Distribution and Ecological Risks of Organic Carbon, Nitrogen, and Phosphorus in Dongzhai Harbor Mangrove Sediments, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Data Processing
2.4. Risk Assessment Methods
3. Results
3.1. Particle Size and pH
3.2. Distribution of Carbon, Nitrogen, and Phosphorus
4. Discussion
4.1. Factors Influencing Nutrient Enrichment
4.2. The Sources of Organic Carbon, Nitrogen, and Phosphorus
4.3. Nutrient Pollution Assessment
5. Conclusions
- (1)
- Sediments within the study area exhibited significant spatial heterogeneity in total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) concentrations. Horizontally, concentrations decreased land-to-sea; vertically, they declined with depth—collectively indicating predominant terrestrial control over nutrient distribution. Grain size analysis revealed silt-dominated textures (>52%), while pH displayed a stratified pattern (neutral surface vs. acidic subsurface). This coupled physicochemical regime favors organic matter preservation and stability. The integrated spatial patterns collectively demonstrate high environmental sensitivity of mangrove wetlands to nutrient migration across land–sea ecotones.
- (2)
- Sediments displayed a mean C/N ratio of 19, and source apportionment indicated that mangrove vegetation and marine phytoplankton contribute 68% and 32%, respectively, to the sedimentary organic matter composition. An average C/P ratio of 29 suggests high phosphorus bioavailability, whereas an average N/P ratio of 1.4 points to predominantly terrestrial phosphorus sources. Significant correlations exist between TOC and TN, TOC and TP, and TN and TP, indicating a common origin for nitrogen and phosphorus. With increasing depth, both the C/P and N/P ratios exhibited a consistent upward trend, suggesting enhanced inputs of allochthonous phosphorus to the sedimentary system. Larger particle sizes weaken the correlations of TOC, TN, and TP, while pH exhibits negative correlations with all indicators.
- (3)
- The Dongzhai Harbor mangrove wetland exhibits potential organic pollution and nutrient accumulation risks. While nearly half of monitoring sites are classified as “Moderately Clean”, an overall increasing pollution trend is evident, with heavily polluted zones concentrated in areas characterized by minimal tidal influence, dense mangrove vegetation, and frequent anthropogenic activities. Pollution sources are likely driven by combined vegetation metabolic processes and human disturbances. Consequently, enhanced source control measures are recommended to reduce nutrient inputs and promote sustainable ecosystem health.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, M.B.K.; Ramanathan, A.L. Sedimentary nutrient dynamics in a tropical estuarine mangrove ecosystem. Estuar. Coast. Shelf Sci. 2008, 80, 60–66. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Mao, C.; Li, T.; Rao, W.; Tang, Z.; Song, Y.; Wang, S. Chemical Speciation of Phosphorus in Surface Sediments from the Jiangsu Coast, East China: Influences, Provenances and Bioavailabilities. Mar. Pollut. Bull. 2021, 163, 111961. [Google Scholar] [CrossRef]
- Camacho-Valdez, V.; Ruiz-Luna, A.; Ghermandi, A.; Nunes, P.A. Valuation of ecosystem services provided by coastal wetlands in northwest Mexico. Ocean Coast. Manag. 2013, 78, 1–11. [Google Scholar] [CrossRef]
- Atwood, T.; Connolly, R.; Almahasheer, H.; Carnell, P.E.; Duarte, C.M.; Lewis, C.J.E.; Irigoien, X.; Kelleway, J.J.; Lavery, P.S.; Macreadie, P.I.; et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 2017, 7, 523–528. [Google Scholar] [CrossRef]
- Jennerjahn, T.C.; Ittekkot, V. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 2002, 89, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, T.; Hertkorn, N.; Kattner, G. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 2006, 20, GB1012. [Google Scholar] [CrossRef]
- Duarte, C.M.; Middelburg, J.J.; Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2005, 2, 1–8. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Bai, J.; Meng, Y.; Diao, X.; Pan, K.; Zhu, X.; Lin, G. Effects of land use on the heavy metal pollution in mangrove sediments: Study on a whole island scale in Hainan, China. Sci. Total Environ. 2022, 824, 153856. [Google Scholar] [CrossRef]
- Xu, F.; Tian, X.; Yin, X.; Yan, H.; Yin, F.; Liu, Z. Trace metals in the surface sediments of the eastern continental shelf of Hainan Island: Sources and contamination. Mar. Pollut. Bull. 2015, 99, 276–283. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, L.; Wang, A.; Meng, X.; Xu, C.; Wang, X.; Wang, S.; Huang, W.; Xu, F. Distribution, sources, and contamination evaluation of heavy metals in surface sediments of the Qizhou Island sea area in Hainan, China. Mar. Pollut. Bull. 2024, 208, 116933. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Du, S.; Zhang, G.; Wang, Y.; Rao, W. Spatial Distribution and Ecological Risk Assessment of Heavy Metals in the Sediment of a Tropical Mangrove Wetland on Hainan Island, China. Water 2022, 14, 3785. [Google Scholar] [CrossRef]
- Liu, B.; Xia, P.; Du, J.; Luo, X.; Zhai, R.; Lin, J. Sedimentary records of environmental evolution in Dongzhai Port mangrove swamps (South China) over the last hundred years: Insights from corrections of grain-size effects. Environ. Pollut. 2024, 343, 123179. [Google Scholar] [CrossRef]
- Guo, Y.; Ke, X.; Zhang, J.; He, X.; Li, Q.; Zhang, Y. Distribution, Risk Assessment and Source of Heavy Metals in Mangrove Wetland Sediments of Dongzhai Harbor, South China. Int. J. Environ. Res. Public Health 2023, 20, 1090. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, S.; Long, R.; Ma, B.; Chang, Y.; Mao, C. Distribution of Heavy Metals in Surface Sediments of a Tropical Mangrove Wetlands in Hainan, China, and Their Biological Effectiveness. Minerals 2023, 13, 1476. [Google Scholar] [CrossRef]
- Dong, J.; Huang, X.; Long, A.; Wang, Y.; Ling, J.; Yang, Q. Progress on the nitrogen-fixing microorganisms and their ecological functions in mangroves. J. Trop. Oceanogr. 2023, 42, 1–11. [Google Scholar]
- Chen, G.K.; Chen, G.Z. Phosphorus cycling in a simulated wastewater-affected mangrove (Avicennia marina) wetland system. Acta Ecol. Sin. 2005, 25, 627–632. [Google Scholar]
- Xin, K.; Huang, X.; Hu, J.; Li, C.; Yang, X.; Arndt, S.K. Land use change impacts on heavy metal sedimentation in mangrove wetlands—A case study in Dongzhai Harbor of Hainan China. Wetlands 2014, 34, 1–8. [Google Scholar] [CrossRef]
- Hu, B.; Cui, R.; Li, J.; Wei, H.; Zhao, J.; Bai, F.; Song, W.; Ding, X. Occurrence and distribution of heavy metals in surface sediments of the Changhua River Estuary and adjacent shelf (Hainan Island). Mar. Pollut. Bull. 2013, 76, 400–405. [Google Scholar] [CrossRef]
- Xu, F.; Hu, B.; Li, J.; Cui, R.; Liu, Z.; Jiang, Z.; Yin, X. Reassessment of heavy metal pollution in riverine sediments of Hainan Island, China: Sources and risks. Environ. Sci. Pollut. Res. 2018, 25, 1766–1772. [Google Scholar] [CrossRef]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National multi-purpose regional geochemical survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Wang, H.; Ji, Y.; Fu, X.; Zhao, Z. Distribution and Restriction Factors of Rare Earth Elements in the Sediments from the Mangrove in Dongzhai Harbor, Hainan Island. Trop. Geogr. 2017, 37, 82–90. [Google Scholar]
- Liao, B.W.; Zhang, Q.M. Area, Distribution and Species Composition of Mangroves in China. Wetl. Sci. 2014, 12, 435–440. [Google Scholar]
- Wang, J.; Zou, X.; Zuo, P. Quality Evaluation of Coastal Wetland Environment Based on Resident Investigation—A Case Study at Dongzhaigang Mangrove Natural Reserve, Hainan Province. Sci. Geogr. Sin. 2007, 2, 249–255. [Google Scholar]
- International Union of Soil Sciences (IUSS). World Reference Base for Soil Resources 2014: International Soil Classification and Correlation System, 3rd ed.; International Union of Soil Sciences (IUSS): Rome, Italy, 2014; Available online: https://www.iuss.org (accessed on 28 July 2025).
- Rao, W.; Mao, C.; Wang, Y.; Su, J.; Balsam, W.; Ji, J. Geochemical constraints on the provenance of surface sediment of radial sand ridges off the Jiangsu coastal zone, East China. Mar. Geol. 2015, 359, 35–49. [Google Scholar] [CrossRef]
- Nie, J.J.; Yang, C.; Chen, W.C.; Yu, X.Y. Optimization of Kjeldahl Method for Determination of Total Nitrogen in Soil. Adv. Environ. Prot. 2024, 14, 24–31. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Zhang, W.; Zhang, Y.; Sun, C.; Marhaba, T. Phosphorus, organic matter and nitrogen distribution characteristics of thesurface sediments in Nansi lake, China. Environ. Earth Sci. 2015, 73, 5669–5675. [Google Scholar] [CrossRef]
- Sui, G.R. Statement and evaluation of organic matter, total nitrogen and total phosphate in surface layer sediments in Taihu lake. J. Lake Sci. 1996, 42, 699–711. [Google Scholar]
- Wang, Y.P.; Xu, W.W.; Han, C.; Hu, W.P. Distribution of Nitrogen and Phosphorus in Lake Chaohu Sediments and Pollution Evaluation. Environ. Sci. 2021, 42, 699–711. [Google Scholar]
- Xiong, P.; Wenjun, G.; Huan, L.; Yuan, H.; Wei, Z.; Li, L. Carbon, Nitrogen, and Phosphorus in Sediments of Honghu Lake:Spatial Distribution and Pollution Evaluation. Changjiang Kexueyuan Yuanbao 2021, 38, 41–46. [Google Scholar]
- Nemerow, N.L. Scientific Stream Pollution Analysis; Scripta Book Co: Washington, DC, USA, 1974. [Google Scholar]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. 1993. Available online: https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/d662f9f3-49b4-403e-95ce-8c481224cd1a/content (accessed on 28 July 2025).
- Hossain, G.M.; Bhuiyan, M.A.H. Spatial and Temporal Variations of Organic Matter Contents and Potential Sediment Nutrient Index in the Sundarbans Mangrove Forest, Bangladesh. KSCE J. Civ. Eng. 2016, 20, 163–174. [Google Scholar] [CrossRef]
- Yang, Y.N.; Liu, J.; Myat, T. Pollution monitoring and assessment of mangrove wetlands in Dongzhai Port, Hainan. Mar. Environ. Sci. 2020, 39, 399–406. [Google Scholar]
- Fan, H.Q.; Liu, W.A.; Zhong, C.R.; Ni, X. Analysis of damage by wood-boring isopods in Chinese mangroves. Guangxi Sci. 2014, 21, 140–146, 152. [Google Scholar]
- Qiu, Y.; Li, J.; Huang, B.; Hu, Y.S.; Li, Y.; Duan, Z.L. Study on ecological factors affecting the distribution of Sphaeroma retrolaevis in Dongzhai Port mangroves. Mar. Sci. 2013, 37, 2125. [Google Scholar]
- Bastviken, S.K.; Eriksson, P.G.; Premrov, A.; Tonderski, K. Potential Denitrification in Wetland Sediments with Different Plant Species Detritus. Ecol. Eng. 2005, 25, 183–190. [Google Scholar] [CrossRef]
- Maie, N.; Jaffé, R.; Miyoshi, T.; Childers, D.L. Quantitative and Qualitative Aspects of Dissolved Organic Carbon Leached from Senescent Plants in an Oligotrophic Wetland. Biogeochemistry 2006, 78, 285–314. [Google Scholar] [CrossRef]
- Macko, S.A.; Engel, M.H.; Parker, P.L. Early Diagenesis of Organic Matter in Sediments. In Organic Geochemistry; Engel, M.H., Macko, S.A., Eds.; Topics in Geobiology; Springer: Boston, MA, USA, 1993; Volume 11, pp. 211–224. [Google Scholar]
- Tam, N.F.Y. Pollution Studies on Mangroves in Hong Kong and Mainland China. In The Environment in Asia Pacific Harbours; Springer: Dordrecht, The Netherlands, 2006; pp. 147–163. [Google Scholar]
- Hu, B.; Li, J.; Cui, R.; Wei, H.; Zhao, J.; Li, G.; Fang, X.; Ding, X.; Zou, L.; Bai, F. Clay Mineralogy of the Riverine Sediments of Hainan Island, South China Sea: Implications for Weathering and Provenance. J. Asian Earth Sci. 2014, 96, 84–92. [Google Scholar] [CrossRef]
- Koch, E.W.; Barbier, E.B.; Silliman, B.R.; Reed, D.J.; Perillo, G.M.E. Organic Matter Sources and Nutrient Cycling in Mangrove Ecosystems. Estuar. Coast. Shelf Sci. 2017, 190, 46–54. [Google Scholar]
- Khan, M.N.I.; Suwa, R.; Hagihara, A. Carbon and Nitrogen Pools in a Mangrove Stand of Kandelia Obovata (S., L.) Yong: Vertical Distribution in the Soil–Vegetation System. Wetl. Ecol. Manag. 2007, 15, 141–153. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Mackenzie, R.A.; Ainsworth, A.; Pfleeger, A.Z. Whole-Island Carbon Stocks in the Tropical Pacific: Implications for Mangrove Conservation and Upland Restoration. J. Environ. Manag. 2012, 97, 89–96. [Google Scholar] [CrossRef]
- Rovira, A.D.; Greacen, E.L. The effect of aggregate disruption on the activity of microorganisms in the soil. Aust. Lournal Agric. Res. 1957, 8, 659–673. [Google Scholar] [CrossRef]
- Jin, X.C.; Wang, S.R.; Zhao, H.C.; Zhou, X.N.; Chu, J.Z. Study on the Phosphate Sorption of the Different Particle Size Fractions in the Sediments from Wuli Lake and Gonghu Lake. Res. Environ. Sci. 2004, 17, 6–9. [Google Scholar]
- Alongi, D.M.; Boto, K.G.; Robertson, A.I. Nitrogen and Phosphorus Cycles. In Tropical Mangrove Ecosystems; American Geophysical Union (AGU): Washington, DC, USA, 1992; pp. 251–292. ISBN 978-1-118-66508-4. [Google Scholar]
- Wang, C.; Wei, Z.; Shen, X.; Bai, L.; Jiang, H. Particle Size-Related Vertical Redistribution of Phosphorus (P)-Inactivating Materials Induced by Resuspension Shaped P Immobilization in Lake Sediment Profile. Water Res. 2022, 213, 118150. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Wang, R.; He, B.; Fu, G.; Song, Y.; Pei, L.; Fan, S.; Gao, F. Distribution Characteristics and Factors Controlling Different Phosphorus Fractions in the Soils and Sediments of an Inland Lagoon. J. Mar. Sci. Eng. 2024, 12, 127. [Google Scholar] [CrossRef]
- Meziane, T.; Tsuchiya, M. Organic Matter in a Subtropical Mangrove-Estuary Subjected to Wastewater Discharge: Origin and Utilisation by Two Macrozoobenthic Species. J. Sea Res. 2002, 47, 1–11. [Google Scholar] [CrossRef]
- Qiu, Y.; Ye, Y. Exchanges of Nutrients and Organic Carbon Between Mangrove Forest and Its Adjacent Water Area Through Tide Actions in Jiulongjiang Estuary. J. Xiamen Univ. 2013, 52, 718–721. [Google Scholar]
- Talbot, M.R. A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates. Chem. Geol. Isot. Geosci. Sect. 1990, 80, 261–279. [Google Scholar] [CrossRef]
- Thornton, S.F.; McManus, J. Application of Organic Carbon and Nitrogen Stable Isotope and C/N Ratios as Source Indicators of Organic Matter Provenance in Estuarine Systems: Evidence from the Tay Estuary, Scotland. Estuar. Coast. Shelf Sci. 1994, 38, 219–233. [Google Scholar] [CrossRef]
- Qian, J.; Wang, S.; Xue, B.; Chen, R.; Ke, S. A Method of Quantitatively Calculating Amount of Allochthonous Organic Carbon in Lake Sediments. Chin. Sci. Bull. 1997, 42, 1821–1823. [Google Scholar] [CrossRef]
- Fan, C.; Yang, L.; Zhang, L. The Vertical Distributions of Nitrogen and Phosphorus i n t he Sedi ment and Interstiti al Water in Tai hu Lake and Their Interrelations. J. Lake Sci. 2000, 12, 359–366. [Google Scholar]
- Li, H.; Zhang, H.; Wu, Y.; Zhang, Z.; Li, Y.; Yu, X.; Xu, H. Vertical Distribution and Pollution Assessment of TN, TP, and TOC in Dongshan Bay Sediments. Front. Environ. Sci. 2023, 11, 1216868. [Google Scholar]
- Li, J.; Zhang, W.; Liu, X.; Wang, S.; Li, Y.; Xu, F. The Overlooked Contribution of Aquaculture to Phosphorus Pollution in Estuarine Regions. Sci. Total Environ. 2025, 968, 178905. [Google Scholar] [CrossRef]
- Jones, D.; Smith, T.; White, H.; Green, A. Addressing Phosphorus Waste in Open Flow Freshwater Fish Farms. Water 2021, 8, 442. [Google Scholar]
- Boehm, F.; Sandrini-Neto, L.; Moens, T.; da Cunha Lana, P. Sewage Input Reduces the Consumption of Rhizophora Mangle Propagules by Crabs in a Subtropical Mangrove System. Mar. Environ. Res. 2016, 122, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhu, X.; Wu, H.; Ning, C.; Lin, G. Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediments of a Typical Restored Mangrove–Aquaculture Wetland in Shenzhen, China. Mar. Pollut. Bull. 2017, 124, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Onuf, C.P.; Teal, J.M.; Valiela, I. Interactions of nutrients, plant-growth and herbivory in a mangrove ecosystem. Ecology 1997, 58, 514–526. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Ball, M.C.; Martin, K.C.; Feller, I.C. Nutrient Enrichment Increases Mortality of Mangroves. PLoS ONE 2009, 4, e5600. [Google Scholar] [CrossRef]
- Williamson, P.; Gore, C.; Johannessen, S.; Kristensen, E.; Michaelowa, A.; Wang, F.; Zhang, J. Additionality Revisited for Blue Carbon Ecosystems: Ensuring Real Climate Mitigation. Glob. Change Biol. 2025, 31, e70181. [Google Scholar] [CrossRef]
Name | Expression | Coefficient of Interpretation | Contamination Degree | Reference |
---|---|---|---|---|
organic nitrogen pollution index (ONI) | organic nitrogen (%) = total nitrogen (%) × 0.95 | Indicators of Organic Nitrogen Risk in Surface Sediments of Waterbody Environments. | ONI < 0.033 Uncontaminated 0.033 ≤ ONI ≤ 0.066 Slightly Contaminated 0.066 ≤ ONI ≤ 0.133 Moderately Clean ONI ≥ 0.133 Organically Polluted | [28] |
Organic Pollution Index (OI) | Organic Pollution Index = organic carbon (%) × organic nitrogen (%) | An important indicator of the combined risk of organic carbon and organic nitrogen in sediments. | OI < 0.05 Uncontaminated 0.05 ≤ OI ≤ 0.20 Slightly Contaminated 0.20 ≤ OI ≤ 0.50 Moderately Clean OI ≥ 0.50 Organically Polluted | [29] |
Single Factor Pollution Index (Si) | Si is the evaluation index for a single factor; Ci is the measured value of evaluation factor i (g/kg); Cs is the standard value of evaluation factor i (g/kg). The Cs value for TN is 0.55 g/kg; the Cs value for TP is 0.60 g/kg. | STP < 0.5 STN < 1.0 Uncontaminated 0.5 ≤ STP < 1.0 Low Pollution 1.0 ≤ STN < 1.5 Low Pollution 1.0 ≤ STP < 1.5 Moderate Pollution 1.5 ≤ STN < 2.0 Moderate Pollution STP ≥ 1.5 STN ≥ 2.0 Heavy Pollution | [30] | |
Comprehensive Pollution Index (FF) | FF represents the comprehensive pollution index; F represents the average value of STN and STP; Fmax represents the maximum value of STN and STP. | FF < 1.0 Uncontaminated 1.0 ≤ FF < 1.5 Low Pollution 1.5 ≤ FF < 2.0 Moderate Pollution FF ≥ 2.0 Heavy Pollution | [31] | |
Nemerow Integrated Pollution Index (PN) | CFiave: The weighted average value of the pollution factor for sampling point i after incorporating the weight value. CFimax: The maximum value of all heavy metal pollution factors at sampling point i. | PN ≤ 0.7: Safe Level 0.7 < PN ≤ 1: Warning Level 1 < PN ≤ 2: Low Pollution 2 < PN ≤ 3: Moderate Pollution PN > 3: Severe Pollution | [32] |
TOC (%) | TN (mg/kg) | TP (mg/kg) | pH | Sand (%) | Silt (%) | Clay (%) | |
---|---|---|---|---|---|---|---|
Max | 3.20 | 1919 | 1640 | 8.41 | 70.2 | 78.2 | 22.6 |
Min | 0.07 | 154 | 78 | 3.21 | 6.5 | 27.2 | 2.6 |
Average | 1.06 | 548 | 377 | 6.95 | 37.47 | 52.62 | 9.91 |
Median | 0.82 | 417 | 302 | 7.53 | 36 | 55.2 | 8.9 |
CV | 66.63% | 64.62% | 53.47% | 19.02% | 34.94% | 21.31% | 39.92% |
Sand | Silt | Clay | TOC | TN | TP | pH | |
---|---|---|---|---|---|---|---|
Sand | 1.000 | ||||||
Silt | −0.980 ** | 1.000 | |||||
Clay | −0.690 ** | 0.582 ** | 1.000 | ||||
TOC | −0.390 * | 0.408 * | 0.229 | 1.000 | |||
TN | −0.552 ** | 0.561 ** | 0.335 | 0.920 ** | 1.000 | ||
TP | −0.611 ** | 0.591 ** | 0.413 * | 0.578 ** | 0.771 ** | 1.000 | |
pH | 0.173 | −0.174 | 0.009 | −0.678 ** | −0.559 ** | −0.190 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Wang, J.; Ma, B.; Li, X.; Mao, C.; Lin, D.; Zhang, D. Distribution and Ecological Risks of Organic Carbon, Nitrogen, and Phosphorus in Dongzhai Harbor Mangrove Sediments, China. Water 2025, 17, 2613. https://doi.org/10.3390/w17172613
Zhang G, Wang J, Ma B, Li X, Mao C, Lin D, Zhang D. Distribution and Ecological Risks of Organic Carbon, Nitrogen, and Phosphorus in Dongzhai Harbor Mangrove Sediments, China. Water. 2025; 17(17):2613. https://doi.org/10.3390/w17172613
Chicago/Turabian StyleZhang, Gucheng, Jiaming Wang, Bo Ma, Xin Li, Changping Mao, Di Lin, and Dongming Zhang. 2025. "Distribution and Ecological Risks of Organic Carbon, Nitrogen, and Phosphorus in Dongzhai Harbor Mangrove Sediments, China" Water 17, no. 17: 2613. https://doi.org/10.3390/w17172613
APA StyleZhang, G., Wang, J., Ma, B., Li, X., Mao, C., Lin, D., & Zhang, D. (2025). Distribution and Ecological Risks of Organic Carbon, Nitrogen, and Phosphorus in Dongzhai Harbor Mangrove Sediments, China. Water, 17(17), 2613. https://doi.org/10.3390/w17172613