Assessing the Distribution and Stability of Groundwater Climatic Refugia: Cliff-Face Seeps in the Pacific Northwest
Abstract
1. Introduction
2. Methods
2.1. Overview
2.2. Study Areas
2.3. Seep Discovery
2.4. Seep Distribution Model
2.5. Monitoring Thermal and Hydrologic Stability
2.6. Seep Thermal and Hydrologic Stability Models
2.7. Generating Output Maps
3. Results
4. Discussion
4.1. Summary of Key Findings
4.2. Seep Distribution Model
4.3. Seep Stability Models
4.4. Spatial Scale-Based Considerations
4.5. Interpretation of Output Maps
4.6. Key Caveats and Limitations
4.7. Management Implications
4.8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hannah, L. Protected Areas and Climate Change. Ann. N. Y. Acad. Sci. 2008, 1134, 201–212. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M. Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of Climate Change on the Future of Biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating Extinction Risk from Climate Change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzée, A.; Hamidy, A.; Aowphol, A.; Jean, A. Ongoing Declines for the World’s Amphibians in the Face of Emerging Threats. Nature 2023, 622, 308–314. [Google Scholar] [CrossRef]
- Chiew, F.; Young, W.; Cai, W.; Teng, J. Current Drought and Future Hydroclimate Projections in Southeast Australia and Implications for Water Resources Management. Stoch. Environ. Res. Risk Assess. 2011, 25, 601–612. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H.; Svoboda, M. Centennial Drought Outlook over the CONUS Using NASA-NEX Downscaled Climate Ensemble. Int. J. Climatol. 2017, 37, 2477–2491. [Google Scholar] [CrossRef]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest Microclimates and Climate Change: Importance, Drivers and Future Research Agenda. Glob. Change Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Kattel, G.R. Climate Warming in the Himalayas Threatens Biodiversity, Ecosystem Functioning and Ecosystem Services in the 21st Century: Is There a Better Solution? Biodivers. Conserv. 2022, 31, 2017–2044. [Google Scholar] [CrossRef]
- Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, J.; Johnson, H.M. Springs as Hydrologic Refugia in a Changing Climate? A Remote-Sensing Approach. Ecosphere 2018, 9, e02155. [Google Scholar] [CrossRef]
- Cartwright, J.; Dwire, K.A.; Freed, Z.; Hammer, S.J.; McLaughlin, B.; Misztal, L.W.; Schenk, E.R.; Spence, J.R.; Springer, A.E.; Stevens, L.E. Oases of the Future? Springs as Potential Hydrologic Refugia in Drying Climates. Front. Ecol. Environ. 2020, 18, 245–253. [Google Scholar] [CrossRef]
- Morelli, T.L.; Barrows, C.W.; Ramirez, A.R.; Cartwright, J.M.; Ackerly, D.D.; Eaves, T.D.; Ebersole, J.L.; Krawchuk, M.A.; Letcher, B.H.; Mahalovich, M.F.; et al. Climate-Change Refugia: Biodiversity in the Slow Lane. Front. Ecol. Environ. 2020, 18, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Zellweger, F.; De Frenne, P.; Lenoir, J.; Rocchini, D.; Coomes, D. Advances in Microclimate Ecology Arising from Remote Sensing. Trends Ecol. Evol. 2019, 34, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Dobrowski, S.Z. A Climatic Basis for Microrefugia: The Influence of Terrain on Climate. Glob. Change Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Weissinger, R.; Philippi, T.; Thoma, D. Linking Climate to Changing Discharge at Springs in Arches National Park, Utah, USA. Ecosphere 2016, 7, e01491. [Google Scholar] [CrossRef]
- Morelli, T.L.; Daly, C.; Dobrowski, S.Z.; Dulen, D.M.; Ebersole, J.L.; Jackson, S.T.; Lundquist, J.D.; Millar, C.I.; Maher, S.P.; Monahan, W.B.; et al. Managing Climate Change Refugia for Climate Adaptation. PLoS ONE 2016, 11, e0159909. [Google Scholar] [CrossRef]
- Ryan, J. Prospect Refugia: Constructing Climate Change Resilient Ecosystems. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2021. [Google Scholar]
- Suggitt, A.J.; Wilson, R.J.; Isaac, N.J.; Beale, C.M.; Auffret, A.G.; August, T.; Bennie, J.J.; Crick, H.Q.; Duffield, S.; Fox, R. Extinction Risk from Climate Change Is Reduced by Microclimatic Buffering. Nat. Clim. Change 2018, 8, 713–717. [Google Scholar] [CrossRef]
- Haby, N.A.; Delean, S.; Brook, B.W. Specialist Resources Are Key to Improving Small Mammal Distribution Models. Austral Ecol. 2012, 37, 216–226. [Google Scholar] [CrossRef]
- Burke, T. Land Snails and Slugs of the Pacific Northwest; Oregon State University Press: Corvallis, OR, USA, 2013. [Google Scholar]
- Mendoza-Fernández, A.J.; Fernández-Ceular, Á.; Alcaraz-Segura, D.; Ballesteros, M.; Peñas, J. The Fate of Endemic Species Specialized in Island Habitat under Climate Change in a Mediterranean High Mountain. Plants 2022, 11, 3193. [Google Scholar] [CrossRef] [PubMed]
- Steigerwald, E.; Chen, J.; Oshiro, J.; Vredenburg, V.T.; Catenazzi, A.; Koo, M.S. Microreserves Are an Important Tool for Amphibian Conservation. Commun. Biol. 2024, 7, 1177. [Google Scholar] [CrossRef]
- Ashcroft, M.B.; Gollan, J.R.; Warton, D.I.; Ramp, D. A Novel Approach to Quantify and Locate Potential Microrefugia Using Topoclimate, Climate Stability, and Isolation from the Matrix. Glob. Change Biol. 2012, 18, 1866–1879. [Google Scholar] [CrossRef]
- Lenoir, J.; Hattab, T.; Pierre, G. Climatic Microrefugia under Anthropogenic Climate Change: Implications for Species Redistribution. Ecography 2017, 40, 253–266. [Google Scholar] [CrossRef]
- Keppel, G.; Wardell-Johnson, G.W. Refugial Capacity Defines Holdouts, Microrefugia and Stepping-Stones: A Response to Hannah et al. Trends Ecol. Evol. 2015, 30, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Potter, K.A.; Arthur Woods, H.; Pincebourde, S. Microclimatic Challenges in Global Change Biology. Glob. Change Biol. 2013, 19, 2932–2939. [Google Scholar] [CrossRef]
- Stark, J.R.; Fridley, J.D. Microclimate-Based Species Distribution Models in Complex Forested Terrain Indicate Widespread Cryptic Refugia under Climate Change. Glob. Ecol. Biogeogr. 2022, 31, 562–575. [Google Scholar] [CrossRef]
- Kreamer, D.K.; Stevens, L.E.; Ledbetter, J.D. Groundwater Dependent Ecosystems—Science, Challenges, and Policy Directions. In Groundwater; Nova Science Publishers, Inc.: Hauppaunge, NY, USA, 2015; pp. 205–230. [Google Scholar]
- O’Donnell, R.P.; Quinn, T.; Hayes, M.P.; Ryding, K.E. Comparison of Three Methods for Surveying Amphibians in Forested Seep Habitats in Washington State. Northwest Sci. 2007, 81, 274–283. [Google Scholar] [CrossRef]
- McIntyre, A.P.; Schmitz, R.A.; Crisafulli, C.M. Associations of the Van Dyke’s Salamander (Plethodon vandykei) with Geomorphic Conditions in Headwall Seeps of the Cascade Range, Washington State. J. Herpetol. 2006, 40, 309–322. [Google Scholar] [CrossRef]
- Bury, R.B.; Adams, M.J. Inventory and Monitoring of Amphibians in North Cascades and Olympic National Parks, 1995–1998; US Geological Survey: Reston, VA, USA, 2000. [Google Scholar]
- Grinder, R.M.; Wiens, J.J. Niche Width Predicts Extinction from Climate Change and Vulnerability of Tropical Species. Glob. Change Biol. 2023, 29, 618–630. [Google Scholar] [CrossRef]
- McIntyre, A.P. Ecology of Populations of Van Dyke’s Salamanders in the Cascade Range of Washington State. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2003. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Stebbins, R.C.; McGinnis, S.M. Peterson Field Guide to Western Reptiles & Amphibians, 4th ed.; Houghton Mifflin Harcourt: Boston, MA, USA, 2018. [Google Scholar]
- Ashbaugh, J.G. The Pacific Northwest: Geographical Perspective; Kendall Hunt Publishing Company: Dubuque, IA, USA, 1994. [Google Scholar]
- Pelletier, T.A.; Crisafulli, C.; Wagner, S.; Zellmer, A.J.; Carstens, B.C. Historical Species Distribution Models Predict Species Limits in Western Plethodon Salamanders. Syst. Biol. 2015, 64, 909–925. [Google Scholar] [CrossRef]
- Jefferson, A.; Grant, G.E.; Lewis, S.L. A River Runs Underneath It: Geological Control of Spring and Channel Systems and Management Implications, Cascade Range, Oregon. In Proceedings of the American Meteorological Society’s 16th Conference on Climate Variability and Change, San Diego, CA, USA, 18–22 October 2004; US Forest Service: Portland, OR, USA, 2007. PNW-GTR-689. pp. 391–400. [Google Scholar]
- Heimel, M.J. Testing the Utility of Environmental Cluster Analysis Based upon Biodiversity Surrogates Within Geographic Information Systems for Conservation Planning: A Case Study of Inland Temperate Rainforest in the Northern Rocky Mountains. Master’s Thesis, University of Montana, Missoula, MT, USA, 2014. [Google Scholar]
- Ridgeway, G. Generalized Boosted Models: A Guide to the ‘gbm’ Package. 2007. Available online: https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf (accessed on 3 September 2025).
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample Selection Bias and Presence-Only Distribution Models: Implications for Background and Pseudo-Absence Data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Szilagyi, J.; Harvey, F.E.; Ayers, J.F. Regional Estimation of Base Recharge to Ground Water Using Water Balance and a Base-Flow Index. Groundwater 2003, 41, 504–513. [Google Scholar] [CrossRef]
- Thomas, B.F.; Behrangi, A.; Famiglietti, J.S. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States. Water 2016, 8, 90. [Google Scholar] [CrossRef]
- Ilstedt, U.; Bargués Tobella, A.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate Tree Cover Can Maximize Groundwater Recharge in the Seasonally Dry Tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef] [PubMed]
- Kovačič, G.; Petrič, M.; Ravbar, N. Evaluation and Quantification of the Effects of Climate and Vegetation Cover Change on Karst Water Sources: Case Studies of Two Springs in South-Western Slovenia. Water 2020, 12, 3087. [Google Scholar] [CrossRef]
- Briggs, M.A.; Lane, J.W.; Snyder, C.D.; White, E.A.; Johnson, Z.C.; Nelms, D.L.; Hitt, N.P. Shallow Bedrock Limits Groundwater Seepage-Based Headwater Climate Refugia. Limnologica 2018, 68, 142–156. [Google Scholar] [CrossRef]
- Cui, Y.; Miller, D.; Schiarizza, P.; Diakow, L. British Columbia Digital Geology; Open File 2017-9; British Columbia Ministry of Energy, Mines and Petroleum Resources: Victoria, BC, Canada, 2017. [Google Scholar]
- Horton, J.D.; San Juan, C.A.; Stoeser, D.B. The State Geologic Map Compilation (SGMC) Geodatabase of the Conterminous United States; Data Series 1052; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Prior, G.J.; Hathway, B.; Glombick, P.M.; Pana, D.I.; Banks, C.J.; Hay, D.C.; Schneider, C.L.; Grobe, M.; Elgr, R.; Weiss, J.A. Bedrock Geology of Alberta; AER/AGS Map 600; Alberta Energy Regulator: Calgary, AB, Canada, 2013. [Google Scholar]
- Krosby, M.; Theobald, D.M.; Norheim, R.; McRae, B.H. Identifying Riparian Climate Corridors to Inform Climate Adaptation Planning. PLoS ONE 2018, 13, e0205156. [Google Scholar] [CrossRef]
- Hardy, C.C.; Menakis, J.P.; Long, D.G.; Brown, J.K.; Bunnell, D.L. Mapping Historic Fire Regimes for the Western United States: Integrating Remote Sensing and Biophysical Data. In Proceedings of the 7th Biennial Forest Service Remote Sensing Applications Conference, Nassau Bay, TX, USA, 6–10 April 1998. [Google Scholar]
- Guisan, A.; Broennimann, O.; Engler, R.; Vust, M.; Yoccoz, N.G.; Lehmann, A.; Zimmermann, N.E. Using Niche-Based Models to Improve the Sampling of Rare Species. Conserv. Biol. 2006, 20, 501–511. [Google Scholar] [CrossRef]
- Jackson, C.R.; Robertson, M.P. Predicting the Potential Distribution of an Endangered Cryptic Subterranean Mammal from Few Occurrence Records. J. Nat. Conserv. 2011, 19, 87–94. [Google Scholar] [CrossRef]
- Rinnhofer, L.J.; Roura-Pascual, N.; Arthofer, W.; Dejaco, T.; Thaler-Knoflach, B.; Wachter, G.A.; Christian, E.; Steiner, F.M.; Schlick-Steiner, B.C. Iterative Species Distribution Modelling and Ground Validation in Endemism Research: An Alpine Jumping Bristletail Example. Biodivers. Conserv. 2012, 21, 2845–2863. [Google Scholar] [CrossRef]
- Borokini, I.T.; Nussear, K.; Petitpierre, B.; Dilts, T.E.; Weisberg, P.J. Iterative Species Distribution Modeling Results in the Discovery of Novel Populations of a Rare Cold Desert Perennial. Endanger. Species Res. 2023, 50, 47–62. [Google Scholar] [CrossRef]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- McCullagh, P. Generalized Linear Models, 2nd ed.; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Sachs, L. Applied Statistics: A Handbook of Techniques, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- McNamara, M.E.; Zisser, M.; Beevers, C.G.; Shumake, J. Not Just “Big” Data: Importance of Sample Size, Measurement Error, and Uninformative Predictors for Developing Prognostic Models for Digital Interventions. Behav. Res. Ther. 2022, 153, 104086. [Google Scholar] [CrossRef]
- Florinsky, I.; Kulagina, T.; Meshalkina, J. Influence of Topography on Landscape Radiation Temperature Distribution. Int. J. Remote Sens. 1994, 15, 3147–3153. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Ishiguro, M.; Kitagawa, G. Akaike Information Criterion Statistics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Wagenmakers, E.-J.; Farrell, S. AIC Model Selection Using Akaike Weights. Psychon. Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef]
- Dormann, C.F.; Calabrese, J.M.; Guillera-Arroita, G.; Matechou, E.; Bahn, V.; Bartoń, K.; Beale, C.M.; Ciuti, S.; Elith, J.; Gerstner, K. Model Averaging in Ecology: A Review of Bayesian, Information-Theoretic, and Tactical Approaches for Predictive Inference. Ecol. Monogr. 2018, 88, 485–504. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A. Package ‘raster’. 2025. Available online: https://cran.r-project.org/web/packages/raster/raster.pdf (accessed on 3 September 2025).
- Brun, P.; Zimmermann, N.E.; Hari, C.; Pellissier, L.; Karger, D.N. Global Climate-Related Predictors at Kilometer Resolution for the Past and Future. Earth Syst. Sci. Data 2022, 14, 5573–5603. [Google Scholar] [CrossRef]
- Springer, A.E.; Stevens, L.E. Spheres of Discharge of Springs. Hydrogeol. J. 2009, 17, 83–93. [Google Scholar] [CrossRef]
- Stevens, L.E.; Schenk, E.R.; Springer, A.E. Springs Ecosystem Classification. Ecol. Appl. 2021, 31, e02218. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.; Grant, G.; Rose, T. Influence of Volcanic History on Groundwater Patterns on the West Slope of the Oregon High Cascades. Water Resour. Res. 2006, 42, W12411. [Google Scholar] [CrossRef]
- Seyoum, W.M.; Eckstein, Y. Hydraulic Relationships between Buried Valley Sediments of the Glacial Drift and Adjacent Bedrock Formations in Northeastern Ohio, USA. Hydrogeol. J. 2014, 22, 1193–1206. [Google Scholar] [CrossRef]
- Huggett, R.J.; Cheesman, J. Topography and the Environment; Pearson Education: Harlow, UK, 2002. [Google Scholar]
- Stoutjesdijk, P.; Barkman, J.J. Microclimate, Vegetation & Fauna; KNNV Publishing: Zeist, The Netherlands, 2014. [Google Scholar]
- Curtis, J.A.; Flint, L.E.; Flint, A.L.; Lundquist, J.D.; Hudgens, B.; Boydston, E.E.; Young, J.K. Incorporating Cold-Air Pooling into Downscaled Climate Models Increases Potential Refugia for Snow-Dependent Species within the Sierra Nevada Ecoregion, CA. PLoS ONE 2014, 9, e106984. [Google Scholar] [CrossRef]
- Hiscock, K.M.; Bense, V.F. Hydrogeology: Principles and Practice, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Michel, G.; Malard, F.; Deharveng, L.; Di Lorenzo, T.; Sket, B.; De Broyer, C. Reserve Selection for Conserving Groundwater Biodiversity. Freshw. Biol. 2009, 54, 861–876. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wenger, S.J.; Peterson, E.E.; Ver Hoef, J.M.; Nagel, D.E.; Luce, C.H.; Hostetler, S.W.; Dunham, J.B.; Roper, B.B.; Wollrab, S.P.; et al. The NorWeST Summer Stream Temperature Model and Scenarios for the Western US: A Crowd-Sourced Database and New Geospatial Tools Foster a User Community and Predict Broad Climate Warming of Rivers and Streams. Water Resour. Res. 2017, 53, 9181–9205. [Google Scholar] [CrossRef]
- Daly, C.; Bryant, K. The PRISM Climate and Weather System—An Introduction; PRISM Climate Group: Corvallis, OR, USA, 2013. [Google Scholar]
- Park, D.; Sullivan, M.; Bayne, E.; Scrimgeour, G. Landscape-Level Stream Fragmentation Caused by Hanging Culverts along Roads in Alberta’s Boreal Forest. Can. J. For. Res. 2008, 38, 566–575. [Google Scholar] [CrossRef]
- Dodd, C.K., Jr.; Barichivich, W.J.; Smith, L.L. Effectiveness of a Barrier Wall and Culverts in Reducing Wildlife Mortality on a Heavily Traveled Highway in Florida. Biol. Conserv. 2004, 118, 619–631. [Google Scholar] [CrossRef]
- Moore, R.D.; Spittlehouse, D.L.; Story, A. Riparian Microclimate and Stream Temperature Response to Forest Harvesting: A Review. J. Am. Water Resour. Assoc. 2005, 41, 813–834. [Google Scholar] [CrossRef]
- Gurdak, J.J.; Qi, S.L. Vulnerability of Recently Recharged Groundwater in Principle Aquifers of the United States to Nitrate Contamination. Environ. Sci. Technol. 2012, 46, 6004–6012. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.; Ale, S. Long Term (1960–2010) Trends in Groundwater Contamination and Salinization in the Ogallala Aquifer in Texas. J. Hydrol. 2014, 513, 376–390. [Google Scholar] [CrossRef]
- Hilton, A.; Jasechko, S. Widespread Aquifer Depressurization after a Century of Intensive Groundwater Use in USA. Sci. Adv. 2023, 9, eadh2992. [Google Scholar] [CrossRef]
- Zeydalinejad, N.; Nassery, H.R. A Review on the Climate-Induced Depletion of Iran’s Aquifers. Stoch. Environ. Res. Risk Assess. 2023, 37, 467–490. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R Package for Spatial Thinning of Species Occurrence Records for Use in Ecological Niche Models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
Variable | Relative Influence (%) |
---|---|
Slope (°) | 16.6 |
Vertical distance to highest point within 1 km (m) | 11.7 |
Dominant rock type | 11.5 |
Average slope within 300 m (°) | 10.0 |
Average vapor pressure deficit (1981–2010; kPA) | 9.9 |
Precipitation of warmest quarter (1991–2020; mm) | 9.9 |
Elevation (m) | 8.7 |
Average potential evapotranspiration (1981–2010; mm/day) | 8.6 |
Landsat Enhanced Vegetation Index (September 2022) | 7.2 |
Maximum Riparian Climate Corridor Index within 90 m | 6.1 |
Predictor Variables | K | AICc | ΔAICc | AICc Weight | Cumulative Weight | Log Likelihood |
---|---|---|---|---|---|---|
Aspect + Slope | 4 | 131.22 | 0.00 | 0.58 | 0.58 | −60.81 |
Aspect + Elevation | 4 | 132.90 | 1.68 | 0.25 | 0.83 | −61.65 |
Slope + Elevation | 4 | 134.91 | 3.69 | 0.09 | 0.92 | −62.65 |
Elevation | 3 | 135.60 | 4.38 | 0.06 | 0.89 | −64.34 |
Aspect + VDist1km | 4 | 137.70 | 6.48 | 0.02 | 0.94 | −64.05 |
Elevation + CCIMax | 4 | 137.77 | 6.55 | 0.02 | 0.96 | −64.09 |
Aspect | 3 | 138.00 | 6.78 | 0.02 | 0.95 | −65.54 |
VDist1km + Elevation | 4 | 138.26 | 7.04 | 0.02 | 0.98 | −64.33 |
Slope | 3 | 138.28 | 7.06 | 0.02 | 0.98 | −65.68 |
Slope + CCIMax | 4 | 140.13 | 8.91 | 0.01 | 0.99 | −65.26 |
Aspect + CCIMax | 4 | 140.23 | 9.01 | 0.01 | 0.99 | −65.32 |
Slope + VDist1km | 4 | 140.69 | 9.47 | 0.01 | 1.00 | −65.54 |
None (null model) | 2 | 141.93 | 10.71 | 0.00 | 1.00 | −68.74 |
VDist1km | 3 | 142.52 | 11.30 | 0.00 | 1.00 | −67.80 |
CCIMax | 3 | 144.41 | 13.19 | 0.00 | 1.00 | −68.74 |
VDist1km + CCIMax | 4 | 144.84 | 13.62 | 0.00 | 1.00 | −67.62 |
Predictor Variables | K | AICc | ΔAICc | AICc Weight | Cumulative Weight | Log Likelihood |
---|---|---|---|---|---|---|
Aspect + VDist1km | 4 | 116.93 | 0.00 | 0.27 | 0.27 | −53.35 |
Aspect | 3 | 117.73 | 0.79 | 0.11 | 0.28 | −55.23 |
VDist1km | 3 | 117.96 | 1.03 | 0.10 | 0.38 | −55.35 |
None (null model) | 2 | 118.11 | 1.18 | 0.15 | 0.41 | −56.76 |
Elevation | 3 | 118.35 | 1.42 | 0.08 | 0.55 | −55.54 |
VDist1km + CCIMax | 4 | 118.66 | 1.73 | 0.11 | 0.52 | −54.22 |
Aspect + Slope | 4 | 118.97 | 2.03 | 0.10 | 0.62 | −54.37 |
Aspect + Elevation | 4 | 119.11 | 2.17 | 0.09 | 0.71 | −54.44 |
Slope | 3 | 119.27 | 2.34 | 0.05 | 0.79 | −56.00 |
Elevation + CCIMax | 4 | 119.41 | 2.48 | 0.08 | 0.79 | −54.59 |
CCIMax | 3 | 120.11 | 3.18 | 0.03 | 0.87 | −56.42 |
Aspect + CCIMax | 4 | 120.49 | 3.55 | 0.04 | 0.83 | −55.13 |
VDist1km + Elevation | 4 | 120.51 | 3.58 | 0.04 | 0.88 | −55.14 |
Slope + VDist1km | 4 | 120.54 | 3.61 | 0.04 | 0.92 | −55.16 |
Slope + Elevation | 4 | 120.68 | 3.75 | 0.04 | 0.96 | −55.23 |
Slope + CCIMax | 4 | 120.72 | 3.79 | 0.04 | 1.00 | −55.25 |
Predictor Variables | K | AICc | ΔAICc | AICc Weight | Cumulative Weight | Log Likelihood |
---|---|---|---|---|---|---|
Aspect × Slope | 4 | 132.87 | 0.00 | 0.20 | 0.20 | −62.25 |
Aspect + Slope | 3 | 133.36 | 0.49 | 0.16 | 0.35 | −63.57 |
Slope × Elevation | 4 | 133.54 | 0.66 | 0.14 | 0.50 | −62.58 |
Slope | 2 | 133.81 | 0.94 | 0.11 | 0.55 | −64.85 |
Slope + VDist1km | 3 | 133.98 | 1.11 | 0.11 | 0.61 | −63.88 |
Slope + CCIMax | 3 | 134.11 | 1.24 | 0.11 | 0.72 | −63.94 |
Slope × CCIMax | 4 | 134.75 | 1.88 | 0.08 | 0.79 | −63.19 |
Slope + Elevation | 3 | 135.17 | 2.29 | 0.06 | 0.86 | −64.47 |
Slope × VDist1km | 4 | 135.65 | 2.78 | 0.05 | 0.91 | −63.64 |
Aspect × CCIMax | 4 | 135.97 | 3.10 | 0.04 | 0.95 | −63.80 |
Aspect + CCIMax | 3 | 136.95 | 4.08 | 0.03 | 0.98 | −65.36 |
Aspect × VDist1km | 4 | 139.48 | 6.61 | 0.01 | 0.98 | −65.56 |
Aspect + VDist1km | 3 | 140.43 | 7.55 | 0.00 | 0.99 | −67.10 |
CCIMax | 2 | 140.67 | 7.79 | 0.00 | 0.98 | −68.28 |
Aspect | 2 | 140.74 | 7.86 | 0.00 | 0.99 | −68.31 |
Aspect + Elevation | 3 | 141.76 | 8.89 | 0.00 | 0.99 | −67.77 |
Elevation + CCIMax | 3 | 141.82 | 8.95 | 0.00 | 0.99 | −67.80 |
None (null model) | 1 | 141.90 | 9.03 | 0.00 | 0.99 | −69.93 |
VDist1km | 2 | 142.02 | 9.15 | 0.00 | 0.99 | −68.96 |
Elevation | 2 | 142.18 | 9.31 | 0.00 | 0.99 | −69.04 |
VDist1km + CCIMax | 3 | 142.23 | 9.36 | 0.00 | 1.00 | −68.01 |
VDist1km + Elevation | 3 | 143.12 | 10.25 | 0.00 | 1.00 | −68.45 |
Elevation × CCIMax | 4 | 143.76 | 10.89 | 0.00 | 1.00 | −67.70 |
VDist1km × CCIMax | 4 | 143.87 | 11.00 | 0.00 | 1.00 | −67.75 |
Aspect × Elevation | 4 | 143.88 | 11.01 | 0.00 | 1.00 | −67.76 |
VDist1km × Elevation | 4 | 145.22 | 12.35 | 0.00 | 1.00 | −68.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Button, S.T.; Piovia-Scott, J. Assessing the Distribution and Stability of Groundwater Climatic Refugia: Cliff-Face Seeps in the Pacific Northwest. Water 2025, 17, 2659. https://doi.org/10.3390/w17182659
Button ST, Piovia-Scott J. Assessing the Distribution and Stability of Groundwater Climatic Refugia: Cliff-Face Seeps in the Pacific Northwest. Water. 2025; 17(18):2659. https://doi.org/10.3390/w17182659
Chicago/Turabian StyleButton, Sky T., and Jonah Piovia-Scott. 2025. "Assessing the Distribution and Stability of Groundwater Climatic Refugia: Cliff-Face Seeps in the Pacific Northwest" Water 17, no. 18: 2659. https://doi.org/10.3390/w17182659
APA StyleButton, S. T., & Piovia-Scott, J. (2025). Assessing the Distribution and Stability of Groundwater Climatic Refugia: Cliff-Face Seeps in the Pacific Northwest. Water, 17(18), 2659. https://doi.org/10.3390/w17182659