Possible Effects of Pesticide Washout on Microalgae Growth
Abstract
1. Introduction
Active Ingredient Composition
Plant Protection Product | Active Ingredient | Active Ingredient in the Product | Agent | Chemical Formula | CAS-Number | Active Ingredient Molecular Weight |
---|---|---|---|---|---|---|
Teppeki® 50 WG | Flonicamid | ≥50%–≤80% v/v | Insecticide | C9H6F3N3O | 158062-67-0 | 229.2 g·mol−1 |
Ortiva® | Azoxystrobin | ≥20%–<25% v/v | Fungicide | C22H17N3O5 | 131860-33-8 | 403.4 g·mol−1 |
Basar® 960 EC | (S)-metolachlor | 86.5% w/w | Herbicide | C15H22ClNO2 | 87392-12-9 | 283.8 g·mol−1 |
2. Materials and Methods
2.1. Culture and Media Preparation
2.2. A 12-Well Plate Assay
2.3. Pulse-Amplitude-Modulated (PAM) Dark Fluorescence Yield
2.4. Statistics
3. Results
3.1. Visual Growth
3.2. Biomass Development
3.3. In Vivo Fluorescence
3.4. Overall Photosynthetic Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EC50 | Half maximum effective concentration |
OD | Optical Density |
ChlF | In vivo Chlorophyll-a Fluorescence |
PAM | Pulse-Amplitude-Modulated |
PSII | Photosystem 2 |
References
- Umetsu, N.; Shirai, Y. Development of Novel Pesticides in the 21st Century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Araújo, M.F.; Castanheira, E.M.S.; Sousa, S.F. The Buzz on Insecticides: A Review of Uses, Molecular Structures, Targets, Adverse Effects, and Alternatives. Molecules 2023, 28, 3641. [Google Scholar] [CrossRef] [PubMed]
- Klittich, C.J. Milestones in Fungicide Discovery: Chemistry That Changed Agriculture. Plant Health Prog. 2008, 9, 1. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Pesticides in the Diets of Infants and Children. Pesticides in the Diets of Infants and Children; National Academies Press: Washington, DC, USA, 1993; ISBN 978-0-309-04875-0. [Google Scholar]
- Motarjemi, Y. Encyclopedia of Food Safety, 1st ed.; Motarjemi, Y., Ed.; Academic Press: Cambridge, MA, USA, 2013; ISBN 9780123786128. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Types of Pesticide Ingredients. Available online: https://www.epa.gov/ingredients-used-pesticide-products/types-pesticide-ingredients (accessed on 1 June 2025).
- Belchim Crop Protection (Belchim Crop Protection NV/SA) Teppeki. 2021. Available online: https://certisbelchim.co.uk/pdf/MSDS/Teppeki_MSDS.pdf (accessed on 1 June 2025).
- Hancock, H.G.; Morita, M. Flonicamid (F1785, Iki220): Novel Insecticide Chemistry for Cotton and Other Crops. Proc. Beltwide Cotton Conf. 2003, 2, 83–88. [Google Scholar]
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Flonicamid. EFSA J. 2010, 8, 1445. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Mo, Y.; Wu, B.; Yi, T.; Yang, Z. Toxicity of Flonicamid to Diaphorina Citri (Hemiptera: Liviidae) and Its Identification and Expression of Kir Channel Genes. Insects 2024, 15, 900. [Google Scholar] [CrossRef]
- Shafiq, M.; Qadir, A.; Hussain, N.; Firdous, S.; Naeem, M.; Ahmad, S. Appraisal of Acute Oral LD50 of Flonicamid and Ameliorative Effects of Selected Vitamins on Hepato Toxicity of Exposed Rabbits. Pol. J. Environ. Stud. 2022, 31, 4829–4836. [Google Scholar] [CrossRef]
- Australian Pesticides and Veterinary Medicines Authority. Public Release Summary on the Evaluation of the New Active Flonicamid in the Product Mainman 500 WG Insecticide; Australian Pesticides and Veterinary Medicines Authority: Kingston, Australia, 2014. [Google Scholar]
- NCBI. Azoxystrobin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Azoxystrobin (accessed on 1 June 2025).
- NCBI. Flonicamid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Flonicamid (accessed on 1 June 2025).
- LGCStandards. S-Metolachlor. Available online: https://www.lgcstandards.com/IT/en/S-Metolachlor/p/DRE-C15171000 (accessed on 1 June 2025).
- Syngenta UK Ltd. ORTIVA Safety Data Sheet. Mater. Saf. Data Sheet 2024, 4, 8–10. [Google Scholar]
- Moore, D.; Robson, G.D.; Trinci, A.P.J. 21st Century Guidebook to Fungi. Cambridge: Cambridge University Press, 2nd ed.; Cambridge University Press: Cambridge, UK, 2020; ISBN 978-1-107-00676-8. [Google Scholar]
- Rodrigues, E.T.; Lopes, I.; Pardal, M.Â. Occurrence, Fate and Effects of Azoxystrobin in Aquatic Ecosystems: A Review. Environ. Int. 2013, 53, 18–28. [Google Scholar] [CrossRef]
- Pérez, D.J.; Luján Menone, M.; Alberto Tognetti, J.; Lukaszewicz, G. Azoxystrobin Induces Chromosomal Aberrations in Roots of the Hydrophyte Bidens Laevis L. Rev. Int. Contam. Ambie. 2019, 35, 553–563. [Google Scholar] [CrossRef]
- Gustafsson, K.; Blidberg, E.; Elfgren, I.K.; Hellström, A.; Kylin, H.; Gorokhova, E. Direct and Indirect Effects of the Fungicide Azoxystrobin in Outdoor Brackish Water Microcosms. Ecotoxicology 2010, 19, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Hodges, R.D. Pesticide Residues in Food. J. R Soc. Med. 1985, 78, 878–879. [Google Scholar]
- Hu, W.; Liu, C.-W.; Jiménez, J.A.; McCoy, E.S.; Hsiao, Y.-C.; Lin, W.; Engel, S.M.; Lu, K.; Zylka, M.J. Detection of Azoxystrobin Fungicide and Metabolite Azoxystrobin-Acid in Pregnant Women and Children, Estimation of Daily Intake, and Evaluation of Placental and Lactational Transfer in Mice. Environ. Health Perspect. 2022, 130, 27013. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.A.; Gad, A.F.; Abd El-Aziz, A.M.; El-Gendy, K.S. Unveiling the Ecotoxicological Effects of Azoxystrobin-Based Fungicides at Realistic Concentrations on the Land Snail, Theba Pisana. Sci. Rep. 2024, 14, 16427. [Google Scholar] [CrossRef]
- USEPA. Metolachlor; R.E.D. FACTS; U.S. Environmental Protection Agency: Washington, DC, USA, 1995. [Google Scholar]
- Commission of the European Union. Commission Implementing Regulation (EU) 2024/20 Concerning the Non-Renewal of the Approval of the Active Substance S-Metolachlor; Commission of the European Union: Brussels, Belgium, 2024. [Google Scholar]
- Rose, M.T.; Cavagnaro, T.R.; Scanlan, C.A.; Rose, T.J.; Vancov, T.; Kimber, S.; Kennedy, I.R.; Kookana, R.S.; Van Zwieten, L. Impact of Herbicides on Soil Biology and Function; Elsevier: Amsterdam, The Netherlands, 2016; pp. 133–220. [Google Scholar]
- Wei, J.; Chen, J.; Zhang, Z.; Ban, Y.; Guo, J.; Dong, L.; Feng, Z. Toxicity and Glutathione S-Transferase-Catalyzed Metabolism of R-/S-Metolachlor in Rice. J. Agric. Food Chem. 2024, 72, 25001–25014. [Google Scholar] [CrossRef] [PubMed]
- Trenkamp, S.; Martin, W.; Tietjen, K. Specific and Differential Inhibition of Very-Long-Chain Fatty Acid Elongases from Arabidopsis Thaliana by Different Herbicides. Proc. Natl. Acad. Sci. USA 2004, 101, 11903–11908. [Google Scholar] [CrossRef]
- Schmalfuβ, J.; Matthes, B.; Knuth, K.; Böger, P. Inhibition of Acyl-CoA Elongation by Chloroacetamide Herbicides in Microsomes from Leek Seedlings. Pestic. Biochem. Physiol. 2000, 67, 25–35. [Google Scholar] [CrossRef]
- AbuQamar, S.F.; El-Saadony, M.T.; Alkafaas, S.S.; Elsalahaty, M.I.; Elkafas, S.S.; Mathew, B.T.; Aljasmi, A.N.; Alhammadi, H.S.; Salem, H.M.; Abd El-Mageed, T.A.; et al. Ecological Impacts and Management Strategies of Pesticide Pollution on Aquatic Life and Human Beings. Mar. Pollut. Bull. 2024, 206, 116613. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Eymar, E.; Garcia-Delgado, C.; Esteban, R.M. Food Poisoning: Classification. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 56–66. [Google Scholar]
- Holvoet, K.M.A.; Seuntjens, P.; Vanrolleghem, P.A. Monitoring and Modeling Pesticide Fate in Surface Waters at the Catchment Scale. Ecol Model. 2007, 209, 53–64. [Google Scholar] [CrossRef]
- Hillel, D.; Hatfield, J.L.; Powlson, D.S.; Rosenzweig, C.; Scow, K.M.; Singer, M.J.; Sparks, D.L. Water Harvesting; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Bowmer, K. Ecosystem Effects from Nutrient and Pesticide Pollutants: Catchment Care as a Solution. Resources 2013, 2, 439–456. [Google Scholar] [CrossRef]
- Shaw, G.; Moore, D.P.; Garnett, C. Eutrophication and Algal Blooms. In Environmental and Ecological Chemistry; Oxford University Press: Oxford, UK, 2003; pp. 1–21. ISBN 9780197619629. [Google Scholar]
- Lim, C.C.; Yoon, J.; Reynolds, K.; Gerald, L.B.; Ault, A.P.; Heo, S.; Bell, M.L. Harmful Algal Bloom Aerosols and Human Health. EBioMedicine 2023, 93, 104604. [Google Scholar] [CrossRef] [PubMed]
- Fleming, L.E.; Kirkpatrick, B.; Backer, L.C.; Walsh, C.J.; Nierenberg, K.; Clark, J.; Reich, A.; Hollenbeck, J.; Benson, J.; Cheng, Y.S.; et al. Review of Florida Red Tide and Human Health Effects. Harmful Algae 2011, 10, 224–233. [Google Scholar] [CrossRef]
- Chorus, I.; Welker, M. Exposure to Cyanotoxins. In Toxic Cyanobacteria in Water; CRC Press: London, UK, 2021; pp. 295–400. [Google Scholar]
- Seymour, B.; Andreosso, A.; Seymour, J. Cardiovascular Toxicity from Marine Envenomation. In Heart and Toxins; Ramachandran, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 203–223. [Google Scholar]
- Botana, L.M.; Alfonso, A.; Vale, C.; Vilariño, N.; Rubiolo, J.; Alonso, E.; Cagide, E. The Mechanistic Complexities of Phycotoxins; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–33. [Google Scholar]
- Sarıtaş, S.; Kalkan, A.E.; Yılmaz, K.; Gurdal, S.; Göksan, T.; Witkowska, A.M.; Lombardo, M.; Karav, S. Biological and Nutritional Applications of Microalgae. Nutrients 2024, 17, 93. [Google Scholar] [CrossRef]
- Yaacob, N.S.; Abdullah, H.; Ahmad, M.F.; Maniyam, M.N.; Sjahrir, F. Microalgae Biotechnology: Emerging Biomedical Applications. In Algal Biotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 335–346. [Google Scholar]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Demailly, F.; Elfeky, I.; Malbezin, L.; Le Guédard, M.; Eon, M.; Bessoule, J.-J.; Feurtet-Mazel, A.; Delmas, F.; Mazzella, N.; Gonzalez, P.; et al. Impact of Diuron and S-Metolachlor on the Freshwater Diatom Gomphonema Gracile: Complementarity between Fatty Acid Profiles and Different Kinds of Ecotoxicological Impact-Endpoints. Sci. Total Environ. 2019, 688, 960–969. [Google Scholar] [CrossRef]
- Špoljarić Maronić, D.; Štolfa Čamagajevac, I.; Horvatić, J.; Žuna Pfeiffer, T.; Stević, F.; Žarković, N.; Waeg, G.; Jaganjac, M. S-Metolachlor Promotes Oxidative Stress in Green Microalga Parachlorella Kessleri-A Potential Environmental and Health Risk for Higher Organisms. Sci. Total Environ. 2018, 637–638, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Pesticide Action Network Europe and Générations. Call for a Swift Ban of the Active Substance S-Metolachlor; Pesticide Action Network Europe: Brussels, Belgium, 2023. [Google Scholar]
- Moharir, A. Metolachlor Market Report 2025 (Global Edition). 2025. Available online: https://www.cognitivemarketresearch.com/s-metolachlor-market-report (accessed on 1 July 2025).
- Verified Market Reports. S-Metolachlor Market Size, Research, Competitive Analysis; Verified Market Reports: Pune, India, 2025. [Google Scholar]
- Guo, J.; Selby, K.; Boxall, A.B.A. Comparing the Sensitivity of Chlorophytes, Cyanobacteria, and Diatoms to Major-Use Antibiotics. Environ. Toxicol. Chem. 2016, 35, 2587–2596. [Google Scholar] [CrossRef] [PubMed]
- Miazek, K.; Brozek-Pluska, B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int. J. Mol. Sci. 2019, 20, 2492. [Google Scholar] [CrossRef]
- Sharma, L.; Siedlewicz, G.; Pazdro, K. The Toxic Effects of Antibiotics on Freshwater and Marine Photosynthetic Microorganisms: State of the Art. Plants 2021, 10, 591. [Google Scholar] [CrossRef]
- Flombaum, P.; Gallegos, J.L.; Gordillo, R.A.; Rincón, J.; Zabala, L.L.; Jiao, N.; Karl, D.M.; Li, W.K.W.; Lomas, M.W.; Veneziano, D.; et al. Present and Future Global Distributions of the Marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 2013, 110, 9824–9829. [Google Scholar] [CrossRef]
- Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Björkman, O.; Demmig, B. Photon Yield of O2 Evolution and Chlorophyll Fluorescence Characteristics at 77 K among Vascular Plants of Diverse Origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef]
- Johnson, G.N.; Young, A.J.; Scholes, J.D.; Horton, P. The Dissipation of Excess Excitation Energy in British Plant Species. Plant Cell Environ. 1993, 16, 673–679. [Google Scholar] [CrossRef]
- Misumi, M.; Katoh, H.; Tomo, T.; Sonoike, K. Relationship Between Photochemical Quenching and Non-Photochemical Quenching in Six Species of Cyanobacteria Reveals Species Difference in Redox State and Species Commonality in Energy Dissipation. Plant Cell Physiol. 2015, 57, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Misumi, M.; Sonoike, K. Estimation of Photosynthesis in Cyanobacteria by Pulse-Amplitude Modulation Chlorophyll Fluorescence: Problems and Solutions. Photosynth. Res. 2017, 133, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Love, K.; Dropmann, D.S.R. Jamovi Package, v2.3.28.0; The Jamovi Project: Sydney, Australia, 2024; Available online: https://www.jamovi.org/ (accessed on 1 June 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. 2023. Available online: https://cran.r-project.org/web/packages/dplyr/index.html (accessed on 1 July 2025).
- Ogle, D.H.; Doll, J.C.; Wheeler, A.P.; Dinno, A. FSA: Simple Fisheries Stock Assessment Methods. R Package Version 0.10.0. 2025. Available online: https://cran.r-project.org/web/packages/FSA/index.html (accessed on 1 July 2025).
- Lu, T.; Zhang, Q.; Lavoie, M.; Zhu, Y.; Ye, Y.; Yang, J.; Paerl, H.W.; Qian, H.; Zhu, Y.-G. The Fungicide Azoxystrobin Promotes Freshwater Cyanobacterial Dominance through Altering Competition. Microbiome 2019, 7, 128. [Google Scholar] [CrossRef]
- Kunova, A.; Pizzatti, C.; Cortesi, P. Impact of Tricyclazole and Azoxystrobin on Growth, Sporulation and Secondary Infection of the Rice Blast Fungus, Magnaporthe Oryzae. Pest Manag. Sci. 2013, 69, 278–284. [Google Scholar] [CrossRef]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Response of Soil Microbiota, Enzymes, and Plants to the Fungicide Azoxystrobin. Int. J. Mol. Sci. 2024, 25, 8104. [Google Scholar] [CrossRef]
- Cao, F.; Martyniuk, C.J.; Wu, P.; Zhao, F.; Pang, S.; Wang, C.; Qiu, L. Long-Term Exposure to Environmental Concentrations of Azoxystrobin Delays Sexual Development and Alters Reproduction in Zebrafish ( Danio Rerio ). Environ. Sci. Technol. 2019, 53, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.; Mu, Y.; Deng, J.; Yao, X.; Zhao, X.; Liu, X.; Li, X.; Jiang, X.; Zhang, F. Direct Toxicity of the Herbicide Florasulam against Chlorella Vulgaris: An Integrated Physiological and Metabolomic Analysis. Ecotoxicol Environ. Saf. 2022, 246, 114135. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Zhang, F.; Yao, X.; Qiao, Z.; Deng, J.; Jiao, Q.; Gong, L.; Jiang, X. Toxic Effects of Fludioxonil on the Growth, Photosynthetic Activity, Oxidative Stress, Cell Morphology, Apoptosis, and Metabolism of Chlorella Vulgaris. Sci. Total Environ. 2022, 838, 156069. [Google Scholar] [CrossRef]
- Ranjan, R.; Kumar, N.; Gautam, A.; Kumar Dubey, A.; Pandey, S.N.; Mallick, S. Chlorella sp. Modulates the Glutathione Mediated Detoxification and S-Adenosylmethionine Dependent Methyltransferase to Counter Arsenic Toxicity in Oryza Sativa L. Ecotoxicol. Environ. Saf. 2021, 208, 111418. [Google Scholar] [CrossRef]
- Perales-Vela, H.V.; Peña-Castro, J.M.; Cañizares-Villanueva, R.O. Heavy Metal Detoxification in Eukaryotic Microalgae. Chemosphere 2006, 64, 1–10. [Google Scholar] [CrossRef]
- Weber, S.; Grande, P.M.; Blank, L.M.; Klose, H. Insights into Cell Wall Disintegration of Chlorella Vulgaris. PLoS ONE 2022, 17, e0262500. [Google Scholar] [CrossRef] [PubMed]
- Żyszka-Haberecht, B.; Niemczyk, E.; Lipok, J. Metabolic Relation of Cyanobacteria to Aromatic Compounds. Appl. Microbiol. Biotechnol. 2019, 103, 1167–1178. [Google Scholar] [CrossRef]
- Deng, X.; Gao, K.; Sun, J. Physiological and Biochemical Responses of Synechococcus sp. PCC7942 to Irgarol 1051 and Diuron. Aquat. Toxicol. 2012, 122–123, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Noaman, N.H.; Fattah, A.; Khaleafa, M.; Zaky, S.H. Factors Affecting Antimicrobial Activity of Synechococcus leopoliensis. Microbiol Res. 2004, 159, 395–402. [Google Scholar] [CrossRef]
- Hoiczyk, E.; Hansel, A. Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope. J. Bacteriol. 2000, 182, 1191–1199. [Google Scholar] [CrossRef]
- Mai, H.; Morin, B.; Pardon, P.; Gonzalez, P.; Budzinski, H.; Cachot, J. Environmental Concentrations of Irgarol, Diuron and S-Metolachlor Induce Deleterious Effects on Gametes and Embryos of the Pacific Oyster, Crassostrea gigas. Mar. Environ. Res. 2013, 89, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chesworth, J.C.; Donkin, M.E.; Brown, M.T. The Interactive Effects of the Antifouling Herbicides Irgarol 1051 and Diuron on the Seagrass Zostera marina (L.). Aquat. Toxicol. 2004, 66, 293–305. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadudvari, A.; Schagerl, M.; Ancheta, S.M. Possible Effects of Pesticide Washout on Microalgae Growth. Water 2025, 17, 2716. https://doi.org/10.3390/w17182716
Nadudvari A, Schagerl M, Ancheta SM. Possible Effects of Pesticide Washout on Microalgae Growth. Water. 2025; 17(18):2716. https://doi.org/10.3390/w17182716
Chicago/Turabian StyleNadudvari, Agnes, Michael Schagerl, and Shiela Mae Ancheta. 2025. "Possible Effects of Pesticide Washout on Microalgae Growth" Water 17, no. 18: 2716. https://doi.org/10.3390/w17182716
APA StyleNadudvari, A., Schagerl, M., & Ancheta, S. M. (2025). Possible Effects of Pesticide Washout on Microalgae Growth. Water, 17(18), 2716. https://doi.org/10.3390/w17182716