Enhanced Nitrogen Removal from Aquaculture Wastewater Using Biochar-Amended Bioretention Systems
Abstract
1. Introduction
2. Construction and Operation of Bioretention Systems
2.1. Bioretention Systems Construction and Operation
2.2. Materials
2.3. Test Method for Water Quality
2.4. Extraction and Detection of Extracellular Polymeric Substance
2.5. Quantification of Electron Transport Systems Activities
2.6. Metagenomic Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Biochar Addition Enhanced Nitrogen Removal Under Intermittent Flow Conditions
3.2. Biochar Addition Improved Nitrogen Removal Under Continuous Operation Mode
3.3. EPS Content Analysis
3.4. Mechanisms of Nitrogen Removal by Bioretention Systems
3.4.1. Analysis of Electron Transport Activity
3.4.2. Microbial Community Dynamics Analysis
3.4.3. Analysis of Key Genes in Nitrogen Metabolism
3.5. Mechanistic Reconstruction of Nitrogen Removal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kashem, A.H.M.; Das, P.; Hawari, A.H.; Mehariya, S.; Thaher, M.I.; Khan, S.; Abduquadir, M.; Al-Jabri, H. Aquaculture from inland fish cultivation to wastewater treatment: A review. Rev. Environ. Sci. Bio/Technol. 2023, 22, 969–1008. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. Publisher Correction: A 20-year retrospective review of global aquaculture. Nature 2021, 595, E36. [Google Scholar] [CrossRef]
- Kayhanian, M.; Fruchtman, B.D.; Gulliver, J.S.; Montanaro, C.; Ranieri, E.; Wuertz, S. Review of highway runoff characteristics: Comparative analysis and universal implications. Water Res. 2012, 46, 6609–6624. [Google Scholar] [CrossRef]
- Kunwong, S.; Vinitnantharat, S.; Powtongsook, S.; Hongsthong, A. Removing nutrients in recirculating aquaculture system wastewater from Nile tilapia culture via Spirulina cultivation: Optimizing sodium bicarbonate concentration and micronutrient supplementation. Aquaculture 2024, 578, 740110. [Google Scholar] [CrossRef]
- Wang, S.; He, Q.; Ai, H.; Wang, Z.; Zhang, Q. Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing. J. Environ. Sci. 2013, 25, 502–510. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Chin, J.Y.; Mohd Harun, M.H.Z.; Low, S.C. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. J. Water Process Eng. 2022, 46, 102553. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Wu, C.; Muylaert, K.; Vyverman, W.; Yu, H.Q.; Munoz, R.; Rittmann, B. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresour. Technol. 2017, 241, 1127–1137. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Tang, S.; Lin, K.; Zhao, T.; Chen, X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. Sci. Total Environ. 2022, 847, 157620. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Song, Y.; Xu, M.; Yang, Y.; Wang, X.; Ma, H.; Zhi, Y.; Shao, Z.; Chen, L.; Yuan, Y.; et al. Multi-media interaction improves the efficiency and stability of the bioretention system for stormwater runoff treatment. Water Res. 2024, 250, 121017. [Google Scholar] [CrossRef] [PubMed]
- Tansar, H.; Duan, H.-F.; Mark, O. Unit-scale- and catchment-scale-based sensitivity analysis of bioretention cell for urban stormwater system management. J. Hydroinformatics 2023, 25, 1471–1487. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Deletic, A.; McCarthy, D.T.; Hatt, B.E.; Payne, E.G.I.; Chandrasena, G.; Li, Y.; Pham, T.; Jamali, B.; et al. The impact of stormwater biofilter design and operational variables on nutrient removal-a statistical modelling approach. Water Res. 2021, 188, 116486. [Google Scholar] [CrossRef]
- Li, L.; Davis, A.P. Urban Stormwater Runoff Nitrogen Composition and Fate in Bioretention Systems. Environ. Sci. Technol. 2014, 48, 3403–3410. [Google Scholar] [CrossRef]
- Rahman, M.Y.A.; Richardson, N.; Nachabe, M.H.; Ergas, S.J. Treatment of Dairy Farm Runoff in Vegetated Bioretention Systems Amended with Biochar. Water 2024, 16, 1347. [Google Scholar] [CrossRef]
- Richardson, N.; Luangphairin, N.; Bhattacharjee, A.S.; Nachabe, M.H.; Ergas, S.J. Nursery Runoff Treatment by Novel Biochar-Amended Bioretention Systems. Water 2025, 17, 330. [Google Scholar] [CrossRef]
- Akpinar, D.; Tian, J.; Shepherd, E.; Imhoff, P.T. Impact of wood-derived biochar on the hydrologic performance of bioretention media: Effects on aggregation, root growth, and water retention. J. Environ. Manag. 2023, 339, 11. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, K.; Li, Y.; Sanganyado, E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: Role of extracellular polymeric substances in extracellular electron transfer. Chem. Eng. J. 2020, 395, 125077. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q.; Tang, Y.H.; Liu, Z.; Ye, L.L.; Chen, R.Y.; Yuan, S.C. Application of biochar as an innovative soil ameliorant in bioretention system for stormwater treatment: A review of performance and its influencing factors. Water Sci. Technol. 2022, 86, 1232–1252. [Google Scholar] [CrossRef]
- Liu, L.J.; Wang, F.; Xu, S.H.; Sun, W.; Wang, Y.; Ji, M. Woodchips bioretention column for stormwater treatment: Nitrogen removal performance, carbon source and microbial community analysis. Chemosphere 2021, 285, 10. [Google Scholar] [CrossRef]
- Huang, L.; Luo, J.; Li, L.; Jiang, H.; Sun, X.; Yang, J.; She, W.; Liu, W.; Li, L.; Davis, A.P. Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns. Water Res. 2022, 209, 117895. [Google Scholar] [CrossRef]
- Li, L.X.; Liu, W.M.; Liang, T.J.; Ma, F. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process. Bioresour. Technol. 2020, 315, 7. [Google Scholar] [CrossRef]
- Liu, W.; Luo, G.; Tan, H.; Sun, D. Effects of sludge retention time on water quality and bioflocs yield, nutritional composition, apparent digestibility coefficients treating recirculating aquaculture system effluent in sequencing batch reactor. Aquac. Eng. 2016, 72–73, 58–64. [Google Scholar] [CrossRef]
- HJ/T 346-2007; Water Quality—Determination of Nitrate Nitrogen—Ultraviolet Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2007.
- HJ 535-2009; Water Quality—Determination of Ammonia Nitrogen—Nessler’s Reagent Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2009.
- GB 7493-87; Water Quality—Determination of Nitrite Nitrogen—Spectrophotometric Method. State Environmental Protection Administration of China: Beijing, China, 1987.
- HJ 636-2012; Water Quality—Determination of Total Nitrogen—Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012.
- Redmile-Gordon, M.A.; Brookes, P.C.; Evershed, R.P.; Goulding, K.W.T.; Hirsch, P.R. Measuring the soil-microbial interface: Extraction of extracellular polymeric substances (EPS) from soil biofilms. Soil Biol. Biochem. 2014, 72, 163–171. [Google Scholar] [CrossRef]
- Wan, R.; Chen, Y.; Zheng, X.; Su, Y.; Li, M. Effect of CO2 on Microbial Denitrification via Inhibiting Electron Transport and Consumption. Environ. Sci. Technol. 2016, 50, 9915–9922. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Fang, J.; Guo, F.; Yang, X.; Liu, T.; Chen, M.; Nie, M.; Chen, Y. Biochar based constructed wetland for secondary effluent treatment: Waste resource utilization. Chem. Eng. J. 2022, 432, 134377. [Google Scholar] [CrossRef]
- Alam, T.; Bezares-Cruz, J.C.; Mahmoud, A.; Jones, K.D. Nutrients and solids removal in bioretention columns using recycled materials under intermittent and frequent flow operations. J. Environ. Manag. 2021, 297, 113321. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Liu, J.; Zhang, L.; Li, G.; Zhang, Z.; Gong, Y.; Li, H.; Li, J. Coal gangue modified bioretention system for runoff pollutants removal and the biological characteristics. J. Environ. Manag. 2022, 314, 115044. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Z.; Cheng, G.; Lu, S.; Gu, Z.; Zhu, H.; Shen, H.; Wang, J.; Chen, X. Ecological engineering in pond aquaculture: A review from the whole-process perspective in China. Rev. Aquac. 2020, 13, 1060–1076. [Google Scholar] [CrossRef]
- Struzak, M.; Poor, C.; Wolfand, J.; Radke, A. Evaluation of Biochar as an Amendment for the Removal of Metals, Nutrient, and Microplastics in Bioretention Systems. J. Environ. Eng.-ASCE 2024, 150, 10. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Wang, B.; Hassan, M.; Zhang, X.Y. Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review. J. Environ. Manage. 2024, 370, 17. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Song, Y.; Shao, Z.; Chai, H. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions. Water Res. 2021, 206, 117737. [Google Scholar] [CrossRef]
- Su, X.; Wang, Y.; He, Q.; Hu, X.; Chen, Y. Biochar remediates denitrification process and N2O emission in pesticide chlorothalonil-polluted soil: Role of electron transport chain. Chem. Eng. J. 2019, 370, 587–594. [Google Scholar] [CrossRef]
- Berger, A.W.; Valenca, R.; Miao, Y.; Ravi, S.; Mahendra, S.; Mohanty, S.K. Biochar increases nitrate removal capacity of woodchip biofilters during high-intensity rainfall. Water Res. 2019, 165, 115008. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 2013, 3, 01732. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Z.; Zhang, Z.; Zhang, R. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures. Sci. Total Environ. 2018, 615, 1547–1556. [Google Scholar] [CrossRef]
- Guo, F.; Xu, F.; Cai, R.; Li, D.; Xu, Q.; Yang, X.; Wu, Z.; Wang, Y.; He, Q.; Ao, L.; et al. Enhancement of denitrification in biofilters by immobilized biochar under low-temperature stress. Bioresour. Technol. 2022, 347, 126664. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, H.; Gu, T.; Wu, Y.; Yang, Z.; Shao, Y.; Zhong, H. Denitrification in bioretention systems based on corncob biochar produced at low pyrolysis temperature: The efficacy and the mechanisms. Chem. Eng. J. 2023, 460, 141829. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, J.; Yang, X.; He, Q.; Ao, L.; Chen, Y. Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios. Bioresour. Technol. 2020, 303, 122908. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, Y.; Sun, S.; Zhang, M.; Yan, P.; Xu, F.; Tang, L.; He, S. Efficient nitrogen removal through coupling biochar with zero-valent iron by different packing modes in bioretention system. Environ. Res. 2023, 223, 115375. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Cheng, X.; Wang, C.; Kang, L.; Chen, P.; He, Q.; Zhang, G.; Ye, J.; Zhou, S. Extracellular polymeric substances trigger an increase in redox mediators for enhanced sludge methanogenesis. Environ. Res. 2020, 191, 110197. [Google Scholar] [CrossRef]
- Yu, D.C.; Yin, J.; Wang, Y.H.; Lu, A.M.; He, Y.; Shen, S.D. Nitrogen assimilation-associated enzymes and nitrogen use efficiency of Pyropia yezoensis (Rhodophyta) in nitrate-sufficient conditions. Algal Res. 2022, 64, 8. [Google Scholar] [CrossRef]
- Seviour, T.; Derlon, N.; Dueholm, M.S.; Flemming, H.-C.; Girbal-Neuhauser, E.; Horn, H.; Kjelleberg, S.; van Loosdrecht, M.C.M.; Lotti, T.; Malpei, M.F.; et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Res. 2019, 151, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Xu, Y.; Tu, Q.; Chen, X. Achieving enhanced denitrification via hydrocyclone treatment on mixed liquor recirculation in the anoxic/aerobic process. Chemosphere 2017, 189, 206–212. [Google Scholar] [CrossRef]
- Jia, F.; Yang, Q.; Liu, X.; Li, X.; Li, B.; Zhang, L.; Peng, Y. Stratification of Extracellular Polymeric Substances (EPS) for Aggregated Anammox Microorganisms. Environ. Sci. Technol. 2017, 51, 3260–3268. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, C.; Shen, Y.; Zhu, N. Anaerobic ammonium oxidation (anammox) promoted by pyrogenic biochar: Deciphering the interaction with extracellular polymeric substances (EPS). Sci. Total Environ. 2022, 802, 149884. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Sun, T.; Kappler, A.; Jiang, J. Biochar facilitates ferrihydrite reduction by Shewanella oneidensis MR-1 through stimulating the secretion of extracellular polymeric substances. Sci. Total Environ. 2022, 848, 157560. [Google Scholar] [CrossRef]
- McGlynn, S.E.; Chadwick, G.L.; Kempes, C.P.; Orphan, V.J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 2015, 526, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, E.; Zhang, J.; Dai, Y.; Yang, Z.; Christensen, H.E.M.; Ulstrup, J.; Zhao, F. Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Sci. Adv. 2017, 3, e1700623. [Google Scholar] [CrossRef]
- Shitu, A.; Zhang, Y.; Danhassan, U.A.; Li, H.; Tadda, M.A.; Ye, Z.; Zhu, S. Synergistic effect of chitosan-based sludge aggregates CS@NGS inoculum accelerated the start-up of biofilm reactor treating aquaculture effluent: Insights into performance, microbial characteristics, and functional genes. Chemosphere 2022, 303 Pt 3, 135097. [Google Scholar] [CrossRef]
- Xin, X.; Liu, S.; Qin, J.; Ye, Z.; Liu, W.; Fang, S.; Yang, J. Performances of simultaneous enhanced removal of nitrogen and phosphorus via biological aerated filter with biochar as fillers under low dissolved oxygen for digested swine wastewater treatment. Bioprocess Biosyst. Eng. 2021, 44, 1741–1753. [Google Scholar] [CrossRef]
- Khawdas, W.; Watanabe, K.; Karatani, H.; Aso, Y.; Tanaka, T.; Ohara, H. Direct electron transfer of Cellulomonas fimi and microbial fuel cells fueled by cellulose. J. Biosci. Bioeng. 2019, 128, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Sun, H.; Yang, M.; Chen, E.; Wu, C.; Gao, M.; Sun, X.; Wang, Q. Effect of biodrying of lignocellulosic biomass on humification and microbial diversity. Bioresour. Technol. 2023, 384, 129336. [Google Scholar] [CrossRef] [PubMed]
- Shu, D.; He, Y.; Yue, H.; Wang, Q. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems. Chem. Eng. J. 2016, 290, 21–30. [Google Scholar] [CrossRef]
- Vilar-Sanz, A.; Pous, N.; Puig, S.; Balaguer, M.D.; Colprim, J.; Baneras, L. Denitrifying nirK-containing alphaproteobacteria exhibit different electrode driven nitrite reduction capacities. Bioelectrochemistry 2018, 121, 74–83. [Google Scholar] [CrossRef]
- Smith, C.J.; Nedwell, D.B.; Dong, L.F.; Osborn, A.M. Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl. Environ. Microbiol. 2007, 73, 3612–3622. [Google Scholar] [CrossRef]
- Hu, J.W.; Liu, M.J.; Li, L.; Hu, J.J.; Wang, C. Assessing the effects of NapA gene overexpression on denitrification and denitrogenation in magnetospirillum gryphiswaldense MSR-1. Arch. Microbiol. 2024, 206, 15. [Google Scholar] [CrossRef]
- Yuan, J.W.; Zeng, X.Q.; Zhang, P.; Leng, L.L.; Du, Q.W.; Pan, D.D. Nitrite reductases of lactic acid bacteria: Regulation of enzyme synthesis and activity, and different applications. Food Biosci. 2024, 59, 10. [Google Scholar] [CrossRef]
- Kozlowski, J.A.; Price, J.; Stein, L.Y. Revision of N2O-Producing Pathways in the Ammonia-Oxidizing Bacterium Nitrosomonas europaea ATCC 19718. Appl. Environ. Microbiol. 2014, 80, 4930–4935. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Z.-F.; Wang, Y.-Y.; Xiong, Z.-Y.; Gao, M. Effect of Chemical Fertilizer and Manure Combined with Biochar on Denitrification Potential and Denitrifying Bacterial Community in Rhizosphere Soil. Environ. Sci. 2023, 44, 4565–4574. [Google Scholar] [CrossRef]
- Kataoka, T.; Suzuki, K.; Irino, T.; Yamamoto, M.; Higashi, S.; Liu, H.B. Phylogenetic diversity and distribution of bacterial and archaeal amoA genes in the East China Sea during spring. Arch. Microbiol. 2018, 200, 329–342. [Google Scholar] [CrossRef]
- Tsay, Y.F.; Chiu, C.C.; Tsai, C.B.; Ho, C.H.; Hsu, P.K. Nitrate transporters and peptide transporters. FEBS Lett. 2007, 581, 2290–2300. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Yang, X.; Zhang, C.; Qian, Q.; Liang, Z.; Liang, J.; Wen, L.; Jiang, L.; Wang, S. Enhanced Nitrogen Removal from Aquaculture Wastewater Using Biochar-Amended Bioretention Systems. Water 2025, 17, 2751. https://doi.org/10.3390/w17182751
Jiang W, Yang X, Zhang C, Qian Q, Liang Z, Liang J, Wen L, Jiang L, Wang S. Enhanced Nitrogen Removal from Aquaculture Wastewater Using Biochar-Amended Bioretention Systems. Water. 2025; 17(18):2751. https://doi.org/10.3390/w17182751
Chicago/Turabian StyleJiang, Wenqiang, Xueming Yang, Chengcai Zhang, Qian Qian, Zhen Liang, Junneng Liang, Luting Wen, Linyuan Jiang, and Shumin Wang. 2025. "Enhanced Nitrogen Removal from Aquaculture Wastewater Using Biochar-Amended Bioretention Systems" Water 17, no. 18: 2751. https://doi.org/10.3390/w17182751
APA StyleJiang, W., Yang, X., Zhang, C., Qian, Q., Liang, Z., Liang, J., Wen, L., Jiang, L., & Wang, S. (2025). Enhanced Nitrogen Removal from Aquaculture Wastewater Using Biochar-Amended Bioretention Systems. Water, 17(18), 2751. https://doi.org/10.3390/w17182751