Comparison of the Effects of Olive Tree and Date Palm Waste Biochar on Water Stress Measurements and Hydrophysical Properties of Sandy Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection and Preparation
2.2. Gathering Date Palms and Olive Tree Wastes and Biochar Production
2.3. Biochar and Soil Analyses
2.4. Proximate and Specific Biochar Surface Area Determination
2.5. Setup of Column Experiment
2.6. Evaporation and Wetting Cycles
2.7. Distribution of Soil Moisture
2.8. Soil Water Retention
2.9. Measurement of Hydraulic Conductivity
2.10. Measurement of Infiltration Rate
2.11. Statistical Studies
3. Results
3.1. Chemical Properties of Biochar
3.2. Wetting, Cumulative Evaporation, and Evaporation Cycles
3.3. Water Infiltration into the Soil
Ψ (Bar) | Soil Water Content (cm cm−3) | ||||
---|---|---|---|---|---|
Control | D450, 1% | D450, 5% | O450, 1% | O450, 5% | |
−0.3 (FC) 1 | 0.073 d 5 | 0.155 b | 0.167 a | 0.100 c | 0.163 a |
−15 (PWP) 2 | 0.028 | 0.039 | 0.040 | 0.042 | 0.049 |
AW 3 | 0.045 d | 0.116 b | 0.127 a | 0.058 c | 0.114 b |
Sorptivity 4 (cm min−0.5) | 5.79 | 0.91 | 0.13 | 3.66 | 1.80 |
3.4. Soil Hydraulic Conductivity
3.5. Retention of Water
4. Discussion
4.1. Biochar’s Impacts on Soil
4.2. Intermittent Evaporation
4.3. Infiltration
4.4. Soil Water Retention Capacity
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Center for Palm and Dates (NCPD). Annual Report; Ministry of Environment, Water and Agriculture: Riyadh, Saudi Arabia, 2021. [Google Scholar]
- Aly, A.A.; Al-Omran, A.M.; Sallam, A.S.; Al-Wabel, M.I.; Al-Shayaa, M.S. Vegetation Cover Change Detection and Assessment in Arid Environment Using Multi-Temporal Remote Sensing Images and Ecosystem Management Approach. Solid Earth 2016, 7, 713–725. [Google Scholar] [CrossRef]
- Aly, A.A.; Al-Omran, A.M.; Khasha, A.A. Water Management for Cucumber: Greenhouse Experiment in Saudi Arabia and Modeling Study Using SALTMED Model. J. Soil Water Conserv. 2015, 70, 1–11. [Google Scholar] [CrossRef]
- Al-Barakah, F.N.; Aly, A.A.; Abaakhel, E.H.S.; Al-Rizkid, A.M.; Alghamdi, A.G.; Al-Sewailem, M.S. Comparison and Hydrochemical Characterization of Groundwater Resources in the Arabian Peninsula: A Case Study of Al-Baha and Al-Qassim in Saudi Arabia. Water Resour. 2020, 47, 877–891. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Aly, A.A.; Al-Omran, A.M.; Alkhasha, A. Impact of Biochar, Bentonite, and Compost on Physical and Chemical Characteristics of a Sandy Soil. Arab. J. Geosci. 2018, 11, 670. [Google Scholar] [CrossRef]
- Alghamdi, A.G. Biochar as a potential soil additive for improving soil physical properties—A review. Arab. J. Geosci. 2018, 11, 766. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Al-Omran, A.; Alkhasha, A.; Alasmary, Z.; Aly, A.A. Significance of Pyrolytic Temperature, Particle Size, and Application Rate of Biochar in Improving Hydro-Physical Properties of Calcareous Sandy Soil. Agriculture 2021, 11, 1293. [Google Scholar] [CrossRef]
- Niraj, K.C.; Mahat, B. A Review Article on the Effect of Biochar on Soil Properties. J. Wastes Biomass Manag. 2024, 6, 111–115. [Google Scholar] [CrossRef]
- Kapoor, A.; Sharma, R.; Kumar, A.; Sepehya, S. Biochar as a Means to Improve Soil Fertility and Crop Productivity: A Review. J. Plant Nutr. 2022, 45, 2380–2388. [Google Scholar] [CrossRef]
- Yadav, S.P.; Bhandari, S.; Bhatta, D.; Poudel, A.; Bhattarai, S.; Yadav, P.; Ghimire, N.; Paudel, P.; Paudel, P.; Shrestha, J.; et al. Biochar Application: A Sustainable Approach to Improve Soil Health. J. Agric. Food Res. 2023, 11, 100498. [Google Scholar] [CrossRef]
- Zonayet, M.; Paul, A.K.; Faisal-E-Alam, M.; Syfullah, K.; Castanho, R.A.; Meyer, D. Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato. Sustainability 2023, 15, 4832. [Google Scholar] [CrossRef]
- Hussain, R.; Kumar Ghosh, K.; Ravi, K. Impact of Biochar Produced from Hardwood of Mesquite on the Hydraulic and Physical Properties of Compacted Soils for Potential Application in Engineered Structures. Geoderma 2021, 385, 114836. [Google Scholar] [CrossRef]
- Alkhasha, A.; Al-Omran, A.; Aly, A. Effects of Biochar and Synthetic Polymer on the Hydro-Physical Properties of Sandy Soils. Sustainability 2018, 10, 4642. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Al-Wabel, M.I.; Usman, A.R.A.; Al-Omran, A. Effect of Conocarpus Biochar Application on the Hydraulic Properties of a Sandy Loam Soil. Soil Sci. 2013, 178, 165–173. [Google Scholar] [CrossRef]
- Ibrahim, A.; Usman, A.R.A.; Al-Wabel, M.I.; Nadeem, M.; Ok, Y.S.; Al-Omran, A. Effects of Conocarpus Biochar on Hydraulic Properties of Calcareous Sandy Soil: Influence of Particle Size and Application Depth. Arch. Agron. Soil Sci. 2017, 63, 185–197. [Google Scholar] [CrossRef]
- Al-Omran, A.; Ibrahim, A.; Alharbi, A. Evaluating the Impact of Combined Application of Biochar and Compost on Hydro-Physical Properties of Loamy Sand Soil. Commun. Soil Sci. Plant Anal. 2019, 50, 2442–2456. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Ok, Y.S.; Niazi, N.K.; Rizwan, M.; Al-Wabel, M.I.; Usman, A.R.A.; Moon, D.H.; Lee, S.S. Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil. Sustainability 2017, 9, 266. [Google Scholar] [CrossRef]
- Randolph, P.; Bansode, R.R.; Hassan, O.A.; Rehrah, D.; Ravella, R.; Reddy, M.R.; Watts, D.W.; Novak, J.M.; Ahmedna, M. Effect of Biochars Produced from Solid Organic Municipal Waste on Soil Quality Parameters. J. Environ. Manag. 2017, 192, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.G.; Aljohani, B.H.; Aly, A.A. Impacts of Olive Waste-Derived Biochar on Hydro-Physical Properties of Sandy Soil. Sustainability 2021, 13, 5493. [Google Scholar] [CrossRef]
- Klute, A. Soil and Water. Physical Principles and Processes. Daniel Hillel. Q. Rev. Biol. 1971, 46, 432–443. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis. In Method of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.; Helmke, P.; Loeppert, R.H. Methods of Soil Analysis. PART 3 Chemical Methods; Soil Science Society of America Book Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- ASTM D1762-84; Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM International: West Conshohocken, PA, USA, 2013. Available online: http://www.astm.org/Standards/D1762.htm (accessed on 1 May 2025).
- Richards, L.A. Porous Plate Apparatus for Measuring Moisture Retention and Transmission by Soil. Soil Sci. 1948, 66, 105–110. [Google Scholar] [CrossRef]
- Zhang, R. Infiltration Models for the Disk Infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1597–1603. [Google Scholar] [CrossRef]
- Philip, J.R. The Theory of Infiltration: 1. The Infiltration Equation and Its Solution. Soil Sci. 1957, 83, 345–358. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Method, 7th ed.; The Iowa State University Press: Iowa, IA, USA, 1980. [Google Scholar]
- Arwenyo, B.; Varco, J.; Dygert, A.; Brown, S.; Pittman, C.U.; Mlsna, T. Contribution of modified P-enriched biochar on pH buffering capacity of acidic soil. J. Environ. Manag. 2023, 339, 117863. [Google Scholar] [CrossRef]
- Al-Wabel, M.; Usman, A.; El-Naggar, A.; Aly, A.A.; Ibrahim, H.A.; Elmaghraby, S.; Alomran, A. Conocarpus biochar as a soil amendment for reducing heavy metals availability and uptake by Maize Plants. Saudi J. Biol. Sci. 2015, 22, 503–511. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Novak, J.; Sigua, G.; Watts, D.; Cantrell, K.; Shumaker, P.; Szogi, A.; Johnson, M.G.; Spokas, K. Biochars Impact on Water Infiltration and Water Quality through a Compacted Subsoil Layer. Chemosphere 2016, 142, 160–167. [Google Scholar] [CrossRef]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.K. Two-Year Evaluation of Hydraulic Properties of Biochar-Amended Vegetated Soil for Application in Landfill Cover System. Sci. Total Environ. 2020, 712, 136486. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Barnes, R.T.; Gallagher, M.E.; Gonnermann, H. Impacts of Biochar Concentration and Particle Size on Hydraulic Conductivity and DOC Leaching of Biochar-Sand Mixtures. J. Hydrol. 2016, 533, 461–472. [Google Scholar] [CrossRef]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments. PLoS ONE 2014, 9, e108340. [Google Scholar] [CrossRef]
- Eibisch, N.; Durner, W.; Bechtold, M.; Fuß, R.; Mikutta, R.; Woche, S.K.; Helfrich, M. Does Water Repellency of Pyrochars and Hydrochars Counter Their Positive Effects on Soil Hydraulic Properties? Geoderma 2015, 245–246, 31–39. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal—A Review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Alkhasha, A.; Ibrahim, H.M. Effect of Biochar Particle Size on Water Retention and Availability in a Sandy Loam Soil. J. Saudi Chem. Soc. 2020, 24, 1042–1050. [Google Scholar] [CrossRef]
- Liu, W.J.; Zeng, F.X.; Jiang, H.; Zhang, X.S. Preparation of High Adsorption Capacity Bio-Chars from Waste Biomass. Bioresour. Technol. 2011, 102, 8247–8252. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, G.; Jahid, S.I.; Parveen, Z. Nutrient content and morphological characteristics of few waste derived slow pyrolyzed biochars. Int. J. Adv. Res. 2020, 8, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Koutcheiko, S.; Monreal, C.M.; Kodama, H.; McCracken, T.; Kotlyar, L. Preparation and Characterization of Activated Carbon Derived from the Thermo-Chemical Conversion of Chicken Manure. Bioresour. Technol. 2007, 98, 2459–2464. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K. Soil Hydro-Physical Properties Affected by Biomass-Derived Biochar and Organic Manure: A Low-Cost Technology for Managing Acidic Mountain Sandy Soils of North Eastern Region of India. Biomass Convers. Biorefinery 2024, 14, 6621–6635. [Google Scholar] [CrossRef]
- Ramezanzadeh, H.; Zarehaghi, D.; Baybordi, A.; Bouket, A.C.; Oszako, T.; Alenezi, F.N.; Belbahri, L. The Impacts of Biochar-Assisted Factors on the Hydrophysical Characteristics of Amended Soils: A Review. Sustainability 2023, 15, 8700. [Google Scholar] [CrossRef]
- de Jesus Duarte, S.; Cerri, C.E.P.; Rittl, T.F.; Abbruzzin, T.F.; Pano, B.L.P. Biochar Physical and Hydrological Characterization to Improve Soil Attributes for Plant Production. J. Soil Sci. Plant Nutr. 2023, 23, 3051–3057. [Google Scholar] [CrossRef]
- de Jesus Duarte, S.; Glaser, B.; Cerri, C.E.P. Effect of Biochar Particle Size on Physical, Hydrological and Chemical Properties of Loamy and Sandy Tropical Soils. Agronomy 2019, 9, 165–180. [Google Scholar] [CrossRef]
- Edeh, I.G.; Mašek, O. The Role of Biochar Particle Size and Hydrophobicity in Improving Soil Hydraulic Properties. Eur. J. Soil Sci. 2022, 73, e13138. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Busscher, W.J.; Novak, J.M.; Evans, D.E.; Watts, D.W.; Niandou, M.A.S.; Ahmedna, M. Influence of Pecan Biochar on Physical Properties of a Norfolk Loamy Sand. Soil Sci. 2010, 175, 10–14. [Google Scholar] [CrossRef]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic Properties of Biochars Produced at Different Temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Pérez, M. The Role of Biochar Porosity and Surface Functionality in Augmenting Hydrologic Properties of a Sandy Soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef]
- Ibrahimi, K.; Alghamdi, A.G. Available Water Capacity of Sandy Soils as Affected by Biochar Application: A Meta-Analysis. Catena 2022, 214, 106281. [Google Scholar] [CrossRef]
- Chen, X.; Duan, M.; Zhou, B.; Cui, L. Effects of Biochar Nanoparticles as a Soil Amendment on the Structure and Hydraulic Characteristics of a Sandy Loam Soil. Soil Use Manag. 2022, 38, 836–849. [Google Scholar] [CrossRef]
- Rasa, K.; Heikkinen, J.; Hannula, M.; Arstila, K.; Kulju, S.; Hyväluoma, J. How and Why Does Willow Biochar Increase a Clay Soil Water Retention Capacity? Biomass Bioenergy 2018, 119, 346–353. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Li, X.; Kang, J.; Xiang, X.; Shi, H.; Ren, X. Effect of Biochar on Soil-Water Characteristics of Soils: A Pore-Scale Study. Water 2023, 15, 1909. [Google Scholar] [CrossRef]
- Ghazouani, H.; Ibrahimi, K.; Amami, R.; Helaoui, S.; Boughattas, I.; Kanzari, S.; Milham, P.; Ansar, S.; Sher, F. Integrative Effect of Activated Biochar to Reduce Water Stress Impact and Enhance Antioxidant Capacity in Crops. Sci. Total Environ. 2023, 905, 166950. [Google Scholar] [CrossRef]
- Lal, R. Soil Organic Matter and Water Retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Ankenbauer, K.J.; Loheide, S.P. The Effects of Soil Organic Matter on Soil Water Retention and Plant Water Use in a Meadow of the Sierra Nevada, CA. Hydrol. Process. 2017, 31, 891–901. [Google Scholar] [CrossRef]
Symbol | Application Rate (%) | Pyrolytic Temperature (°C) | Type of Residue |
---|---|---|---|
Cont. | 0 | - | - |
O450, 1% | 1 | 450 | Olive trees |
O450, 5% | 5 | 450 | Olive trees |
D450, 1% | 1 | 450 | Date palm |
D450, 5% | 5 | 450 | Date palm |
Sample | PH | ECe | CaCO3% | O.M% | % | Soil Texture | ||
---|---|---|---|---|---|---|---|---|
dS.m−1 | Sand | Silt | Clay | |||||
Soil | 8.2 | 1.1 | 9.2 | 0.10 | 91.3 | 0.02 | 8.6 | Sand |
Sample | Code | Type of Residue | pH (1:10) | EC (dSm−1) (1:10) | CEC (cmol kg−1) | Specific Surface Area (m2/g) | Total Porosity (%) | Proximate Analysis (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Stable Carbon | Volatile Matter | Ash | Moisture | ||||||||
1 | D450 | Date palm pyrolyzed at 450 °C | 8.99 | 4.10 | 80.2 | 228.8 | 78.6 | 60.3 | 22.62 | 13.84 | 3.33 |
2 | O450 | Olive pyrolyzed at 450 °C | 9.42 | 2.17 | 34.37 | 154.1 | 65.4 | 59.5 | 27.75 | 9.6 | 3.15 |
Treatment | Added Water | Evaporation (mm) | Cumulative Evaporation | Water Retained | Cumul. Evapo. + | Recovery % | ||||
---|---|---|---|---|---|---|---|---|---|---|
(mm) | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | (mm) | Water Retained (mm) | |||
Control | 63.69 | 8.06 | 9.2 | 10.44 | 10.5 | 11.00 | 49.20 a * | 14.10 f | 63.3 | 99.39 |
O450, 1% | 63.69 | 8.10 | 8.70 | 9.60 | 10.50 | 11.20 | 48.10 b | 15.50 d | 63.60 | 99.86 |
O450, 5% | 63.69 | 7.54 | 8.30 | 9.30 | 10.30 | 11.00 | 46.44 d | 16.95 b | 63.39 | 99.53 |
D450, 1% | 63.69 | 7.50 | 8.00 | 9.59 | 11.00 | 11.09 | 47.18 c | 16.10 c | 63.28 | 99.36 |
D450, 5% | 63.69 | 7.00 | 7.50 | 9.20 | 10.50 | 10.00 | 44.20 f | 17.87 a | 62.07 | 97.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.G. Comparison of the Effects of Olive Tree and Date Palm Waste Biochar on Water Stress Measurements and Hydrophysical Properties of Sandy Soil. Water 2025, 17, 2612. https://doi.org/10.3390/w17172612
Alghamdi AG. Comparison of the Effects of Olive Tree and Date Palm Waste Biochar on Water Stress Measurements and Hydrophysical Properties of Sandy Soil. Water. 2025; 17(17):2612. https://doi.org/10.3390/w17172612
Chicago/Turabian StyleAlghamdi, Abdulaziz G. 2025. "Comparison of the Effects of Olive Tree and Date Palm Waste Biochar on Water Stress Measurements and Hydrophysical Properties of Sandy Soil" Water 17, no. 17: 2612. https://doi.org/10.3390/w17172612
APA StyleAlghamdi, A. G. (2025). Comparison of the Effects of Olive Tree and Date Palm Waste Biochar on Water Stress Measurements and Hydrophysical Properties of Sandy Soil. Water, 17(17), 2612. https://doi.org/10.3390/w17172612