Comprehensive Evaluation of Drinking Water Quality and the Effect of the Distribution Network in Madinah City, Saudi Arabia †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analyses
3. Results and Discussion
3.1. Source Water Quality
3.2. Water Quality Within the Distribution System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Disclaimer
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutomo, S.; Sagala, S.; Sutomo, B.; Winarti, S.; Sanjaya, G. Accelerating the Provision of Safe Water Supply in Urban and Rural Areas of Indonesia. Kesmas Natl. Public Health J. 2021, 16, 137–144. [Google Scholar] [CrossRef]
- Ercumen, A.; Gruber, J.S.; Colford, J.M., Jr. Water Distribution System Deficiencies and Gastrointestinal Illness: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2014, 122, 651–660. [Google Scholar] [CrossRef]
- Rhoads, W.J.; Keane, T.; Spencer, M.S.; Pruden, A.; Edwards, M.A. Did Municipal Water Distribution System Deficiencies Contribute to a Legionnaires’ Disease Outbreak in Quincy, IL? Environ. Sci. Technol. Lett. 2020, 7, 896–902. [Google Scholar] [CrossRef]
- UNESCO. UN-Water Annual Report. 2013. Available online: https://www.unwater.org/publications/un-water-annual-report-2013 (accessed on 8 August 2025).
- WHO. Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Zhang, S.; Tian, Y.; Guo, Y.; Shan, J.; Liu, R. Manganese release from corrosion products of cast iron pipes in drinking water distribution systems: Effect of water temperature, pH, alkalinity, SO42—Concentration and disinfectants. Chemosphere 2021, 262, 127904. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, W.; Han, X.; Zhao, M.; Luo, J.; Fu, C.; Tao, R. Numerical Modelling and Simulation of Two-Phase Flow Flushing Method for Pipeline Cleaning in Water Distribution Systems. Water 2020, 12, 2470. [Google Scholar] [CrossRef]
- Al-Hamdi, M.I. Contamination of Water Supply in Sana’a. In Competition for Scarce Groundwater in the Sana’a Plain, Yemen. A Study of the Incentive Systems for Urban and Agricultural Water Use; CRC Press: London, UK, 2021; pp. 49–69. [Google Scholar] [CrossRef]
- Blokker, M.; Smeets, P.; Medema, G. Quantitative Microbial Risk Assessment of Repairs of the Drinking Water Dis-tribution System. Microb. Risk Anal. 2018, 8, 22–31. [Google Scholar] [CrossRef]
- García-Ávila, F.; Flores del Pino, L.; Bonifaz-Barba, G.; Zhindón-Arévalo, C.; Ramos-Fernández, L.; García-Altamirano, D.; Vázquez-García, S.; Sánchez- Alvarracín, C. Effect of Residual Chlorine on Copper Pipes in Drinking Water Systems. J. Eng. Sci. Technol. 2019, 12, 119–126. [Google Scholar] [CrossRef]
- Elmouaden, K.; Jodeh, S.; Chaouay, A.; Oukhrib, R.; Salghi, R.; Bazzi, L.; Hilali, M. Sulfate-Reducing Bacteria Impact on Copper Corrosion Behavior in Natural Seawater Environment. J. Surf. Eng. Mater. Adv. Technol. 2016, 6, 36–46. [Google Scholar] [CrossRef]
- Gomez-Smith, C.K.; LaPara, T.M.; Hozalski, R.M. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System. Environ. Sci. Technol. 2015, 49, 8432–8440. [Google Scholar] [CrossRef] [PubMed]
- Kimbell, L.K.; Wang, Y.; McNamara, P.J. The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Appl. Microbiol. Biotechnol. 2020, 104, 7673–7688. [Google Scholar] [CrossRef]
- Szuster-Janiaczyk, A.; Zeuschner, P.; Noga, P.; Skrzypczak, M.; Cimochowicz-Rybicka, M. Monitoring of heavy metals in selected Water Supply Systems in Poland, in relation to current regulations. In Proceedings of the First Conference of the International Water Association IWA for Young Scientist in Poland “Water, Wastewater and Energy in Smart Cities”, Cracow, Poland, 12–13 September 2017; p. 01017. [Google Scholar]
- Hyarat, T.; Al Kuisi, M.; Saffarini, G. Assessment of groundwater quality using water quality index (WQI) and multivariate statistical analysis in Amman-Zarqa area/Jordan. Water Pract. Technol. 2022, 17, 1582–1602. [Google Scholar] [CrossRef]
- AI-Hamzah, A.; Fellows, C. Drinking Water Quality in the Kingdom of Saudi Arabia. Water 2024, 16, 1810. [Google Scholar] [CrossRef]
- Abdelkader, T. Water quality for irrigation and drinking water use of Aflaj in Oman. Water Supply 2015, 15, 421–428. [Google Scholar] [CrossRef]
- Bob, M.; Rahman, N.A.; Taher, S.; Elamin, A. Multi-objective Assessment of Groundwater Quality in Madinah City, Saudi Arabia. Water Qual. Expo. Health 2014, 7, 53–66. [Google Scholar] [CrossRef]
- General Authority for Statistics (GASTAT). Statistics, Population and Housing Census. 2021. Available online: https://www.stats.gov.sa/en/home (accessed on 1 August 2021).
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Federation Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Royal Commission Environmental Regulations (RCER). Regulations and Standards, Royal Commission for Jubail and Yanbu; RCER: Riyadh, Saudi Arabia, 2015.
- Huang, Y.; Rao, A.; Huang, S.; Chang, C.; Drechsler, M.; Knaus, J.; Chan, J.C.C.; Raiteri, P.; Gale, J.D.; Gebauer, D. Uncovering the Role of Bicarbonate in Calcium Carbonate Formation at Near-Neutral pH. Angew. Chem. Int. Ed. Engl. 2021, 60, 16707–16713. [Google Scholar] [CrossRef]
- Ohwo, O. The Impact of Pipe Distribution Network on the Quality of Tap Water in Ojota, Lagos State, Nigeria. Am. J. Water Resour. 2014, 2, 110–117. [Google Scholar] [CrossRef]
- USEPA. Drinking Water Standards and Health Advisories Table; EPA: Washington, DC, USA, 2018.
- USEPA. Secondary Drinking Water Regulations: Guidance for Nuisance Chemicals. 2013. Available online: http://water.epa.gov/drink/contaminants/secondarystandards.cfm (accessed on 8 August 2025).
- Khashogji, M.S.; El Maghraby, M.M.S. Evaluation of groundwater resources for drinking and agricultural purposes, Abar Al Mashi area, south Al Madinah Al Munawarah City, Saudi Arabia. Arab. J. Geosci. 2012, 6, 3929–3942. [Google Scholar] [CrossRef]
- Reynolds, R.P.T. Unit Operations and Processes in Environmental Engineering, 2nd ed.; PWS: Boston, MA, USA, 1995. [Google Scholar]
- Farrell, C.; Hassard, F.; Jefferson, B.; Leziart, T.; Nocker, A.; Jarvis, P. Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy. Sci. Total. Environ. 2018, 624, 638–647. [Google Scholar] [CrossRef]
- Sarin, P.; Snoeyink, V.L.; Lytle, D.A.; Kriven, W.M. Iron Corrosion Scales: Model for Scale Growth, Iron Release, and Colored Water Formation. J. Environ. Eng. 2004, 130, 364–373. [Google Scholar] [CrossRef]
- Shayesteh-Zeraati, A.; Naser-Zoshki, H.; Kiani-Rashid, A.R.; Yousef-Sani, M.R. The effect of aluminium content on morphology, size, volume fraction, and number of graphite nodules in ductile cast iron. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2010, 224, 117–122. [Google Scholar] [CrossRef]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Gerke, T.L.; Little, B.J.; Luxton, T.P.; Scheckel, K.G.; Maynard, J.B.; Szabo, J.G. Strontium adsorption and desorption reactions in model drinking water distribution systems. J. Water Supply Res. Technol. 2014, 63, 449–460. [Google Scholar] [CrossRef]
Parameter | Units | Main Reservoir (MR) | Secondary Reservoir (SR) | WHO Maximum Permissible Level | Saudi Arabia Maximum Permissible Level |
---|---|---|---|---|---|
pH | pH units | 7.9 | 7.8 | 6.5–8.5 | 6.5–8.5 |
Color | PtCo | <15 | <15 | 50 | 50 |
Temperature | °C | 37.2 | 39.5 | - | - |
Electrical Conductivity @ 25 °C | μS/cm | 948 | 127 | No guideline | No guideline |
Bicarbonate | mg/L | 54 | 40 | 500 | 350 |
Carbonate | mg/L | <1 | <1 | 50 Calium carbonate | 50 Calium carbonate |
Total Alkalinity | mg/L | 60 | 44 | 20–200 | 20–200 |
Total Hardness (as CaCO3) | mg/L | 120 | 120 | 500 | 500 |
Dissolved Oxygen | mg/L | 9.51 | 9.48 | >6 | >6 |
Total Dissolved Solids | mg/L | 530 | 70 | 1500 | 1500 |
Turbidity | NTU | 1.33 | 1.27 | 25 | 25 |
Bromide | mg/L | 0.44 | 0.04 | - | - |
Chloride | mg/L | 178 | 13 | 5 | 5 |
Fluoride | mg/L | 0.05 | <0.05 | 0.5–1.0 | 0.5–1.0 |
Nitrate | mg/L | 9.6 | <0.10 | 500 | 500 |
Nitrite | mg/L | <0.05 | <0.05 | - | - |
Sulfate | mg/L | 59 | 1.7 | 400 | 400 |
Phosphate | mg/L | <0.15 | <0.15 | - | - |
Calcium | mg/L | 24 | 21 | 200 | 200 |
Magnesium | mg/L | 14 | 1 | 150 | 150 |
Potassium | mg/L | <0.005 | <0.005 | - | - |
Sodium | mg/L | 120 | <0.01 | - | - |
BOD | mg/L | <2 | <2 | 2 | 2 |
Fecal Coliform | CFU/100 ml | <1 | <1 | - | - |
Total Coliform | CFU/100 ml | <1 | <1 | - | - |
E-Coli | MPN/100 ml | ND | ND | - | - |
Parameter | Main Reservoir (MR) (μg/L) | Secondary Reservoir (SR) (μg/L) | WHO Maximum Permissible Level (μg/L) | Saudi Arabia Maximum Permissible Level (μg/L) | Detection Limits of Aas (μg/L) |
---|---|---|---|---|---|
Aluminum | 15 | 18 | 900 | 200 | 1 |
Arsenic | 0.22 | <0.05 | 10 | 10 | 0.05 |
Barium | 1.3 | 0.71 | 1000 | 1000 | 0.01 |
Boron | 930 | 41 | 2400 | 2400 | 4.00 |
Cadmium | <0.05 | <0.05 | 3 | 3 | 0.05 |
Chromium | 16 | 0.7 | 50 | 50 | 3.50 |
Cobalt | <0.05 | <0.05 | - | - | 0.05 |
Copper | 8.5 | 22 | 2000 | 2000 | 0.70 |
Iron | 15 | 55 | 300 | 300 | 3.80 |
Lead | <0.05 | 0.49 | 10 | 10 | 0.05 |
Manganese | 0.71 | 3.7 | 500 | 500 | 0.05 |
Mercury | <0.5 | 0.1 | 6 | 6 | 0.50 |
Nickel | 2.4 | 17 | 70 | 70 | 0.10 |
Selenium | 1.2 | <0.2 | 40 | 40 | 0.20 |
Strontium | 240 | 11 | - | - | 2.00 |
Zinc | 4.7 | 39 | 5000 | 5000 | 0.10 |
Bromoform | 7 | 5 | - | - | - |
Parameter | MR | SR | NW1 | NW2 | NW3 | NW4 | NW5 |
---|---|---|---|---|---|---|---|
pH | 7.9 | 7.8 | 7.9 | 8 | 8 | 8.2 | 8.2 |
Color (PtCo) | <15 | <15 | <15 | <15 | <15 | <15 | <15 |
Temperature (oC) | 37.2 | 39.5 | 39.1 | 39.2 | 39.2 | 38.8 | 37.8 |
Electrical Conductivity @ 25 °C | 948 | 127 | 508 | 513 | 515 | 522.5 | 515 |
Bicarbonate (mg/L) | 54 | 40 | 42 | 42 | 42 | 42 | 42 |
Carbonate (mg/L) | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Total Alkalinity (mg/L) | 60 | 44 | 46 | 46 | 46 | 46 | 46 |
Total Hardness (as CaCO3) (mg/L) | 120 | 120 | 80 | 81 | 90.5 | 81.5 | 65.5 |
Dissolved Oxygen (mg/L) | 9.51 | 9.48 | 8.77 | 9.00 | 8.85 | 8.81 | 8.85 |
Total Dissolved Solids (mg/L) | 530 | 70 | 279 | 282 | 284 | 288 | 284 |
Turbidity (NTU) | 1.33 | 1.27 | 1.35 | 0.83 | 1.36 | 1.02 | 1.34 |
Bromide (mg/L) | 0.44 | 0.04 | 0.32 | 0.35 | 0.335 | 0.27 | 0.25 |
Chloride (mg/L) | 178 | 13 | 87 | 93 | 103.5 | 100.5 | 100 |
Fluoride (mg/L) | 0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Nitrate (mg/L) | 9.6 | <0.10 | 3.1 | 3.05 | 3 | 2.35 | 2.15 |
Nitrite (mg/L) | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Sulfate (mg/L) | 59 | 1.7 | 14.5 | 15.5 | 19 | 19 | 18 |
Phosphate(mg/L) | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 | <0.15 |
Calcium (mg/L) | 24 | 21 | 20 | 21.5 | 20.5 | 26 | 18.5 |
Magnesium (mg/L) | 14 | 1 | 6.5 | 7.3 | 6.75 | 6.95 | 6.35 |
Potassium (mg/L) | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 |
Sodium (mg/L) | 120 | <0.01 | 55.5 | 57.5 | 57.5 | 59 | 58.5 |
BOD (mg/L) | <2 | <2 | <2 | <2 | <2 | <2 | <2 |
Fecal Coliform (CFU/100 mL) | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Total Coliform (CFU/100 mL) | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
E-Coli (MPN/100 mL) | ND | ND | ND | ND | ND | ND | ND |
Parameter | MR | SR | NW1 | NW2 | NW3 | NW4 | NW5 |
---|---|---|---|---|---|---|---|
Aluminum | 15 | 18 | 26.5 | 97.5 | 27 | 130 | 48.5 |
Arsenic | 0.22 | <0.05 | 0.075 | 0.105 | 0.075 | 0.155 | 0.125 |
Barium | 1.3 | 0.71 | 3.6 | 1.8 | 2.8 | 7.3 | 1.435 |
Boron | 930 | 41 | 1150 | 1200 | 1150 | 1100 | 1100 |
Cadmium *** | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Chromium | 16 | 0.7 | 5 | 5.65 | 5.55 | 5.6 | 4.7 |
Cobalt *** | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Copper | 8.5 | 22 | 17 | 95 | 16 | 63 | 58 |
Iron | 15 | 55 | 123 | 190 | 23 | 175 | 115 |
Lead | <0.05 | 0.49 | 1.75 | 10 | 8.85 | 2 | 0.22 |
Manganese | 0.71 | 3.7 | 2.65 | 15.5 | 1.55 | 8.65 | 7.15 |
Mercury *** | <0.05 | 0.1 | <0.06 | <0.06 | <0.06 | <0.05 | <0.05 |
Nickel | 2.4 | 17 | 4.65 | 23.5 | 3.75 | 13 | 14.5 |
Selenium | 1.2 | <0.2 | 0.3 | 0.7 | <0.25 | <0.25 | <0.25 |
Strontium | 240 | 11 | 950 | 540 | 985 | 110 | 545 |
Zinc | 4.7 | 39 | 4 | 11.5 | 5.4 | 33.5 | 7.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, I.; Salamah, S.K.; Bob, M. Comprehensive Evaluation of Drinking Water Quality and the Effect of the Distribution Network in Madinah City, Saudi Arabia. Water 2025, 17, 2711. https://doi.org/10.3390/w17182711
Hassan I, Salamah SK, Bob M. Comprehensive Evaluation of Drinking Water Quality and the Effect of the Distribution Network in Madinah City, Saudi Arabia. Water. 2025; 17(18):2711. https://doi.org/10.3390/w17182711
Chicago/Turabian StyleHassan, Ikrema, Sultan K. Salamah, and Mustafa Bob. 2025. "Comprehensive Evaluation of Drinking Water Quality and the Effect of the Distribution Network in Madinah City, Saudi Arabia" Water 17, no. 18: 2711. https://doi.org/10.3390/w17182711
APA StyleHassan, I., Salamah, S. K., & Bob, M. (2025). Comprehensive Evaluation of Drinking Water Quality and the Effect of the Distribution Network in Madinah City, Saudi Arabia. Water, 17(18), 2711. https://doi.org/10.3390/w17182711