Evaluating Droughts and Trends in Data-Scarce Regions: A Case Study of Palestine Using ERA5, Standardized Precipitation Index, Bias Correction, Classical and Innovative Trend Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. In Situ Meteorological Stations
2.2.2. ERA5 Data
2.3. Methodology
2.3.1. Standardized Precipitation Index (SPI)
2.3.2. Drought Characteristics
2.3.3. Inverse Distance Weighting (IDW) Interpolation Technique
2.3.4. Bias Correction_Linear Scaling
2.3.5. Statistical Metrics
2.3.6. Mann–Kendall (MK) Test
2.3.7. Spearman’s Rank Correlation Coefficient
2.3.8. Sen’s Slope Estimator (SS)
2.3.9. Frequency—Innovative Trend Analysis (F-ITA)
3. Results
3.1. Results of Statistical Metrics
3.2. Temporal Drought Evaluation
3.3. Spatial Evaluation of Drought Characteristics
3.4. Mann–Kendall, Spearman Rho, and Sen’n Slope Results
3.5. Frequency—Innovative Trend Analysis (F-ITA) Results
4. Discussion
4.1. Importance of Bias Correction in Drought Analysis
4.2. Spatial Analysis of Drought Characteristics
4.3. Classical and Innovative Trend Analysis
4.4. Previous Studies
4.5. Limitations
4.6. Implications for Drought Management and Water Resource Planning
5. Conclusions
- By applying bias correction, the reliability and accuracy of ERA5 monthly precipitation data were improved, enhancing its applicability for drought evaluation and assessment, particularly in data-scarce regions. RMSE decreased in all stations and timescales.
- One of the key insights from this research is the increasing duration and intensity of droughts across the West Bank, Palestine, particularly over the past few decades. The multi-timescale SPI analysis (1-month, 6-month, and 12-month) provided a comprehensive understanding of short-term and long-term drought impacts, covering meteorological, agricultural, and hydrological droughts.
- The droughts in SPI-1 and SPI-6 ranged from 4 to 5 months, the minimum at which a drought can be classified, indicating that the durations for SPI up to 6-month timescales are about 4–5 months.
- The results indicated that the average drought duration at a 12-month timescale ranged between 14 and 16 months, underscoring the need for sustainable water resource management strategies to mitigate drought risks.
- Considering the trend analysis over the study period spanning about 84 years using MK, Spearman Rho, SS, and F-ITA methodologies, there was no trend in the short (SPI-1) timescale. However, the results indicated a decreasing trend in SPI values, particularly at longer time scales (SPI-12), which reflects an increasing trend in drought conditions. For example, the SPI-12 F-ITA for the Jenin station showed an increasing trend in drought events, and the frequencies of EXD, ED, SD, and AND classifications increased from 0.2%, 0.4%, 2.98%, and 31.54% in the first period (1941–1982) to 0.4%, 2.18%, 3.37%, and 43.46% in the second period (1982–2024), respectively.
- For SPI-12, MK-Z values were −2.155 (Al-Khalil), −5.611 (Jenin), −2.676 (Jericho), −3.489 (Nablus), and −2.005 (Ramallah), all significant at the 95–99% confidence levels, indicating a decreasing SPI trend and hence intensifying drought. Corresponding SS values (−0.0003 to −0.0006) confirm a gradual long-term drought intensification.
- Despite the advancements in data processing and bias correction, data scarcity remains a major challenge, and further research is needed to refine drought assessment methods using additional climate variables and higher-resolution datasets.
- The findings of this study have important implications for drought management, water policy planning, and climate adaptation in Palestine.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalili, P.; Konar, M.; Faramarzi, M. Modelling the impacts of future droughts and post-droughts on hydrology, crop yields, and their linkages through assessing virtual water trade in agricultural watersheds of high-latitude regions. J. Hydrol. 2024, 639, 131530. [Google Scholar] [CrossRef]
- IPCC. Climate Change: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2021; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- Visser, H.; Petersen, A.C.; Ligtvoet, W. On the relation between weather-related disaster impacts, vulnerability and climate change. Clim. Change 2014, 125, 461–477. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Kharyutkina, E.; Loginov, S.; Martynova, Y.; Sudakov, I. Time series analysis of atmospheric precipitation characteristics in Western Siberia for 1979–2018 across different datasets. Atmosphere 2022, 13, 189. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index: User Guide; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Cao, S.; Zhang, L.; He, Y.; Zhang, Y.; Chen, Y.; Yao, S.; Yang, W.; Sun, Q. Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China. Sci. Total Environ. 2022, 821, 153270. [Google Scholar] [CrossRef] [PubMed]
- Abu Arra, A.; Şişman, E. Characteristics of hydrological and meteorological drought based on intensity-duration-frequency (IDF) curves. Water 2023, 15, 3142. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. Innovative Drought Classification Matrix and Acceptable Time Period for Temporal Drought Evaluation. Water Resour. Manag. 2024, 38, 2811–2833. [Google Scholar] [CrossRef]
- Şen, Z. Standard precipitation-temperature index (SPTI) drought identification by fuzzy c-means methodology. Earth Sci. Inform. 2024, 17, 4233–4244. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Drought modeling–A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology 1993, Anaheim, CA, USA, 17–22 January 1993; Volume 17, No. 22. pp. 179–183. [Google Scholar]
- Şen, Z. Spatially heterogeneous drought analysis theory and future trends. J. Hydrol. 2014, 519, 1804–1810. [Google Scholar] [CrossRef]
- Hussain, A.; Suliman, M.; Khan, F. Analysing spatiotemporal drought patterns in Punjab Province, Pakistan, utilizing SPI and SPEI. Theor. Appl. Climatol. 2024, 155, 7867–7886. [Google Scholar] [CrossRef]
- Hasan, N.A.; Dongkai, Y.; Al-Shibli, F. SPI and SPEI drought assessment and prediction using TBATS and ARIMA models, Jordan. Water 2023, 15, 3598. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. A comprehensive analysis and comparison of SPI and SPEI for spatiotemporal drought evaluation. Environ. Monit. Assess. 2024, 196, 980. [Google Scholar] [CrossRef]
- Achite, M.; Bazrafshan, O.; Pakdaman, Z.; Wałęga, A.; Pourhaghverdi, F.; Caloiero, T. Uncertainty analysis of SPI and SRI calculation using bootstrap in the Mediterranean regions of Algeria. Nat. Hazards 2024, 120, 11031–11061. [Google Scholar] [CrossRef]
- Abu Arra, A.; Alashan, S.; Şişman, E. Advancing innovative trend analysis for drought trends: Incorporating drought classification frequencies for comprehensive insights. Nat. Hazards 2025, 121, 9195–9219. [Google Scholar] [CrossRef]
- Mehta, D.; Yadav, S.M. An analysis of rainfall variability and drought over Barmer District of Rajasthan, Northwest India. Water Supply 2021, 21, 2505–2517. [Google Scholar] [CrossRef]
- Mehta, D.J.; Yadav, S.M. Meteorological drought analysis in Pali District of Rajasthan State using standard precipitation index. Int. J. Hydrol. Sci. Technol. 2023, 15, 127880. [Google Scholar] [CrossRef]
- Kesgin, E.; Yaldız, S.G.; Güçlü, Y.S. Spatiotemporal variability and trends of droughts in the Mediterranean coastal region of Türkiye. Int. J. Climatol. 2024, 44, 1036–1057. [Google Scholar] [CrossRef]
- Hinis, M.A.; Geyikli, M.S. Accuracy evaluation of standardized precipitation index (SPI) estimation under conventional assumption in Yeşilırmak, Kızılırmak, and Konya Closed Basins, Turkey. Adv. Meteorol. 2023, 2023, 5142965. [Google Scholar] [CrossRef]
- Mehta, D.; Yadav, S.; Ladavia, C.; Caloiero, T. Drought projection using GCM & statistical downscaling technique: A case study of Sirohi District. Results Eng. 2023, 20, 101605. [Google Scholar] [CrossRef]
- Dukat, P.; Bednorz, E.; Ziemblińska, K.; Urbaniak, M. Trends in drought occurrence and severity at mid-latitude European stations (1951–2015) estimated using standardized precipitation (SPI) and precipitation and evapotranspiration (SPEI) indices. Meteorol. Atmos. Phys. 2022, 134, 20. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, J.F.; da Silva Junior, C.A.; Teodoro, P.E.; Rossi, F.S.; Blanco, C.J.C.; Lima, M.; de Gois, G.; Filho, W.L.F.C.; Santiago, D.d.B.; Vanderley, M.H.G.d.S. Confronting CHIRPS dataset and in situ stations in the detection of wet and drought conditions in the Brazilian Midwest. Int. J. Climatol. 2021, 41, 4478–4493. [Google Scholar] [CrossRef]
- Mahmoudi, P.; Rigi, A.; Miri Kamak, M. A comparative study of precipitation-based drought indices with the aim of selecting the best index for drought monitoring in Iran. Theor. Appl. Climatol. 2019, 137, 3123–3138. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Sun, T.; Fan, H. Identifying the spatiotemporal patterns of drought-flood alternation based on IMERG product in the humid subtropical Poyang Lake basin, China. J. Hydrol. Reg. Stud. 2024, 54, 101912. [Google Scholar] [CrossRef]
- Serban, C.; Maftei, C. Spatiotemporal Drought Analysis Using the Composite Drought Index (CDI) over Dobrogea, Romania. Water 2025, 17, 481. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Bisht, D.S.; Kumar, D.P.; Amarjyothi, K.; Saha, U. Bias correction of satellite precipitation estimates using Mumbai-MESONET observations: A Random Forest approach. Atmos. Res. 2025, 315, 107858. [Google Scholar] [CrossRef]
- Lenderink, G.; Buishand, A.; Van Deursen, W. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Kagone, S.; Velpuri, N.M.; Khand, K.; Senay, G.B.; Van der Valk, M.R.; Goode, D.J.; Abu Hantash, S.; Al-Momani, T.; Momejian, N.; Eggleston, J. Satellite precipitation bias estimation and correction using in situ observations and climatology isohyets for the MENA region. J. Arid Environ. 2023, 215, 105010. [Google Scholar] [CrossRef]
- Chae, S.T.; Chung, E.S. Significant contribution of bias correction methods to uncertainty in future runoff projections under CMIP6 climate change. J. Hydrol. Reg. Stud. 2024, 56, 101973. [Google Scholar] [CrossRef]
- Tiwari, A.D.; Mukhopadhyay, P.; Mishra, V. Influence of bias correction of meteorological and streamflow forecast on hydrological prediction in India. J. Hydrometeorol. 2022, 23, 1171–1192. [Google Scholar] [CrossRef]
- Lakew, H.B.; Semu, A.M. Dynamical bias correction procedure to improve global gridded daily streamflow data for local application in the Upper Blue Nile basin. J. Hydrol. Hydromech. 2021, 69, 41–48. [Google Scholar] [CrossRef]
- Soo, E.Z.X.; Wan Jaafar, W.Z.; Lai, S.H.; Othman, F.; Elshafie, A. Enhancement of satellite precipitation estimations with bias correction and data-merging schemes for flood forecasting. J. Hydrol. Eng. 2022, 27, 05022009. [Google Scholar] [CrossRef]
- Soriano, E.; Mediero, L.; Garijo, C. Selection of bias correction methods to assess the impact of climate change on flood frequency curves. Water 2019, 11, 2266. [Google Scholar] [CrossRef]
- Vogel, E.; Johnson, F.; Marshall, L.; Bende-Michl, U.; Wilson, L.; Peter, J.R.; Wasko, C.; Srikanthan, S.; Sharples, W.; Dowdy, A.; et al. An evaluation framework for downscaling and bias correction in climate change impact studies. J. Hydrol. 2023, 622, 129693. [Google Scholar] [CrossRef]
- Wamahiu, K.; Kala, J.; Evans, J.P. The influence of bias correction of global climate models prior to dynamical downscaling on projections of changes in climate: A case study over the CORDEX-Australasia domain. Clim. Dyn. 2024, 62, 1219–1231. [Google Scholar] [CrossRef]
- Worako, A.W.; Haile, A.T.; Taye, M.T. Implication of bias correction on climate change impact projection of surface water resources in the Gidabo sub-basin, Southern Ethiopia. J. Water Clim. Change 2022, 13, 2070–2088. [Google Scholar] [CrossRef]
- Jarray, H.; Mellah, T.; D’Oria, M.; Todaro, V.; Tanda, M.G.; Baccouche, H.; Mansouri, L.; Ghrabi, A.; Akrout, H. Assessing pollution and water resources suitability for multiple uses under extended drought and climate change conditions: The case of the Grombalia aquifer in Tunisia. Stoch. Environ. Res. Risk Assess. 2025, 39, 129–154. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Shen, S.; Hu, Z.; Rahman, M.A. Drought hazard evaluation in boro paddy cultivated areas of western Bangladesh at current and future climate change conditions. Adv. Meteorol. 2017, 2017, 3514381. [Google Scholar] [CrossRef]
- Dehghani, A.; Mortazavizadeh, F.; Dehghani, A.; Rahmat, M.B.; Galavi, H.; Bolonio, D.; Ng, J.L.; Rezaverdinejad, V.; Mirzaei, M.J.N.H. Multi-model assessment of climate change impacts on drought characteristics. Nat. Hazards 2024, 121, 6069–6084. [Google Scholar] [CrossRef]
- Wubneh, M.A.; Alemu, M.G.; Sahlu, D.; Kifelew, M.S. Hydro-meteorological drought predictions and trend analysis for ungauged watersheds in the Upper Blue Nile basin, Ethiopia, under future climate change impact scenarios. J. Water Clim. Change 2024, 15, 5458–5481. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y.; Zhu, D.Z. Impacts of climate change and climate variability on water resources and drought in an arid region and possible resiliency and adaptation measures against climate warming. Clim. Dyn. 2023, 61, 4079–4105. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Gutiérrez-Martín, C.; Kahil, T.; Berbel, J. Impact of alternative water policies for drought adaptation in the Guadalquivir Mediterranean river basin, southern Spain. J. Hydrol. Reg. Stud. 2023, 47, 101444. [Google Scholar] [CrossRef]
- Masupha, T.E.; Moeletsi, M.E.; Tsubo, M. Prospects of an agricultural drought early warning system in South Africa. Int. J. Disaster Risk Reduct. 2021, 66, 102615. [Google Scholar] [CrossRef]
- Graves, T.; Kuleshov, Y. Enhancing the communication of an early warning system for drought in the Murray-Darling Basin, Australia. Nat. Hazards 2024, 121, 1599–1619. [Google Scholar] [CrossRef]
- Siswanto, S.; Wardani, K.K.; Purbantoro, B.; Rustanto, A.; Zulkarnain, F.; Anggraheni, E.; Dewanti, R.; Nurlambang, T.; Dimyati, M.; Shahid, S. Satellite-based meteorological drought indicator to support food security in Java Island. PLoS ONE 2022, 17, e0260982. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; American Psychological Association: Washington, DC, USA, 1948. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association Between Two Things; American Psychological Association: Washington, DC, USA, 1961. [Google Scholar]
- Şen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. New Insights into Meteorological and Hydrological Drought Modeling: A Comparative Analysis of Parametric and Non-Parametric Distributions. Atmosphere 2025, 16, 846. [Google Scholar] [CrossRef]
- Alashan, S. Comparison of sub-series with different lengths using şen-innovative trend analysis. Acta Geophys. 2023, 71, 373–383. [Google Scholar] [CrossRef]
- Abu Arra, A.; Alashan, S.; Şişman, E. Trends of meteorological and hydrological droughts and associated parameters using innovative approaches. J. Hydrol. 2024, 640, 131661. [Google Scholar] [CrossRef]
- Abu Arra, A.; Alashan, S.; Şişman, E. A new framework for innovative trend analysis: Integrating extreme precipitation indices, standardization, enhanced visualization, and novel classification approaches (ITA-NF). Nat. Hazards 2025, 121, 13543–13575. [Google Scholar] [CrossRef]
- United Nation Environment Programme (UNEP). Desk Study on the Environment in the Occupied Palestinian Territories; UNEP: Nairobi, Kenya, 2003. [Google Scholar]
- Shadeed, S.; Almasri, M. Application of GIS-based SCS-CN method in West Bank catchments, Palestine. Water Sci. Eng. 2010, 3, 1–13. [Google Scholar]
- Şen, Z.; Şişman, E. Probabilistic standardization index adjustment for standardized precipitation index (SPI). Theor. Appl. Climatol. 2024, 155, 2747–2756. [Google Scholar] [CrossRef]
- Philip, G.M.; Watson, D.F. A precise method for determining contoured surfaces. APPEA J. 1982, 22, 205–212. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E.; Birpınar, M.E. What is the best spatial interpolation technique for evaluating droughts? Intercont. Geoinf. Days 2023, 6, 278–281. [Google Scholar]
- Zhu, G.; Liu, Y.; Wang, L.; Sang, L.; Zhao, K.; Zhang, Z.; Lin, X.; Qiu, D. The isotopes of precipitation have climate change signal in arid Central Asia. Glob. Planet. Change 2023, 225, 104103. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag Math 1950, 12, 173. [Google Scholar]
- Dabanlı, İ.; Şen, Z.; Yeleğen, M.Ö.; Şişman, E.; Selek, B.; Güçlü, Y.S. Trend assessment by the innovative-Şen method. Water Resour. Manag. 2016, 30, 5193–5203. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Vangelis, H.; Tigkas, D.; Mamara, A.; Nalbantis, I.; Tsakiris, G.; Tsihrintzis, V.A. Drought assessment in greece using SPI and ERA5 climate reanalysis data. Sustainability 2023, 15, 15999. [Google Scholar] [CrossRef]
- Rakhmatova, N.; Arushanov, M.; Shardakova, L.; Nishonov, B.; Taryannikova, R.; Rakhmatova, V.; Belikov, D.A. Evaluation of the perspective of ERA-Interim and ERA5 reanalyses for calculation of drought indicators for Uzbekistan. Atmosphere 2021, 12, 527. [Google Scholar] [CrossRef]
- Najmi, A.; Igmoullan, B.; Namous, M.; El Bouazzaoui, I.; Brahim, Y.A.; El Khalki, E.M.; Saidi, M.E.M. Evaluation of PERSIANN-CCS-CDR, ERA5, and SM2RAIN-ASCAT rainfall products for rainfall and drought assessment in a semi-arid watershed, Morocco. J. Water Clim. Change 2023, 14, 1569–1584. [Google Scholar] [CrossRef]
- Xue, C.; Wu, H.; Jiang, X. Temporal and spatial change monitoring of drought grade based on ERA5 analysis data and BFAST method in the belt and road area during 1989–2017. Adv. Meteorol. 2019, 2019, 4053718. [Google Scholar] [CrossRef]
- Shadeed, S. Spatio-temporal drought analysis in arid and semi-arid regions: A case study from Palestine. Arab. J. Sci. Eng. 2013, 38, 2303–2313. [Google Scholar] [CrossRef]
- Shadeed, S.; Alawna, S. Optimal sizing of rooftop rainwater harvesting tanks for sustainable domestic water use in the West Bank, Palestine. Water 2021, 13, 573. [Google Scholar] [CrossRef]
- Abu Arra, A.; Birpınar, M.E.; Gazioğlu, Ş.A.; Şişman, E. Critical drought characteristics: A new concept based on dynamic time period scenarios. Atmosphere 2024, 15, 768. [Google Scholar] [CrossRef]
# | Station | Lat. (N) | Long. (E) | Elevation (m) | Annual Precipitation (mm) | Standard Deviation (mm) |
---|---|---|---|---|---|---|
1 | Al-Khalil | 31.53 | 35.1 | 891 | 492.64 | 64.03 |
2 | Jenin | 32.46 | 35.3 | 145 | 455.85 | 56.64 |
3 | Jericho | 31.86 | 35.47 | −375 | 135.93 | 16.97 |
4 | Nablus | 32.13 | 35.15 | 73 | 638.71 | 79.04 |
5 | Ramallah | 31.9 | 35.22 | 809 | 609.34 | 76.37 |
Statistic Metric | Equation | Value Range | Ideal Value |
---|---|---|---|
Correlation Coefficient (CC) | (−1)–(1) | 1 | |
Root Mean Square Error (RMSE) | (0)–(∞) | 0 | |
Mean Bias Error (MBE) | (−∞)–(∞) | 0 | |
Percent Bias (PB) | (−∞)–(∞) | 0 | |
Coefficient of determination (R2) | (0)–(1) | 1 |
Drought Index_DI | Classification | Frequency (%) |
---|---|---|
2.50 ≤ DI | Exceptional wet (EXW) | 0.62% |
2.00 ≤ DI < 2.50 | Extreme wet (EW) | 1.69% |
1.50 ≤ DI < 2.00 | Severe wet (SW) | 4.42% |
1.00 ≤ DI < 1.50 | Moderate wet (MW) | 9.22% |
0.00 ≤ DI < 1.00 | Abnormally wet (ANW) | 34.05% |
−1.00 ≤ DI < 0.00 | Abnormally dry (AND) | 34.05% |
−1.50 ≤ DI < −1.00 | Moderate drought (MD) | 9.22% |
−2.00 ≤ DI < −1.50 | Severe drought (SD) | 4.42% |
−2.50 ≤ DI < −2.00 | Extreme drought (ED) | 1.69% |
−2.50 > DI | Exceptional drought (EXD) | 0.62% |
CC | R2 | RMSE (mm) | MBE (mm) | PB | |
---|---|---|---|---|---|
Al-Khalil | |||||
Obs. vs. ERA5 | 0.87 | 0.76 | 57.41 | −27.66 | −67.4% |
Obs. vs. Biassed ERA5 | 0.87 | 0.76 | 32.05 | 0.0 | 0.0% |
Jenin | |||||
Obs. vs. ERA5 | 0.91 | 0.83 | 29.57 | −7.69 | −20.2% |
Obs. vs. Biassed ERA5 | 0.91 | 0.83 | 24.68 | 0.0 | 0.0% |
Jericho | |||||
Obs. vs. ERA5 | 0.86 | 0.74 | 9.72 | 2.78 | 24.5% |
Obs. vs. Biassed ERA5 | 0.86 | 0.74 | 8.73 | 0.0 | 0.0% |
Nablus | |||||
Obs. vs. ERA5 | 0.91 | 0.82 | 50.84 | −19.83 | −37.2% |
Obs. vs. Biassed ERA5 | 0.91 | 0.82 | 34.70 | 0.0 | 0.0% |
Ramallah | |||||
Obs. vs. ERA5 | 0.90 | 0.81 | 50.62 | −19.68 | −38.8% |
Obs. vs. Biassed ERA5 | 0.90 | 0.81 | 34.57 | 0.0 | 0.0% |
Station | SPI | MK_Trend | MK_Z | Spearman Rho | Sen’s Slope |
---|---|---|---|---|---|
Al-Khalil | 1 | no trend | −0.054 | −0.002 | 0.0000 |
6 | no trend | −0.611 | −0.020 | −0.0001 | |
12 | decreasing ** | −2.155 | −0.071 | −0.0003 | |
Jenin | 1 | no trend | −0.535 | −0.016 | −0.0001 |
6 | decreasing *** | −1.718 | −0.054 | −0.0002 | |
12 | decreasing * | −5.611 | −0.176 | −0.0006 | |
Jericho | 1 | no trend | 0.770 | 0.023 | 0.0001 |
6 | no trend | −0.445 | −0.012 | 0.0000 | |
12 | decreasing * | −3.725 | −0.100 | −0.0004 | |
Nablus | 1 | no trend | −0.136 | −0.004 | 0.0000 |
6 | no trend | −1.100 | −0.035 | −0.0001 | |
12 | decreasing * | −3.489 | −0.118 | −0.0004 | |
Ramallah | 1.1 | no trend | 0.200 | 0.006 | 0.0000 |
6.1 | no trend | −0.574 | −0.020 | −0.0001 | |
12.1 | decreasing ** | −2.005 | −0.071 | −0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Arra, A.; Şişman, E. Evaluating Droughts and Trends in Data-Scarce Regions: A Case Study of Palestine Using ERA5, Standardized Precipitation Index, Bias Correction, Classical and Innovative Trend Approaches. Water 2025, 17, 2780. https://doi.org/10.3390/w17182780
Abu Arra A, Şişman E. Evaluating Droughts and Trends in Data-Scarce Regions: A Case Study of Palestine Using ERA5, Standardized Precipitation Index, Bias Correction, Classical and Innovative Trend Approaches. Water. 2025; 17(18):2780. https://doi.org/10.3390/w17182780
Chicago/Turabian StyleAbu Arra, Ahmad, and Eyüp Şişman. 2025. "Evaluating Droughts and Trends in Data-Scarce Regions: A Case Study of Palestine Using ERA5, Standardized Precipitation Index, Bias Correction, Classical and Innovative Trend Approaches" Water 17, no. 18: 2780. https://doi.org/10.3390/w17182780
APA StyleAbu Arra, A., & Şişman, E. (2025). Evaluating Droughts and Trends in Data-Scarce Regions: A Case Study of Palestine Using ERA5, Standardized Precipitation Index, Bias Correction, Classical and Innovative Trend Approaches. Water, 17(18), 2780. https://doi.org/10.3390/w17182780