injection UHPLC-MS/MS Method for Simultaneous Determination of 78 Illegal Drugs and Psychoactive Substances in Domestic Wastewater" Water 16, no. 9: 1315. https://doi.org/10.3390/w16091315
APA StyleLi, K., Hu, Y., Jiang, Y., Han, X., Liu, X., & Du, M. (2024). Direct-Injection UHPLC-MS/MS Method for Simultaneous Determination of 78 Illegal Drugs and Psychoactive Substances in Domestic Wastewater. Water, 16(9), 1315. https://doi.org/10.3390/w16091315