Heavy Metal Transport in Dammed Rivers: Damming Effects and Remediation Strategies—A Review
Abstract
1. Introduction
2. Status of Hydropower Development and Impact of River Damming
2.1. Global Hydropower Development Status
2.2. Impact of River Damming on Hydrology, Environment, and Ecology
2.2.1. Effects of River Damming on Hydrological Characteristics
2.2.2. Effects of River Damming on Physicochemical Environment
2.2.3. Effects of River Damming on Ecological System
3. Concentration Distribution of Heavy Metals in Water and Sediments
3.1. Heavy Metals in Reservoir Water
3.2. Heavy Metals in Reservoir Suspended and Riverbed Sediments
4. Influence of River Damming on the Transport of Heavy Metals
4.1. Migration of Heavy Metals from Reservoir Water to Suspended Sediment
4.2. Deposition of Heavy Metals from Suspended Sediment to Riverbed Sediment
4.3. Release of Heavy Metals from Riverbed Sediment During Reservoir Regulation
5. Remediation Strategies of Heavy Metals Polluted Reservoir Sediments
5.1. In Situ Treatment Techniques
5.1.1. Stabilizing Agents
5.1.2. Sediment Capping
5.1.3. Phytoremediation
5.2. Ex Situ Treatment Techniques
5.2.1. Sediment Dredging
5.2.2. Chemical Washing
5.2.3. Electrochemical Remediation
5.2.4. Ultrasonic Extraction
5.3. Remediation Technologies for Reservoir Sediments
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maavara, T.; Chen, Q.W.; Van Meter, K.; Brown, L.E.; Zhang, J.Y.; Ni, J.R.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 2020, 1, 103–116. [Google Scholar] [CrossRef]
- Hermoso, V. Freshwater ecosystems could become the biggest losers of the Paris Agreement. Glob. Change Biol. 2017, 23, 3433–3436. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef]
- Asmal, K. Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on Dams; Earthscan: London, UK, 2000. [Google Scholar]
- Debnath, A.; Singh, P.K.; Sharma, Y.C. Metallic contamination of global river sediments and latest developments for their remediation. J. Environ. Manag. 2021, 298, 113378. [Google Scholar] [CrossRef]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- REN24. Renewables 2024: Global Status Report. Available online: https://www.iea.org/reports/renewables-2024 (accessed on 21 June 2024).
- Wang, F.S.; Maberly, S.C.; Wang, B.L.; Liang, X. Effects of dams on riverine biogeochemical cycling and ecology. Inland Waters 2018, 8, 130–140. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Cheng, Q.Y.; Yu, M.X.; Hu, B.; Wang, Z.G.; Yu, Z.Q. Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013. Water Res. 2016, 92, 262–274. [Google Scholar] [CrossRef]
- Frémion, F.; Bordas, F.; Mourier, B.; Lenain, J.F.; Kestens, T.; Courtin-Nomade, A. Influence of dams on sediment continuity: A study case of a natural metallic contamination. Sci. Total Environ. 2016, 547, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Frémion, F.; Courtin-Nomade, A.; Bordas, F.; Lenain, J.F.; Jugé, P.; Kestens, T.; Mourier, B. Impact of sediments resuspension on metal solubilization and water quality during recurrent reservoir sluicing management. Sci. Total Environ. 2016, 562, 201–215. [Google Scholar] [CrossRef]
- Frémion, F.; Mourier, B.; Courtin-Nomade, A.; Lenain, J.F.; Annouri, A.; Fondanèche, P.; Hak, T.; Bordas, F. Key parameters influencing metallic element mobility associated with sediments in a daily-managed reservoir. Sci. Total Environ. 2017, 605, 666–676. [Google Scholar] [CrossRef]
- Yuan, Q.S.; Wang, P.F.; Wang, C.; Chen, J.; Wang, X.; Liu, S.; Feng, T. Metals and metalloids distribution, source identification, and ecological risks in riverbed sediments of the Jinsha River, China. J. Geochem. Explor. 2019, 205, 106334. [Google Scholar] [CrossRef]
- Cardoso-Silva, S.; Meirelles, S.T.; Frascareli, D.; López-Doval, J.C.; Rosa, A.H.; Moschini-Carlos, V.; Pompêo, M. Metals in superficial sediments of a cascade multisystem reservoir: Contamination and potential ecological risk. Environ. Earth Sci. 2017, 76, 756. [Google Scholar] [CrossRef]
- Peng, J.F.; Song, Y.H.; Yuan, P.; Cui, X.Y.; Qiu, G.L. The remediation of heavy metals contaminated sediment. J. Hazard. Mater. 2009, 161, 633–640. [Google Scholar] [CrossRef]
- Yuan, Q.S.; Wang, P.F.; Wang, X.; Hu, B.; Tao, L. Phytoremediation of cadmium-contaminated sediment using Hydrilla verticillata and Elodea canadensis harbor two same keystone rhizobacteria Pedosphaeraceae and Parasegetibacter. Chemosphere 2022, 286, 131648. [Google Scholar] [CrossRef]
- Deng, R.; Huang, D.L.; Wan, J.; Xue, W.J.; Lei, L.; Wen, X.F.; Liu, X.G.; Chen, S.; Yang, Y.; Li, Z.H.; et al. Chloro-phosphate impregnated biochar prepared by co-precipitation for the lead, cadmium and copper synergic scavenging from aqueous solution. Bioresour. Technol. 2019, 293, 122102. [Google Scholar] [CrossRef]
- Zoumis, T.; Schmidt, A.; Grigorova, L.; Calmano, W. Contaminants in sediments: Remobilisation and demobilisation. Sci. Total Environ. 2001, 266, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.C.; Zhang, Y.J.; Arhonditsis, G.B.; Gao, J.F.; Chen, Q.W.; Wu, N.C.; Dong, F.F.; Shi, W.Q. How successful are the restoration efforts of China’s lakes and reservoirs? Environ. Int. 2019, 123, 96–103. [Google Scholar] [CrossRef]
- International Commission on Large Dams (ICOLD). Available online: https://www.icold-cigb.org/ (accessed on 31 December 2024).
- Zhou, T.; Nijssen, B.; Gao, H.L.; Lettenmaier, D.P. The contribution of reservoirs to global land surface water storage variations. J. Hydrometeorol. 2016, 17, 309–325. [Google Scholar] [CrossRef]
- Lehner, B.; Beames, P.; Mulligan, M.; Zarfl, C.; De Felice, L.; van Soesbergen, A.; Thieme, M.; de Leaniz, C.G.; Anand, M.; Belletti, B.; et al. The Global Dam Watch database of river barrier and reservoir information for large-scale applications. Sci. Data 2024, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.L.; Yan, Z. Present situation and future prospect of hydropower in China. Renew. Sustain. Energy Rev. 2009, 13, 1652–1656. [Google Scholar] [CrossRef]
- Fan, H.; He, D.M.; Wang, H.L. Environmental consequences of damming the mainstream Lancang-Mekong River: A review. Earth-Sci. Rev. 2015, 146, 77–91. [Google Scholar] [CrossRef]
- Liu, C.Q.; Wang, F.S.; Wang, Y.C.; Wang, B.L. Responses of aquatic environment to river damming—From the geochemical view. Resour. Environ. Yangtze Basin 2009, 18, 384–396. (In Chinese) [Google Scholar]
- Xi, J.P. Xi Jinping’s speech at UN summit on biodiversity. State Counc. Commun. People’s Repub. China 2020, 29, 6–7. (In Chinese) [Google Scholar]
- Chen, G.F.; Wang, X.H. Global hydropower development trend and China’s role in context of carbon neutrality. J. Hydroelectr. Eng. 2024, 43, 1–11. (In Chinese) [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Ward, J.V.; Stanford, J.A. The serial discontinuity concept: Extending the model to floodplain rivers. Regul. Rivers Res. Manag. 1995, 10, 159–168. [Google Scholar] [CrossRef]
- Poff, N.L.; Hart, D.D. How dams vary and why it matters for the emerging science of dam removal. Bioscience 2002, 52, 659–668. [Google Scholar] [CrossRef]
- Renwick, W.H.; Smith, S.V.; Bartley, J.D.; Buddemeier, R.W. The role of impoundments in the sediment budget of the conterminous United States. Geomorphology 2005, 71, 99–111. [Google Scholar] [CrossRef]
- Friedl, G.; Wüest, A. Disrupting biogeochemical cycles—Consequences of damming. Aquat. Sci. 2002, 64, 55–65. [Google Scholar] [CrossRef]
- Dou, Y.J.; Yang, W. Effect of water resource projects along Cao’e River Basin on ecological environments. Adv. Water Sci. 1996, 7, 260–267. [Google Scholar]
- Lee, J.K.; Jang, S.H. Evaluation of water shortage and instream flows of shared rivers in South Korea according to the dam operations in North Korea. Hydrol. Res. 2024, 55, 537–559. [Google Scholar] [CrossRef]
- Yang, D.Q.; Ye, B.S.; Kane, D.L. Streamflow changes over Siberian Yenisei River Basin. J. Hydrol. 2004, 296, 59–80. [Google Scholar] [CrossRef]
- Cheng, G.W.; Ma, Z.L.; Fang, J.H. Impacts and counterplan of cascade hydropower development to the river ecosystem in Southwestern China. Bull. Chin. Acad. Sci. 2004, 19, 433–437. [Google Scholar]
- Guo, Q.Y.; Yang, Z.F. Post-project ecological analysis for the Sanmenxia Dam. Acta Sci. Circumstantiae 2005, 25, 580–585. [Google Scholar]
- Wang, J.N.; Li, C.; Liao, W.G. Impacts of the regulation of Three Gorges-Gezhouba cascaded reservoirs on downstream eco-hydrology. J. Hydroelectr. Eng. 2011, 30, 84–90. [Google Scholar]
- Dang, H.; Pokhrel, Y. Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes. Hydrol. Earth Syst. Sci. 2024, 28, 3347–3365. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Meybeckc, M.; Feketea, B.; Sharmad, K.; Greena, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Change 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Dethier, E.N.; Renshaw, C.E.; Magilligan, F.J. Rapid changes to global river suspended sediment flux by humans. Science 2022, 376, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Radoane, M.; Radoane, N. Dams, sediment sources and reservoir silting in Romania. Geomorphology 2005, 71, 112–125. [Google Scholar] [CrossRef]
- Chen, J.X.; Jiang, R.F.; Chen, Y. Evaluation on the health of river ecosystem under the cascade development of reservoirs. J. Hydraul. Eng. 2015, 46, 334–340. [Google Scholar]
- Shen, G.Q.; Zhang, Y.F.; Hou, S.Z.; Shang, H.X. Impact of water and sediment regulation by reservoirs in the upper Yellow River on Inner-Mongolia reaches. J. Sediment Res. 2007, 1, 67–75. [Google Scholar]
- Nguyen, T.T.H.; Wang, Y.L.; Binh, D.V.; Dang, T.D. Hydrological alterations and sediment changes caused by dams in the Mekong River Basin. Hydrol. Sci. J. 2025, 70, 1744–1760. [Google Scholar] [CrossRef]
- Jozsa, J.; Kiely, G.; Borthwick, A.G.L. Sediment flux and its environmental implications. J. Environ. Inform. 2014, 24, 111–120. [Google Scholar] [CrossRef]
- Jia, J.H.; Chen, J.Y.; Long, X.J. Research progress of impact and countermeasures of hydropower development on river ecological environment. J. North China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2019, 40, 62–69. [Google Scholar]
- Ramfos, A.; Sarris, I.; Lämmle, L.; Christodoulopoulos, D.; Alexandridis, M.; Michalopoulou, M.; Depountis, N.; Faulwetter, S.; Avrantinis, N.; Tsiotsis, E.; et al. Seasonal water column stratification and manganese and iron distribution in a water reservoir: The case of Pinios Dam (Western Greece). Water 2025, 17, 1723. [Google Scholar] [CrossRef]
- Koehn, J.D.; Todd, C.R.; Wootton, H. Cold-water pollution impacts on two ‘warm-water’ riverine fish: Interactions of dam size and life-history requirements. Mar. Freshw. Res. 2023, 74, 1154–1170. [Google Scholar] [CrossRef]
- Jurikova, H.; Guha, T.; Abe, O.; Shiah, F.K.; Wang, C.H.; Liang, M.C. Variations in triple isotope composition of dissolved oxygen and primary production in a subtropical reservoir. Biogeosciences 2016, 13, 6683–6698. [Google Scholar] [CrossRef]
- Liu, Y.B.; Song, C.L.; Yang, X.; Zhuo, H.H.; Zhou, Z.; Cao, L.; Cao, X.Y.; Zhou, Y.; Xu, J.; Wan, L.L. Hydrological regimes and water quality variations in the Yangtze River basin from 1998 to 2018. Water Res. 2023, 249, 120910. [Google Scholar] [CrossRef]
- Chen, Y.B.; Peng, Q.D.; Liao, W.G. The evolvement study on supersaturation of dissolved gas in the middle reaches of Yangtze River after the Three Gorges Project running. J. Hydroecol. 2009, 2, 1–5. (In Chinese) [Google Scholar]
- Covich, A.P. Water and Ecosystems; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Von Schiller, D.; Aristi, I.; Ponsatí, L.; Arroita, M.; Acuña, V.; Elosegi, A.; Sabater, S. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers. Sci. Total Environ. 2016, 540, 168–177. [Google Scholar] [CrossRef]
- Kuang, Q.J.; Bi, Y.H.; Zhou, G.J.; Cai, Q.H.; Hu, Z.Y. Study on the phytoplankton in the Three Gorges Reservoir before and after sluice and the protection of water quality. Acta Hydrobiol. Sin. 2005, 29, 353–358. [Google Scholar] [CrossRef]
- Parks, S.J.; Baker, L.A. Sources and transport of organic carbon in an Arizona river-reservoir system. Water Res. 1997, 31, 1751–1759. [Google Scholar] [CrossRef]
- Cai, W.; Li, Y.; Niu, L.H.; Zhang, W.L.; Wang, C.; Wang, P.F.; Meng, F.G. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures. Water Res. 2017, 123, 495–504. [Google Scholar] [CrossRef]
- Guo, J.X.; Xie, Y.; Guan, A.M.; Qi, W.X.; Cao, X.F.; Peng, J.F.; Liu, H.J.; Wu, X.H.; Li, C.; Wang, D.C.; et al. Dam construction reshapes sedimentary pollutant distribution along the Yangtze river by regulating sediment composition. Environ. Pollut. 2023, 316, 120659. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.L.; Zhao, Q.H.; Deng, L.; Dong, S.K. Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicol. Environ. Saf. 2012, 82, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Whitton, B.A. River Ecology; University of California Press: Berkeley, CA, USA, 1975. [Google Scholar]
- Yang, J.; Wang, N.; Chen, Y. Impact of cascade hydropower development on ecological environment. J. Water Resour. Water Eng. 2013, 24, 58–62. [Google Scholar]
- Wang, Q.Q.; Zhong, Y.; Yu, G.A.; Li, Z.W.; Ouyang, L.J.; Zhang, W.Y.; Yao, W.W. Exploring key drivers of Chinese sturgeon spawning sites fragmentation in the Yangtze River: Insights into spawning window. Ecol. Eng. 2025, 213, 107563. [Google Scholar] [CrossRef]
- Yi, Y.J.; Wang, Z.Y. Impact from dam construction on migration fishes in Yangtze River Basin. Water Resour. Hydropower Eng. 2009, 40, 29–33. [Google Scholar]
- Zhou, J.; Bai, X.L.; Liu, Z.; Wang, N.L.; Chen, S.J.; Duan, P.F.; Wang, Y.L. Ecological health evaluation for Yuzhong section of the Yellow River inbased on integrity index and diversity index of macrobenthos. J. Gansu Agric. Univ. 2021, 56, 103–111+119. [Google Scholar]
- Nelson, S.M. Response of stream macroinvertebrate assemblages to erosion control structures in a wastewater dominated urban stream in the southwestern U.S. Hydrobiologia 2011, 663, 51–69. [Google Scholar] [CrossRef]
- Yang, Q.R.; Chen, Q.W. Relationship between macroinvertebrates and aquatic environment in Lijiang River. Adv. Sci. Technol. Water Resour. 2010, 30, 8–10+38. [Google Scholar]
- Chen, H.; Li, H.Q.; Wu, D.; Qin, F.X. Effects of step hydroelectric exploits on community structure and biodiversity of macro-invertebrates in Wujiang River. Resour. Environ. Yangtze Basin 2010, 19, 1462–1470. [Google Scholar]
- Reynolds, C.S. The Ecology of Fresh Water Phytoplankton; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Zhang, J.; Ye, D.; Zhu, H.T.; Hu, S.; Wang, Y.C.; Tang, J.F.; Zhou, Z. Characteristics of spring algal blooms under different impounded levels in tributaries of the Three Gorges Reservoir. Acta Hydrobiol. Sin. 2019, 43, 884–891. [Google Scholar]
- Zhou, G.J.; Kuang, Q.J.; Hu, Z.Y.; Cai, Q.H. Study on the succession of algae and the trend of water blooms occurred in Ziangxi Bay. Acta Hydrobiol. Sin. 2006, 30, 42–46. [Google Scholar]
- Jia, X.H.; Jiang, W.X.; Li, F.Q.; Tang, T.; Duan, S.G.; Cai, Q.H. Impacts of large hydropower station on benthic algal communities. Chin. J. Appl. Ecol. 2009, 20, 1731–1738. [Google Scholar]
- Maavara, T.; Lauerwald, R.; Regnier, P.; Van Cappellen, P. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 2017, 8, 15347. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.Y.; He, C.; Wu, Z.T.; Dahlgren, R.A.; Ren, M.X.; Li, P.H.; Shi, Q.; Li, Y.; Chen, N.W.; Guo, W.D. Hypolimnetic deoxygenation enhanced production and export of recalcitrant dissolved organic matter in a large stratified reservoir. Water Res. 2022, 219, 118537. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.Q.; Maavara, T.; Chen, Q.W.; Zhang, J.Y.; Ni, J.R.; Tonina, D. Spatial patterns of diffusive greenhouse gas emissions from cascade hydropower reservoirs. J. Hydrol. 2023, 619, 129343. [Google Scholar] [CrossRef]
- Calamita, E.; Siviglia, A.; Gettel, G.M.; Franca, M.J.; Winton, R.S.; Teodoru, C.R.; Schmid, M.; Wehrli, B.; Rinaldo, A. Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir. Proc. Natl. Acad. Sci. USA 2021, 118, e2026004118. [Google Scholar] [CrossRef]
- Gerst, M.D.; Graedel, T.E. In-use stocks of metals: Status and implications. Environ. Sci. Technol. 2008, 42, 7038–7045. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Lutz, B.D.; King, R.S.; Fay, J.P.; Carter, C.E.; Helton, A.M.; Campagna, D.; Amos, J. How many mountains can we mine? Assessing the regional degradation of central Appalachian Rivers by surface coal mining. Environ. Sci. Technol. 2012, 46, 8115–8122. [Google Scholar] [CrossRef]
- Machado, A.A.D.; Spencer, K.; Kloas, W.; Toffolo, M.; Zarflaf, C. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total Environ. 2016, 541, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Chowdhury, A.; Maiti, S.K. Assessment of heavy metal in the water, sediment, and two edible fish species of Jamshedpur Urban Agglomeration, India with special emphasis on human health risk. Hum. Ecol. Risk Assess. 2018, 24, 1477–1500. [Google Scholar] [CrossRef]
- Tshalakatumbay, D.; Mwanza, J.C.; Rohlman, D.S.; Maestre, G.; Oriá, R.B. A global perspective on the influence of environmental exposures on the nervous system. Nature 2015, 527, S187–S192. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, J.H.; Kennedy, A.J.; Seiter-Moser, J.M.; Bednar, A.J.; Boyd, R.E.; Johnson, D.R.; Allison, P.; Tappero, R.V. Uptake kinetics and trophic transfer of tungsten from cabbage to a herbivorous animal model. Environ. Sci. Technol. 2017, 51, 13755–13762. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, L.; Zhao, Z.H.; Cai, Y.J. Heavy metal pollution in reservoirs in the hilly area of southern China: Distribution, source apportionment and health risk assessment. Sci. Total Environ. 2018, 634, 158–169. [Google Scholar] [CrossRef]
- Yuan, Q.S.; Wang, P.F.; Wang, C.; Chen, J.; Wang, X.; Liu, S. Metal(loid) partitioning and transport in the Jinsha River, China: From upper natural reaches to lower cascade reservoirs-regulated reaches. J. Environ. Inform. 2024, 44, 126–139. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Wang, S.L.; Lu, W.Q.; Yang, W.T.; Li, S.H. Water quality assessment, possible origins and health risks of toxic metal(loid)s in five cascade reservoirs in the upper Mekong. J. Clean. Prod. 2024, 441, 141049. [Google Scholar] [CrossRef]
- Hou, W.; Sun, S.H.; Wang, M.Q.; Li, X.; Zhang, N.; Xin, X.D.; Sun, L.; Li, W.; Jia, R.B. Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: Using a water quality index method. Ecol. Indic. 2016, 61, 309–316. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Liu, S.L.; Deng, L.; Yang, Z.F.; Dong, S.K.; Wang, C.; Zhang, Z.L. Spatio-temporal variation of heavy metals in fresh water after dam construction: A case study of the Manwan Reservoir, Lancang River. Environ. Monit. Assess. 2012, 184, 4253–4266. [Google Scholar] [CrossRef]
- Dong, J.W.; Xia, X.H.; Liu, Z.X.; Zhang, X.T.; Chen, Q.W. Variations in concentrations and bioavailability of heavy metals in rivers during sediment suspension-deposition event induced by dams: Insights from sediment regulation of the Xiaolangdi Reservoir in the Yellow River. J. Soils Sediments 2019, 19, 403–414. [Google Scholar] [CrossRef]
- Li, S.Y.; Xu, Z.F.; Cheng, X.L.; Zhang, Q.F. Dissolved trace elements and heavy metals in the Danjiangkou Reservoir, China. Environ. Geol. 2008, 55, 977–983. [Google Scholar] [CrossRef]
- Avila-Pérez, P.; Balcázar, M.; Zarazúa-Ortega, G.; Barcelo-Quintalb, I.; Dıaz-Delgado, C. Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Sci. Total Environ. 1999, 234, 185–196. [Google Scholar] [CrossRef]
- Vukovic, D.; Vukovic, Z.; Stankovic, S. The impact of the Danube Iron Gate Dam on heavy metal storage and sediment flux within the reservoir. Catena 2014, 113, 18–23. [Google Scholar] [CrossRef]
- Varol, M. Dissolved heavy metal concentrations of the Kralkz, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere 2013, 93, 954–962. [Google Scholar] [CrossRef]
- Karadede, H.; Unlü, E. Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere 2000, 41, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yan, H.Y.; Wang, C.P.; Li, Q.H.; Guédron, S.; Spangenberget, J.E.; Feng, X.B.; Dominik, J. Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China. Environ. Pollut. 2012, 160, 109–117. [Google Scholar] [CrossRef]
- Bing, H.J.; Zhou, J.; Wu, Y.H.; Wang, X.X.; Sun, H.Y.; Li, R. Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environ. Pollut. 2016, 214, 485–496. [Google Scholar] [CrossRef]
- Gao, B.; Zhou, H.D.; Yu, Y.; Wang, Y.C. Occurrence, distribution, and risk assessment of the metals in sediments and fish from the largest reservoir in China. RSC Adv. 2015, 5, 60322–60329. [Google Scholar] [CrossRef]
- Wei, X.; Han, L.F.; Gao, B.; Zhou, H.D.; Lu, J.; Wan, X.H. Distribution, bioavailability, and potential risk assessment of the metals in tributary sediments of Three Gorges Reservoir: The impact of water impoundment. Ecol. Indic. 2016, 61, 667–675. [Google Scholar] [CrossRef]
- Wu, G.H.; Cao, S.S.; Chen, S.R.; Cao, F.T. Accumulation and remobilization of metals in superficial sediments in Tianjin, China. Environ. Monit. Assess. 2011, 173, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.W.; Xia, X.H.; Zhang, Z.N.; Liu, Z.X.; Zhang, X.T.; Li, H.S. Variations in concentrations and bioavailability of heavy metals in rivers caused by water conservancy projects: Insights from water regulation of the Xiaolangdi Reservoir in the Yellow River. J. Environ. Sci. 2018, 74, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Loska, K.; Wiechula, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Milenkovic, N.; Damjanovic, M.; Ristic, M. Study of heavy metal pollution in sediments from the iron gate (Danube River), Serbia and Montenegro. Pol. J. Environ. Stud. 2005, 14, 781–787. [Google Scholar]
- Cardoso-Silva, S.; Da Silva, D.C.V.R.; Lage, F.; de Paiva, T.C.B.; Moschini-Carlos, V.; Rosa, A.H.; Pompêo, M. Metals in sediments: Bioavailability and toxicity in a tropical reservoir used for public water supply. Environ. Monit. Assess. 2016, 188, 310. [Google Scholar] [CrossRef]
- Mariani, C.F.; Pompêo, M.L.M. Potentially bioavailability metals in sediment from a tropical polymictic environment Rio Grande Reservoir, Brazil. J. Soils Sediments 2008, 8, 284–288. [Google Scholar] [CrossRef]
- Frascareli, D.; Cardoso-Silva, S.; Mizael, J.D.S.S.; Rosa, A.H.; Pompêo, M.L.M.; López-Doval, J.C.; Moschini-Carlos, V. Spatial distribution, bioavailability, and toxicity of metals in surface sediments of tropical reservoirs, Brazil. Environ. Monit. Assess. 2018, 190, 199. [Google Scholar] [CrossRef]
- Rangel-Peraza, J.G.; De Anda, J.; Gonzalez-Farias, F.A.; Rode, M.; Sanhouse-García, A.; Bustos-Terrones, Y.A. Assessment of heavy metals in sediment of Aguamilpa Dam, Mexico. Environ. Monit. Assess. 2015, 187, 134. [Google Scholar] [CrossRef]
- Fanny, C.; Virginie, A.; Jean-Francois, F.; Jonathan, B.; Marie-Claude, R.; Simon, D. Benthic indicators of sediment quality associated with run-of-river reservoirs. Hydrobiologia 2013, 703, 149–164. [Google Scholar] [CrossRef]
- Dhivert, E.; Grosbois, C.; Coynel, A.; Lefèvre, I.; Desmet, M. Influences of major flood sediment inputs on sedimentary and geochemical signals archived in a reservoir core (Upper Loire Basin, France). Catena 2015, 126, 75–85. [Google Scholar] [CrossRef]
- Wildi, W.; Dominik, J.; Loizeau, J.L.; Thomas, R.L.; Favarger, P.Y.; Haller, L.; Perroud, A.; Peytremann, C. River, reservoir and lake sediment contamination by heavy metals downstream from urban areas of Switzerland. Lakes Reserv. Res. Manag. 2004, 9, 75–87. [Google Scholar] [CrossRef]
- Müller, J.; Ruppert, H.; Muramatsu, Y.; Schneider, J. Reservoir sediments—A witness of mining and industrial development (Malter Reservoir, eastern Erzgebirge, Germany). Environ. Geol. 2000, 39, 1341–1351. [Google Scholar] [CrossRef]
- Kankılıç, G.B.; Tüzün, İ.; Kadıoğlu, Y.K. Assessment of heavy metal levels in sediment samples of Kapulukaya Dam Lake (Kirikkale) and lower catchment area. Environ. Monit. Assess. 2013, 185, 6739–6750. [Google Scholar] [CrossRef] [PubMed]
- Papastergios, G.; Fernandez-Turiel, J.L.; Georgakopoulos, A.; Gimeno, D. Natural and anthropogenic effects on the sediment geochemistry of Nestos river, Northern Greece. Environ. Geol. 2009, 58, 1361–1370. [Google Scholar] [CrossRef]
- Ghrefat, H.A.; Abu-Rukah, Y.; Rosen, M.A. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environ. Monit. Assess. 2011, 178, 95–109. [Google Scholar] [CrossRef] [PubMed]
- El-Radaideh, N.; Al-Taani, A.A.; Al Khateeb, W.M. Characteristics and quality of reservoir sediments, Mujib Dam, Central Jordan, as a case study. Environ. Monit. Assess. 2017, 189, 143. [Google Scholar] [CrossRef]
- Ismukhanova, L.; Choduraev, T.; Opp, C.; Madibekov, A. Accumulation of heavy metals in bottom sediment and their migration in the water ecosystem of Kapshagay Reservoir in Kazakhstan. Appl. Sci. 2022, 12, 11474. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, L.H.; Zhao, Z.G.; Cai, Y.J. Heavy metal contamination in surface sediments of representative reservoirs in the hilly area of southern China. Environ. Sci. Pollut. Res. 2017, 24, 26574–26585. [Google Scholar] [CrossRef]
- Han, L.F.; Gao, B.; Wei, X.; Gao, L.; Xu, D.Y.; Sun, K. The characteristic of Pb isotopic compositions in different chemical fractions in sediments from Three Gorges Reservoir, China. Environ. Pollut. 2015, 206, 627–635. [Google Scholar] [CrossRef]
- Zhao, X.J.; Gao, B.; Xu, D.Y.; Gao, L.; Yin, S.H. Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: A review. Environ. Sci. Pollut. Res. 2017, 24, 20844–20858. [Google Scholar] [CrossRef]
- Cardoso-Silva, S.; de Lima Ferreira, P.A.D.; Moschini-Carlos, V.; Figueira, R.C.L.; Pompeo, M. Temporal and spatial accumulation of heavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environ. Earth Sci. 2016, 75, 9. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Qin, Y.W.; Zheng, B.H.; Zhao, Y.M.; Zhang, L.; Yang, C.C.; Shi, Y.; Wen, Q. Three Gorges Reservoir: Metal pollution in surface water and suspended particulate matter on different reservoir operation periods. Environ. Earth Sci. 2016, 75, 1413. [Google Scholar] [CrossRef]
- Kummu, M.; Varis, O. Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River. Geomorphology 2007, 85, 275–293. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Liu, S.L.; Deng, L.; Dong, S.K.; Wang, C. Longitudinal distribution of heavy metals in sediments of a canyon reservoir in Southwest China due to dam construction. Environ. Monit. Assess. 2013, 185, 6101–6110. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Bing, H.J.; Wu, Y.H.; Zhou, J.; Sun, H.Y. Distribution and potential eco-risk of chromium and nickel in sediments after impoundment of Three Gorges Reservoir, China. Hum. Ecol. Risk Assess. 2017, 23, 172–185. [Google Scholar] [CrossRef]
- García-Ordiales, E.; Covelli, S.; Esbrí, J.M.; Loredo, J.; Higueras, P.L. Sequential extraction procedure as a tool to investigate PTHE geochemistry and potential geoavailability of dam sediments (Almadén mining district, Spain). Catena 2016, 147, 394–403. [Google Scholar] [CrossRef]
- Kang, D.J.; Zheng, G.Y.; Yu, J.H.; Chen, Q.W.; Zheng, X.Z.; Zhong, J.C.; Zhang, Y.S.; Ding, H.; Zhang, Y.L. Hydropower reservoirs enhanced the accumulation of heavy metals towards surface sediments and aggravated ecological risks in Jiulong River Basin, China. J. Soils Sediments 2021, 21, 3479–3492. [Google Scholar] [CrossRef]
- Yuan, Q.S.; Wang, P.F.; Wang, C.; Chen, J.; Wang, X.; Liu, S. Spatial distribution and solubilization characteristics of metal(loid)s in riparian soils within reservoirs along the middle Jinsha River. J. Soils Sediments 2021, 21, 3515–3527. [Google Scholar] [CrossRef]
- Shotbolt, L.A.; Thomas, A.D.; Hutchinson, S.M. The use of reservoir sediments as environmental archives of catchment inputs and atmospheric pollution. Prog. Phys. Geogr. Earth Environ. 2005, 29, 337–361. [Google Scholar] [CrossRef]
- Lin, J.J.; Zhang, S.; Liu, D.; Yu, Z.G.; Zhang, L.Y.; Cui, J.; Xie, K.; Li, T.Z.; Fu, C. Mobility and potential risk of sediment-associated heavy metal fractions under continuous drought-rewetting cycles. Sci. Total Environ. 2018, 625, 79–86. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.X.; Annandale, G.W.; Morris, G.L.; Jiang, E.H.; Zhang, J.H.; Cao, Y.T.; Carling, P.; Fu, K.D.; Guo, Q.C.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earths Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Van den Berg, G.A.; Meijers, G.G.A.; Van der Heijdt, L.M.; Zwolsman, J.J.G. Dredging-related mobilisation of trace metals: A case study in the Netherlands. Water Res. 2001, 35, 1979–1986. [Google Scholar] [CrossRef]
- Atkinson, C.A.; Jolley, D.F.; Simpson, S.L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 2007, 69, 1428–1437. [Google Scholar] [CrossRef]
- Eggleton, J.; Thomas, K.V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int. 2004, 30, 973–980. [Google Scholar] [CrossRef]
- Chen, J.B.; Liu, M.; Wang, F.Y.; Ding, Y.; Fan, D.J.; Wang, H.J. Accumulation and migration of particulate trace metals by artificial flood event of the Yellow River: From Xiaolangdi reservoir to estuary. Sci. Total Environ. 2024, 912, 168614. [Google Scholar] [CrossRef]
- Raicevic, S.; Wright, J.V.; Veljkovic, V.; Conca, J.L. Theoretical stability assessment of uranyl phosphates and apatites: Selection of amendments for in situ remediation of uranium. Sci. Total Environ. 2006, 355, 13–24. [Google Scholar] [CrossRef]
- Enzo, L.; Zhao, F.J.; Zhang, G.Y.; Sun, B.; Fitz, W.; Zhang, H.; McGrath, S.P. In situ fixation of metals in soils using bauxite residue: Chemical assessment. Environ. Pollut. 2002, 118, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.M.; Fang, Z.Q.; Tsang, P.E.; Fang, J.Z.; Zhao, D.Y. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP. J. Environ. Manag. 2016, 182, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.H.; Li, X.M.; Xiao, S.T.; Fan, W.H. Review of remediation technologies for sediments contaminated by heavy metals. J. Soils Sediments 2018, 18, 1701–1719. [Google Scholar] [CrossRef]
- Hafsteinsdóttir, E.G.; Camenzuli, D.; Rocavert, A.L.; Walworth, J.; Gore, D.B. Chemical immobilization of metals and metalloids by phosphates. Appl. Geochem. 2015, 59, 47–62. [Google Scholar] [CrossRef]
- He, M.; Shi, H.; Zhao, X.Y.; Yu, Y.; Qu, B. Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Procedia Environ. Sci. 2013, 18, 657–665. [Google Scholar] [CrossRef]
- Gray, C.W.; Dunham, S.J.; Dennis, P.G.; Zhao, F.J.; McGrath, S.P. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Pollut. 2006, 142, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.S.; Wang, P.F.; Wang, X.; Hu Bin Wang, C.; Xing, X.L.; Huang, R. Cadmium immobilization in river sediments using nano-chlorapatite modified biochars: Effects on prokaryotic communities. J. Environ. Manag. 2025, 389, 126049. [Google Scholar] [CrossRef]
- Jacobs, P.H.; Forstner, U. Concept of subaqueous capping of contaminated sediments with active barrier systems: ABS using natural and modified zeolites. Water Res. 1999, 33, 2083–2087. [Google Scholar] [CrossRef]
- Rezania, S.; Taib, S.M.; Din, M.F.M.; Dahalan, F.A.; Kamyab, H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater. 2016, 318, 587–599. [Google Scholar] [CrossRef]
- Hou, D.D.; Lin, Z.; Wang, R.Z.; Ge, J.; Wei, S.; Xie, R.H.; Wang, H.X.; Wang, K.; Hu, Y.F.; Yang, X.E.; et al. Cadmium exposure-Sedum alfredii planting interactions shape the bacterial community in the hyperaccumulator plant rhizosphere. Appl. Environ. Microbiol. 2018, 84, e02797-17. [Google Scholar] [CrossRef]
- Suresh, B.; Ravishankar, G.A. Phytoremediation—A novel and promising approach for environmental clean-up. Crit. Rev. Biotechnol. 2004, 24, 97–124. [Google Scholar] [CrossRef]
- Plociniczak, T.; Sinkkonen, A.; Romantschuk, M.; Sulowicz, S.; Piotrowska-Seget, Z. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Front. Plant Sci. 2016, 7, 101. [Google Scholar] [CrossRef]
- Wang, L.; Lin, H.; Dong, Y.B.; He, Y.H.; Liu, C.J. Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation. J. Hazard. Mater. 2018, 341, 1–9. [Google Scholar] [CrossRef]
- Rai, K.; Nongtri, E.S.; Syngkli, R.B. Pistia Stratiotes based heavy metals phytoremediation of a Himalayan river impacted by hydroelectric plant in an Indo Burma hotspot region. Chem. Ecol. 2024, 40, 796–815. [Google Scholar] [CrossRef]
- Clemente, R.; Almela, C.; Bernal, M.P. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ. Pollut. 2006, 143, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mater. 2001, 85, 145–163. [Google Scholar] [CrossRef]
- Peng, Y.; Nai, Y.X.; Huang, J.C. Environmental dredging of heavy metal contaminated sedimentand stabilized recycling treatment technology. Water Resour. Dev. Manag. 2017, 2, 25–28. [Google Scholar]
- Ortega, L.M.; Lebrun, R.; Blais, J.F.; Hauslerd, R.; Drogui, P. Effectiveness of soil washing, nanofiltration and electrochemical treatment for the recovery of metal ions coming from a contaminated soil. Water Res. 2008, 42, 1943–1952. [Google Scholar] [CrossRef]
- Loser, C.; Zehnsdorf, A.; Hoffmann, P.; Seidel, H. Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: Estimate of metal removal efficiency. Chemosphere 2007, 66, 1699–1705. [Google Scholar] [CrossRef]
- Nystroem, G.M.; Pedersen, A.J.; Ottosen, L.M.; Villumsen, A. The use of desorbing agents in electrodialytic remediation of harbour sediment. Sci. Total Environ. 2006, 357, 25–37. [Google Scholar] [CrossRef]
- Virkutyte, J.; Sillanpaa, M.; Latostenmaa, P. Electrokinetic soil remediation—Critical overview. Sci. Total Environ. 2002, 289, 97–121. [Google Scholar] [CrossRef]
- Matsumoto, N.; Uemoto, H.; Saiki, H. Case study of electrochemical metal removal from actual sediment, sludge, sewage and scallop organs and subsequent pH adjustment of sediment for agricultural use. Water Res. 2007, 41, 2541–2550. [Google Scholar] [CrossRef] [PubMed]
- Kirkelund, G.M.; Ottosen, L.M.; Villumsen, A. Electrodialytic remediation of harbour sediment in suspension—Evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pH. J. Hazard. Mater. 2009, 169, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Meegoda, J.N.; Perera, R. Ultrasound to decontaminate heavy metals in dredged sediments. J. Hazard. Mater. 2001, 85, 73–89. [Google Scholar] [CrossRef]
- Wu, G.; Wu, J.Y.; Shao, H.B. Hazardous heavy metal distribution in Dahuofang catchment, Fushun, Liaoning, an important industry city in China: A case study. Clean Soil Air Water 2012, 40, 1372–1375. [Google Scholar] [CrossRef]
- Xing, X.L.; Wang, P.F.; Wang, X.; Yuan, S.; Hu, B.; Liu, S. Dams alter the control pattern of watershed land use to riverine nutrient distribution: Comparison of three major rivers under different hydropower development levels in Southwestern China. Water Res. 2024, 260, 121951. [Google Scholar] [CrossRef] [PubMed]
- Kamidis, N.; Koutrakis, E.; Sapounidis, A.; Sylaios, G. Impact of river damming on downstream hydrology and hydrochemistry: The case of lower Nestos River Catchment (NE. Greece). Water 2021, 13, 2832. [Google Scholar] [CrossRef]
Large Reservoir | Concentrations of Heavy Metals (µg·L−1) | |||||||
---|---|---|---|---|---|---|---|---|
Hg | Cd | Pb | Zn | As | Cu | Ni | Cr | |
Reservoir group in hilly area of South China [82] | 0.03 * | 0.45 | 51.9 * | 0.95 | 1.68 | 0.96 * | 1.7 | |
Reservoir group in the Jinsha River, China [83] | 0.01–1.95 | 1.88–69.26 | 1.08–3.54 | 4.54–35.56 | 0.53–65.97 | 3.56–38.42 | ||
Reservoir group in the Mekong River, China [84] | 0.01–0.03 | 0.40 | 10.6 | 5.0–6.6 | 0.35–0.61 | 0.03–0.23 | 0.14–0.36 | |
Three Gorges Reservoir in the Yangtze River, China [9] | 0.03 | 1.02 | 11.2 * | 10.43 | 2.33 * | 8.94 | ||
Keshan Reservoir in the Yellow River, China [85] | 0.05 * | 0.5 | 2.2 | 0.06 | 1.7 | 0.02 | 5.8 | |
Yuqing Reservoir in the Yellow River, China [85] | 0.06 * | 0.4 | 2.5 | 0.02 | 1.4 | 0.02 | 5.6 | |
Manwan Reservoir in the Mekong River, China [86] | 0.2 * | 3.9 | 32 | 706 | 21 | 80 | ||
Xiaolangdi Reservoir in the Yellow River, China [87] | 1.08 | 16.1 | 3.51 | 2.93 | 4.34 | 5.61 | ||
Danjiangkou Reservoir, China [88] | 1.17 | 10.6 * | 2.02 | 11.1 * | 13.3 | 1.73 | 6.3 | |
Alzate Reservoir, Mexico [89] | 104 * | 61 * | 68 | 70 | 34 | 79 * | ||
Iron Gate Reservoir, Serbia [90] | 1.1 | 8.3 | 85.4 | 65.1 | ||||
Kralkizi Reservoir, Turkey [91] | 0.036 | 2.56 | 5.02 | 2.39 | 2.83 | 15.8 | 22.1 | |
Dicle Reservoir, Turkey [91] | 0.030 | 1.84 | 4.12 | 1.61 | 2.12 | 15.9 | 18.6 | |
Batman Reservoir, Turkey [91] | 0.044 | 1.56 | 4.09 | 0.71 | 16.0 | 16.5 | ||
Atatürk Reservoir, Turkey [92] | 64 | 25.0 | 15.4 |
Large Reservoir | Concentrations of Heavy Metals (mg·kg−1) | |||||||
---|---|---|---|---|---|---|---|---|
Hg | Cd | Pb | Zn | As | Cu | Ni | Cr | |
Riverbank zone, Three Gorges Reservoir, China [94] | 0.99 * | 57.1 * | 161 * | 69.3 * | ||||
Riverbed zone, Three Gorges Reservoir, China [94] | 0.88 * | 51.0 * | 174 * | 54.2 * | ||||
Three Gorges Reservoir, China [95] | 0.17 * | 0.90 * | 44.0 * | 130.3 * | 14.1 | 56.4 * | 45.7 | 84.9 |
Three Gorges Reservoir, China [96] | 0.13 * | 0.87 * | 48.1 * | 161.3 * | 14.3 | 58.4 * | 51.1 | 105.4 |
Reservoir group in the Jinsha River, China [83] | 0.3–4.6 * | 4.9–164 * | 0.2–9.1 | 9.2–280 * | 4.0–215 | 12.8–135 | ||
Manwan Reservoir in the Mekong River, China [59] | 1.41 * | 47.1 * | 156.7 * | 40.6 * | 38.9 | 54.70 | ||
Yuqiao Reservoir in the Huaihe River, China [97] | 0.30 * | 24.0 | 83.9 | 31.6 | 29.8 | 59.40 | ||
Xiaolangdi Reservoir in the Yellow River, China [98] | 31.6 | 124 | 28.2 | 32.7 | 65.3 | |||
Rybnik Reservoir, Poland [99] | 25.8 * | 118.6 * | 1583 * | 451 * | 71.1 * | 129.8 | ||
Iron Gate Reservoir, Serbia [90] | 7.85 | 35.4 | 114.3 | 67.9 | ||||
Iron Gate Reservoir, Serbia [100] | 0.23 | 3.0 * | 43.6 | 307.8 * | 9.2 * | 57.6 * | 74.5 * | 93.3 * |
Iron Gate Reservoir, Serbia [100] | 0.19 | 2.1 | 28.0 | 197.5 | 3.2 | 31.6 | 59.2 | 71.1 |
Paiva Castro Reservoir, Brazil [101] | 0.3 | 13.5 | 12.9 | 3.9 | 1.4 | |||
Rio Grande Reservoir, Brazil [102] | 9.7 * | 765.9 * | 128.6 | 1644 * | 74.4 | 56.7 | ||
Atibainha Reservoir, Brazil [103] | 21.89 | 52.26 | 23.9 | 10.92 | 33.40 | |||
Igarata Reservoir, Brazil [103] | 23.83 | 58.78 | 16.3 | 12.19 | 43.53 | |||
Itupararanga Reservoir, Brazil [103] | 24.53 | 39.80 | 18.6 | 7.15 | 30.88 | |||
Barra Bonita Reservoir, Brazil [103] | 18.53 | 78.28 | 51.1 | 40.6 * | 34.12 | |||
Broa Reservoir, Brazil [103] | 15.06 | 42.27 | 32.2 | 12.67 | 25.44 | |||
Salto Grande Reservoir, Brazil [103] | 21.53 | 88.05 | 51.3 | 23.83 | 45.15 | |||
Rio Grande Reservoir, Brazil [103] | 42.41 | 138.6 | 66.0 * | 14.65 | 57.04 | |||
Aguamilpa Reservoir, Mexico [104] | 0.04 | 0.27 * | 13.6 | 51.8 | 60.8 * | 189 * | 18.3 | |
Vaussaire Reservoir, France [10] | 0.4 | 19.3 | 159.4 | 9.4 | 27.2 | 58.3 | 157.6 | |
Ain Reservoir, France [105] | <0.2 | 9.1 | 26.9 | 10.6 | 4.1 | 9.4 | 21.3 | |
Bienne Reservoir, France [105] | <0.2 | 11.5 | 52.4 | 4.6 | 24.0 | 10.8 | 14.9 | |
Ain Reservoir, France [105] | 0.2 | 32.0 | 78.2 | 4.9 | 32.2 | 16.9 | 32.8 | |
Bienne Reservoir, France [105] | 0.3 | 23.9 | 85.7 | 5.9 | 45.3 | 6.5 | 12.8 | |
Villerest Reservoir, France [106] | 1.7 * | 87.8 * | 217.0 * | 44.7 * | 52.3 * | 39.4 | 116.0 | |
Wettingen Reservoir, Switzerland [107] | 0.4 * | 34.4 * | 121.5 * | 37.5 * | 36.4 | 25.3 | ||
Klingnau Reservoir, Switzerland [107] | 0.3 | 49.0 | 126.0 | 42.0 | 35.0 | 60.0 | ||
Wohlen Reservoir, Switzerland [107] | 0.3 | 30.9 | 141.0 | 53.0 | 28.5 | 45.0 | ||
Verbois Reservoir, Switzerland [107] | 0.2 | 19.5 | 57.5 | 22.6 | 33.8 | |||
Malter Reservoir, Germany [108] | 22 * | 420 * | 1300 * | 200 * | 200 * | |||
Kapulukaya Reservoir, Turkey [109] | 0.9 * | 21.4 | 45.8 * | 19.4 * | 19.2 * | 65.8 * | 327 * | |
Thisavros Reservoir, Greece [110] | 0.03 | 0.13 * | 38.41 | 59.3 * | 0.64 | 35.00 | 16.7 | 18.0 |
Platanovrisi Reservoir, Greece [110] | 0.04 | 0.09 | 8.22 | 105.5 | 0.25 | 18.04 | 19.40 | 31.95 |
Kafrain Reservoir, Jordan [111] | 10.7 * | 132.4 * | 64.1 * | 22.9 | 84.7 | 82.6 | ||
Mujib Reservoir, Jordan [112] | 6.3 * | 55.5 * | 278.4 * | 55.5 * | 37.9 | 114 | ||
Kapshagay Reservoir, Kazakhstan [113] | 0.46 | 5.18 | 33.6 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Liu, S.; Yuan, Q.; Wang, X.; Ren, L.; Rong, L.; Pan, Y. Heavy Metal Transport in Dammed Rivers: Damming Effects and Remediation Strategies—A Review. Water 2025, 17, 2833. https://doi.org/10.3390/w17192833
Huang R, Liu S, Yuan Q, Wang X, Ren L, Rong L, Pan Y. Heavy Metal Transport in Dammed Rivers: Damming Effects and Remediation Strategies—A Review. Water. 2025; 17(19):2833. https://doi.org/10.3390/w17192833
Chicago/Turabian StyleHuang, Rong, Sitong Liu, Qiusheng Yuan, Xun Wang, Lingxiao Ren, Linqian Rong, and Yuting Pan. 2025. "Heavy Metal Transport in Dammed Rivers: Damming Effects and Remediation Strategies—A Review" Water 17, no. 19: 2833. https://doi.org/10.3390/w17192833
APA StyleHuang, R., Liu, S., Yuan, Q., Wang, X., Ren, L., Rong, L., & Pan, Y. (2025). Heavy Metal Transport in Dammed Rivers: Damming Effects and Remediation Strategies—A Review. Water, 17(19), 2833. https://doi.org/10.3390/w17192833