Spatial and Seasonal Dynamics of Plankton Community and Its Relationship with Environmental Factors in an Urban River: A Case Study of Wuxi City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigated Area and Sampling Sites
2.2. Sample Collection and Determination
2.2.1. Determination of Water Quality Indicators
2.2.2. Phytoplankton Collection and Identification
2.2.3. Zooplankton Collection and Identification
2.3. Data Analysis
3. Results
3.1. Seasonal Variation in Environmental Factors
3.2. Plankton Species Composition and Dominant Species
3.3. Spatial and Temporal Distribution of Plankton Density and Biomass
3.4. Diversity Index Variation Across Different Sections and Seasons
3.5. Environmental Factors Associated with Community Construction
4. Discussion
4.1. Spatial and Seasonal Dynamics of Plankton Communities
4.2. Influence of Environmental Factors on Communities
4.3. Water Quality Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Savio, D.; Sinclair, L.; Ijaz, U.Z.; Parajka, J.; Reischer, G.H.; Stadler, P.; Blaschke, A.P.; Blöschl, G.; Mach, R.L.; Kirschner, A.K. Bacterial diversity along a 2600 km river continuum. Environ. Microbiol. 2015, 17, 4994–5007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zong, R.; He, H.; Liu, K.; Yan, M.; Miao, Y.; Ma, B.; Huang, X. Biogeographic distribution patterns of algal community in different urban lakes in China: Insights into the dynamics and co-existence. J. Environ. Sci. 2021, 100, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Manickam, N.; Bhavan, P.S.; Santhanam, P.; Muralisankar, T.; Kumar, S.D.; Balakrishnan, S.; Ananth, S.; Devi, A.S. Phytoplankton biodiversity in the two perennial lakes of Coimbatore, Tamil Nadu, India. Acta Ecol. Sin. 2020, 40, 81–89. [Google Scholar] [CrossRef]
- Kim, H.G.; Hong, S.; Kim, D.-K.; Joo, G.-J. Drivers shaping episodic and gradual changes in phytoplankton community succession: Taxonomic versus functional groups. Sci. Total Environ. 2020, 734, 138940. [Google Scholar] [CrossRef]
- Guo, C.; Liu, H.; Zheng, L.; Song, S.; Chen, B.; Huang, B. Seasonal and spatial patterns of picophytoplankton growth, grazing and distribution in the East China Sea. Biogeosciences 2014, 11, 1847–1862. [Google Scholar] [CrossRef]
- Rosińska, J.; Kozak, A.; Dondajewska, R.; Gołdyn, R. Cyanobacteria blooms before and during the restoration process of a shallow urban lake. J. Environ. Manag. 2017, 198, 340–347. [Google Scholar] [CrossRef]
- Li, Y.; Jin, H.; Chen, J.; Wang, D.; Yang, Z.; Wang, B.; Zhuang, Y.; Wang, R. Nitrogen removal through sediment denitrification in the Yangtze Estuary and its adjacent East China Sea: A nitrate limited process during summertime. Sci. Total Environ. 2021, 795, 148616. [Google Scholar] [CrossRef]
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Brookes, J.D.; Yan, W.; Ji, X.; Feng, J. Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Sci. Total Environ. 2019, 650, 1554–1565. [Google Scholar] [CrossRef]
- Sabater-Liesa, L.; Ginebreda, A.; Barceló, D. Shifts of environmental and phytoplankton variables in a regulated river: A spatial-driven analysis. Sci. Total Environ. 2018, 642, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Foden, J.; Devlin, M.J.; Mills, D.K.; Malcolm, S.J. Searching for undesirable disturbance: An application of the OSPAR eutrophication assessment method to marine waters of England and Wales. Biogeochemistry 2011, 106, 157–175. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, L.; Zhang, X.; He, M.; Wang, D.; Ren, Y.; Yao, H.; Pan, H. Effects of different types of anthropogenic disturbances and natural wetlands on water quality and microbial communities in a typical black-odor river. Ecol. Indic. 2022, 136, 108613. [Google Scholar] [CrossRef]
- Tang, D.; Liu, X.; Wang, X.; Yin, K. Relationship between the main communities and environments of an urban river and reservoir: Considering integrated structural and functional assessments of ecosystems. Int. J. Environ. Res. Public Health 2018, 15, 2302. [Google Scholar] [CrossRef]
- Li, Z.; Lu, X.; Fan, Y. Seasonal shifts in assembly dynamics of phytoplankton communities in a humans-affected river in NE China. J. Oceanol. Limnol. 2022, 40, 1985–2000. [Google Scholar] [CrossRef]
- Wuxi Municipal Government Office. Wuxi Pioneers as the First Full-Domain Water Protection Pilot in Jiangsu Province. Available online: http://www.jiangsu.gov.cn/art/2023/12/22/art_33718_11108719.html (accessed on 22 December 2023).
- Yu, D.Q.; Guo, N.C.; Tang, X.M.; Guo, L. Community structure of crustacean zooplankton in the Qinshui River during ecological restoration, Study on the community structure of zooplankton in Wuxi Qingshui River during ecological restoration. J. Hydroecology 2016, 37, 70–77. [Google Scholar] [CrossRef]
- Hao, Y. Study on the Bloom Characteristics and Influencing Factors of Urban Landscape Rivers—Taking Liangxi River as an Example. Master’s Thesis, Inner Mongolia University of Science and Technology, BaoTou, China, 2020. [Google Scholar]
- HJ 506; Water Quality—Determination of Dissolved Oxygen-Electrochemical Probe Method. Ministry of Ecology and Environment the People’s Republic of China: Bejing, China, 2009.
- HJ 535; Water Quality—Determination of Ammonia Nitrogen―Nessler’s Reagent Spectrophotometry. Ministry of Ecology and Environment the People’s Republic of China: Bejing, China, 2009.
- HJ 897; Water Quality—Determination of Chlorophyll a—Spectrophotometric Method. Ministry of Ecology and Environment the People’s Republic of China: Bejing, China, 2017.
- GB/T 11892; Water Quality—Determination of Permanganate Index. Ministry of Ecology and Environment the People’s Republic of China: Bejing, China, 1989.
- GB/T11914; Water Quality—Determination of the Chemical Oxygen Demand—Dichromate Method. Ministry of Ecology and Environment the People’s Republic of China: Bejing, China, 1989.
- GB/T 11893; Water Quality—Determination of Total Phosphorus—Ammonium Molybdate Spectrophotometric Method. Ministry of Ecology and Environment the People’s Republic of China: Bejing, China, 1989.
- Zhang, Z.S.; Huang, X.F. Freshwater Plankton Research Methods; Science Press: Beijing, China, 1991; pp. 2–63. [Google Scholar]
- Wei, Y.; Hu, J. The Freshwater Algae of China-Systems, Taxonomy and Ecology; Science Press: Beijing, China, 2006; pp. 5–265. [Google Scholar]
- Wang, J. Chinese Freshwater Rotifers; Science Press: Beijing, China, 1961. [Google Scholar]
- Jiang, X.; Du, N. Fauna Sinica: Crustacea: Freshwater Cladocera; Science Press: Beijing, China, 1979. [Google Scholar]
- Chinese Academy of Sciences. Fauna Sinica: Copepoda: Freshwater Copepods; Science Press: Beijing, China, 1979. [Google Scholar]
- Meng, Z.; Chen, K.; Liu, L.; Hu, F.; Zhu, Y.; Li, X.; Yang, D. Niche and interspecific association with respect to the dominant phytoplankton species in different hydrological periods of Lake Wuchang, China. Front. Environ. Sci. 2022, 10, 985672. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Q.; Pan, J.X.; Wang, S.; Wang, Z.Z. Spatial and temporal variation of the plankton community and its relationship with environmental factors in the city section of the Ba River. Acta Ecol. Sin. 2019, 39, 173–184. [Google Scholar] [CrossRef]
- Yu, X.K.; Fan, T.Y.; Wang, X.M.; Wang, X.; Zhou, W. Distribution of phytoplankton functional groups in Wuhu River and their relationship with environmental factors. Sci. Technol. Eng. 2022, 22, 8546–8553. [Google Scholar]
- Wen, X.; Zhai, P.; Feng, R.; Yang, R.; Xi, Y. Comparative analysis of the spatio-temporal dynamics of rotifer community structure based on taxonomic indices and functional groups in two subtropical lakes. Sci. Rep. 2017, 7, 578. [Google Scholar] [CrossRef]
- Hromova, Y.; Brauns, M.; Kamjunke, N. Lagrangian dynamics of the spring zooplankton community in a large river. Hydrobiologia 2024, 851, 3603–3621. [Google Scholar] [CrossRef]
- Divya, K.R.; Zhao, S.; Chen, Y.; Cheng, F.; Zhang, L.; Qin, J.; Arunjith, T.S.; Schmidt, V.B.; Xie, S. A comparison of zooplankton assemblages in Nansi Lake and Hongze Lake, potential influences of the East Route of the South-to-North Water Transfer Project, China. J. Oceanol. Limnol. 2021, 39, 623–636. [Google Scholar] [CrossRef]
- Xu, J.H.; Zhai, H.Y.; Sun, L.; Luo, W.; Qiu, C.; Lu, Z.; Mu, Y. Algal characteristics and deposition in regulating tank of a terminal pumping station belonged to the South-to-North Water Diversion Project. China Water Wastewater 2024, 40, 34–42. [Google Scholar] [CrossRef]
- Gutiérrez, S.G.; Sarma, S.; Nandini, S. Seasonal variations of rotifers from a high altitude urban shallow water body, La Cantera Oriente (Mexico City, Mexico). Chin. J. Oceanol. Limnol. 2017, 35, 1387–1397. [Google Scholar] [CrossRef]
- Yang, G.; Qin, B.; Tang, X.; Gong, Z.; Zhong, C.; Zou, H.; Wang, X. Contrasting zooplankton communities of two bays of the large, shallow, eutrophic Lake Taihu, China: Their relationship to environmental factors. J. Great Lakes Res. 2012, 38, 299–308. [Google Scholar] [CrossRef]
- Barrenha, P.I.I.; Tanaka, M.O.; Hanai, F.Y.; Pantano, G.; Moraes, G.H.; Xavier, C.; Awan, A.T.; Grosseli, G.M.; Fadini, P.S.; Mozeto, A.A. Multivariate analyses of the effect of an urban wastewater treatment plant on spatial and temporal variation of water quality and nutrient distribution of a tropical mid-order river. Environ. Monit. Assess. 2018, 190, 43. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, Y.; Liu, Z.; van de Giesen, N.; Zhu, D. The influence of a eutrophic lake to the river downstream: Spatiotemporal algal composition changes and the driving factors. Water 2015, 7, 2184–2201. [Google Scholar] [CrossRef]
- Meng, F.; Li, Z.; Li, L.; Lu, F.; Liu, Y.; Lu, X.; Fan, Y. Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River. Sci. Rep. 2020, 10, 21337. [Google Scholar] [CrossRef]
- Arab, S.; Hamil, S.; Rezzaz, M.A.; Chaffai, A.; Arab, A. Seasonal variation of water quality and phytoplankton dynamics and diversity in the surface water of Boukourdane Lake, Algeria. Arab. J. Geosci. 2019, 12, 29. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, Y.-J.; He, W.; Liu, W.-X.; Kong, X.-Z.; Jørgensen, S.E.; Xu, F.-L. The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake. Ecol. Indic. 2016, 66, 153–162. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Kan, Y.; Wang, S. Distribution of phytoplankton community and its influence factors in an urban river network, East China. Front. Environ. Sci. Eng. 2018, 12, 13. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Liu, J.; Guo, Y. Analysis of water quality and the response of phytoplankton in the low-temperature environment of Majiagou Urban River, China. Heliyon 2024, 10, e25955. [Google Scholar] [CrossRef] [PubMed]
- Mutethya, E.; Yongo, E.; Qi, L.; Liu, X.; Guo, Z.; Ye, C. Spatial and seasonal dynamics of zooplankton functional groups and their relationship with environmental factors in urban rivers in Haikou City, China. Limnologica 2024, 108, 126200. [Google Scholar] [CrossRef]
- Rosas, R.S.; Azevedo-Cutrim, A.C.G.; Cutrim, M.V.J.; da Cruz, Q.S.; Souza, D.S.C.; dos Santos Sá, A.K.D.; Oliveira, A.V.G.; Santos, T.P. Spatial heterogeneity of zooplankton community in an eutrophicated tropical estuary. Aquat. Sci. 2024, 86, 102. [Google Scholar] [CrossRef]
- Lenhart, C.F.; Brooks, K.N.; Heneley, D.; Magner, J.A. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: Implications for TMDLs. Environ. Monit. Assess. 2010, 165, 435–447. [Google Scholar] [CrossRef]
- Gao, Y.; Lai, Z.; Liu, E.; Yang, W.; Liu, Q. Spatiotemporal Variation of Planktonic Rotifers in Surface Water of a Eutrophic Reservoir in the Southern Subtropical Region of China (2011–2020). Inland Water Biol. 2023, 16, 255–265. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, J.; Sun, X.; Ma, X. Spatio-temporal distribution characteristics of zooplankton and water quality assessment in middle and lower reaches of Ganjiang River. J. Hohai Univ. Nat. Sci. 2012, 40, 509–513. [Google Scholar] [CrossRef]
- Frau, D.; Gutierrez, M.F.; Regaldo, L.; Saigo, M.; Licursi, M. Plankton community responses in Pampean lowland streams linked to intensive agricultural pollution. Ecol. Indic. 2021, 120, 106934. [Google Scholar] [CrossRef]
- Houssou, A.; Adjahouinou, D.; Bonou, C.; Montchowui, E. Plankton Index of Biotic Integrity (P-IBI) for assessing ecosystem health within the Ouémé River basin, Republic of Benin. Afr. J. Aquat. Sci. 2020, 45, 452–465. [Google Scholar] [CrossRef]
- Su, X.; Steinman, A.D.; Xue, Q.; Zhao, Y.; Tang, X.; Xie, L. Temporal patterns of phyto-and bacterioplankton and their relationships with environmental factors in Lake Taihu, China. Chemosphere 2017, 184, 299–308. [Google Scholar] [CrossRef]
- Chao, C.; Lv, T.; Wang, L.; Li, Y.; Han, C.; Yu, W.; Yan, Z.; Ma, X.; Zhao, H.; Zuo, Z. The spatiotemporal characteristics of water quality and phytoplankton community in a shallow eutrophic lake: Implications for submerged vegetation restoration. Sci. Total Environ. 2022, 821, 153460. [Google Scholar] [CrossRef] [PubMed]
- Yongo, E.; Mutethya, E.; Xu, J.; Yu, H.; Yu, W.; Guo, Z. Assessing ecological status using phytoplankton functional groups in three urban rivers in Hainan Island, China. Environ. Sci. Pollut. Res. 2024, 31, 58054–58068. [Google Scholar] [CrossRef] [PubMed]
- Nalley, J.O.; O’Donnell, D.R.; Litchman, E. Temperature effects on growth rates and fatty acid content in freshwater algae and cyanobacteria. Algal Res. 2018, 35, 500–507. [Google Scholar] [CrossRef]
- Saros, J.; Anderson, N. The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biol. Rev. 2015, 90, 522–541. [Google Scholar] [CrossRef]
- Casas, L.; Pearman, J.K.; Irigoien, X. Metabarcoding reveals seasonal and temperature-dependent succession of zooplankton communities in the Red Sea. Front. Mar. Sci. 2017, 4, 241. [Google Scholar] [CrossRef]
- Abrantes, N.; Antunes, S.; Pereira, M.; Gonçalves, F. Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologica 2006, 29, 54–64. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Sakamoto, S.; Yamaguchi, M. Nutrition and growth kinetics in nitrogen-and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful Algae 2008, 7, 26–32. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, H.; Huang, T.; Chen, S.; Sun, W.; Yang, W.; Liu, H.; Liu, X.; Niu, L.; Yang, F. Cooperation triggers nitrogen removal and algal inhibition by actinomycetes during landscape water treatment: Performance and metabolic activity. Bioresour. Technol. 2022, 356, 127313. [Google Scholar] [CrossRef]
- Bi, E.G.; Monette, F.; Gasperi, J. Analysis of the influence of rainfall variables on urban effluents concentrations and fluxes in wet weather. J. Hydrol. 2015, 523, 320–332. [Google Scholar] [CrossRef]
- Cloern, J.E. Patterns, pace, and processes of water-quality variability in a long-studied estuary. Limnol. Oceanogr. 2019, 64, S192–S208. [Google Scholar] [CrossRef]
- Glibert, P.M.; Wilkerson, F.P.; Dugdale, R.C.; Raven, J.A.; Dupont, C.L.; Leavitt, P.R.; Parker, A.E.; Burkholder, J.M.; Kana, T.M. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol. Oceanogr. 2016, 61, 165–197. [Google Scholar] [CrossRef]
- Zhang, S.; Niu, C.; Yin, X. Combined effect of pH and un-ionized ammonia on population growth, reproduction and survival rates of the rotifer Brachionus urceolaris. Acta Ecol. Sin. 2008, 28, 4815–4822. [Google Scholar]
- Xia, F.; Jiang, Q.-Y.; Zhu, T.; Zou, B.; Liu, H.; Quan, Z.-X. Ammonium promoting methane oxidation by stimulating the Type Ia methane-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary. Sci. Total Environ. 2021, 793, 148470. [Google Scholar] [CrossRef] [PubMed]
- Negro, A.I.; De Hoyos, C.; Vega, J.C. Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). In Proceedings of the Trophic Spectrum Revisited: The Influence of Trophic State on the Assembly of Phytoplankton Communities Proceedings of the 11th Workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP), Shrewsbury, UK, 15–23 August 1998; pp. 25–37. [Google Scholar]
- Rangel, L.M.; Soares, M.C.S.; Paiva, R.; Silva, L.H.S. Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river–reservoir system. Ecol. Indic. 2016, 64, 217–227. [Google Scholar] [CrossRef]
- May, L.; Spears, B.M.; Dudley, B.J.; Gunn, I.D. The response of the rotifer community in Loch Leven, UK, to changes associated with a 60% reduction in phosphorus inputs from the catchment. Int. Rev. Hydrobiol. 2014, 99, 65–71. [Google Scholar] [CrossRef]
- Bai, H.F.; Wang, Y.R.; Song, J.X.; Kong, F.H.; Zhang, X.X.; Li, Q. Characteristics of plankton community structure and its relation to environmental factors in Weihe River, China. Ecol. Environ. Sci. 2022, 31, 117–130. [Google Scholar] [CrossRef]
- Kuang, Q.J.; Ma, P.M.; Hu, Z.Y.; Zhou, G.J. Study on the evaluation and treatment of lake eutrophication by means of algae biology. J. Saf. Environ./Anquan Yu Huanjing Xuebao 2005, 5, 87–91. [Google Scholar]
- Qiu, Y.L.; Lin, Y.Q.; Liu, J.J.; Tang, L.; Guan, T.S.; Chen, Q.W.; Chen, K.; Wang, L. The biodiversity assessment of phytoplankton community in summer within main stream and tributary of Huaihe River. J. Environ. Sci.-China 2017, 38, 1665–1672. [Google Scholar]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment the People’s Republic of China: Bejing, China, 2002.
- Shen, H.; Shi, P.L.; Wu, Y.; Li, Y.; Huang, X.F.; Li, H.N.; Qiu, W.J.; Xie, P. Macrozoobenthos community structure and water quality bioassessment of the Liangtang River. Acta Hydrobiol. Sin. 2016, 40, 203–210. [Google Scholar] [CrossRef]
Water Quality Indicators | Spring | Summer | Autumn |
---|---|---|---|
WT (℃) | 18.74 ± 3.87 | 28.45 ± 2.03 | 21.93 ± 5.28 |
pH | 7.06 ± 0.25 | 5.89 ± 0.44 | 7.22 ± 1.40 |
DO (mg/L) | 6.48 ± 0.66 | 6.07 ± 0.57 | 6.65 ± 0.58 |
EC (us/cm) | 584.34 ± 46.10 | 525.15 ± 75.81 | 424.1 ± 7.03 |
T (NTU) | 54.5 ± 5.01 | 15.33 ± 13.17 | 10.62 ± 10.36 |
CODMn (mg/L) | 4.25 ± 0.74 | 3.92 ± 0.15 | 3.38 ± 0.17 |
NH4+-N (mg/L) | 1.04 ± 0.68 | 0.83 ± 0.26 | 0.6 ± 0.14 |
TP (mg/L) | 0.15 ± 0.02 | 0.17 ± 0.02 | 0.14 ± 0.01 |
Chla (ug/L) | 41.08 ± 22.92 | 37.55 ± 15.69 | 33.40 ± 13.16 |
COD (mg/L) | 13.67 ± 3.51 | 14.5 ± 1.32 | 15.17 ± 2.57 |
Dominance and Number | Dominance | |||||
---|---|---|---|---|---|---|
Spring | Summer | Autumn | ||||
Phytoplankton | Cyanobacteria | P1 | Microcystis spp. | 0.122 | 0.264 | 0.321 |
P2 | Planktothrix sp. | 0.037 | ||||
P3 | Dolichospermum spp. | 0.046 | ||||
Cryptophyta | P4 | Chroomonas caudata | 0.037 | 0.029 | ||
P5 | Cryptomonas erosa | 0.040 | ||||
Bacillariophyta | P6 | Cyclotella spp. | 0.067 | 0.058 | 0.025 | |
P7 | Aulacoseira granulata | 0.020 | ||||
Xanthophyta | P8 | Tribonema minus | 0.033 | 0.069 | 0.066 | |
P9 | Tribonema affine | 0.032 | ||||
Euglenophyta | P10 | Monomorphina pyrum | 0.064 | |||
Chlorophyta | P11 | Chlorella vulgaris | 0.056 | 0.071 | 0.035 | |
P12 | Ankistrodesmus falcatus | 0.023 | ||||
P13 | Chlamydomonas braunii | 0.192 | ||||
Zooplankton | Copepoda | Z1 | Nauplius | 0.160 | 0.367 | 0.243 |
Z2 | Microcyclops varicans | 0.068 | 0.067 | |||
Z3 | Mesocyclops leuckarti | 0.021 | 0.026 | |||
Cladocera | Z4 | Moina macrocopa | 0.034 | 0.025 | ||
Z5 | Bosmina coregoni | 0.028 | 0.032 | |||
Rotifera | Z6 | Brachionus calyciflorus | 0.086 | |||
Z7 | Brachionus angularis | 0.037 | 0.048 | 0.020 | ||
Z8 | Brachionus budapestiensis | 0.076 | 0.034 | 0.111 | ||
Z9 | Asplanchna priodonta | 0.080 | ||||
Z10 | Filinia longiseta | 0.064 | ||||
Z11 | Polyarthra trigla | 0.066 | 0.071 | 0.036 | ||
Z12 | Keratella cochlearis | 0.153 | 0.042 | 0.242 | ||
Z13 | Keratella valga | 0.082 | 0.081 |
Diversity Index | Water Quality Type | ||
---|---|---|---|
H′ > 3 | J > 0.8 | D > 3 | Clean |
2 < H′ ≤ 3 | 0.5 < J ≤ 0.8 | 2 < D ≤ 3 | Light pollution |
1 < H′ ≤ 2 | 0.3 < J ≤ 0.5 | 1 < D ≤ 2 | Medium pollution |
0 < H′ ≤ 1 | 0.1 < J ≤ 0.3 | 0 < D ≤ 1 | Heavy pollution |
H′ = 0 | J < 0.1 | D = 0 | Severe pollution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Huang, X.; Xu, K.; Wang, X. Spatial and Seasonal Dynamics of Plankton Community and Its Relationship with Environmental Factors in an Urban River: A Case Study of Wuxi City, China. Water 2025, 17, 51. https://doi.org/10.3390/w17010051
Xu B, Huang X, Xu K, Wang X. Spatial and Seasonal Dynamics of Plankton Community and Its Relationship with Environmental Factors in an Urban River: A Case Study of Wuxi City, China. Water. 2025; 17(1):51. https://doi.org/10.3390/w17010051
Chicago/Turabian StyleXu, Biying, Xiaofeng Huang, Kang Xu, and Xia Wang. 2025. "Spatial and Seasonal Dynamics of Plankton Community and Its Relationship with Environmental Factors in an Urban River: A Case Study of Wuxi City, China" Water 17, no. 1: 51. https://doi.org/10.3390/w17010051
APA StyleXu, B., Huang, X., Xu, K., & Wang, X. (2025). Spatial and Seasonal Dynamics of Plankton Community and Its Relationship with Environmental Factors in an Urban River: A Case Study of Wuxi City, China. Water, 17(1), 51. https://doi.org/10.3390/w17010051