Assessment of Pluvial Flood Mitigation Ecosystem Service in a Riverside City Using the Integrated Valuation of Ecosystem Services and Tradeoffs Model for Ecological Corridor Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Inputs
2.3. Ecological Corridor Mapping
2.3.1. Resistance Surface
2.3.2. Ecological Sources
3. Results
3.1. Ecosystem Service Evaluation
3.2. Ecological Corridor
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Crow, T.; Baker, M.; Barnes, B. Diversity in Riparian Landscapes. In Riparian Management in Forest of the Continental Eastern United States; Lewis Publishers: Boca Raton, FL, USA, 1999. [Google Scholar]
- Apan, A.A.; Raine, S.R.; Paterson, M.S. Mapping and analysis of changes in the riparian landscape structure of the Lockyer Valley catchment, Queensland, Australia. Landsc. Urban Plan. 2002, 59, 43–57. [Google Scholar] [CrossRef]
- Panareda, J. Evolution of Perception of Riparian Landscapes. Bol. Asoc. Geogr. Esp. 2009, 51, 233–429. [Google Scholar]
- Verdonschot, P.F.M.; Verdonschot, R.C.M. The role of stream restoration in enhancing ecosystem services. Hydrobiologia 2023, 850, 2537–2562. [Google Scholar] [CrossRef]
- Renner, I. Integración de los Servicios Ecosistémicos en la Planificación y Gestión Urbana: Un Enfoque Sistemático en Pasos para Profesionales, 1st ed.; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Ciudad de México, México, 2019. [Google Scholar]
- Zhu, Y.; Burlando, P.; Tan, P.Y.; Blagojevic, J.; Fatichi, S. Investigating the influence of urban morphology on pluvial flooding: Insights from urban catchments in England (UK). Sci. Total Environ. 2024, 953, 176139. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-Tubée, D.; Núñez, H.; Toni, B.; Álvarez, E.; Borgoño, A.; Zegarra, J.; Gutiérrez, G.; Maldonado, M.; Rodríguez, M.; Riveros, G.; et al. Diversidad florística, comunidades vegetales y propuestas de conservación del monte ribereño en el río Chili (Arequipa, Perú). Arnaldoa 2019, 26, 97–130. [Google Scholar] [CrossRef]
- Porras, P. Detección de Núcleos de Islas de Calor en la Ciudad de Arequipa. [Tesis de grado] Universidad Nacional Agraria La Molina. Facultad de Ciencias. 2018. Available online: https://hdl.handle.net/20.500.12996/3204 (accessed on 5 August 2024).
- Sardón, H.; Lavado, W.; Felipe, O. Inventario de Datos de Eventos de Inundaciones del Perú. Estudio Final. Servicio Nacional de Meteorología e Hidrología del Perú–SENAMHI. 2022. Available online: https://repositorio.senamhi.gob.pe/handle/20.500.12542/1786 (accessed on 23 December 2024).
- Li, P.; Sheng, M.; Yang, D.; Tang, L. Evaluating flood regulation ecosystem services under climate, vegetation and reservoir influences. Ecol. Indic. 2019, 107, 105642. [Google Scholar] [CrossRef]
- Jeitany, J.E.; Nussbaum, M.; Pacetti, T.; Schröder, B.; Caporali, E. Landscape metrics as predictors of water-related ecosystem services: Insights from hydrological modeling and data-based approaches applied on the Arno River Basin, Italy. Sci. Total Environ. 2024, 954, 176567. [Google Scholar] [CrossRef]
- Parsa, V.A.; Istanbuly, M.N.; Chalabiyani, B.; Russo, A.; Amiri, B.J. The role of urban landscape configuration in the provision of hydrological ecosystem services by trees. Ecosyst. Serv. 2024, 69, 101657. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Yun, H.; Kang, J. Exploring the network structure of coupled green-grey infrastructure to enhance urban pluvial flood resilience: A scenario-based approach focusing on ‘centralized’ and ‘decentralized’ structures. J. Environ. Manag. 2024, 370, 122344. [Google Scholar] [CrossRef]
- Khalili, S.; Kumar, P.; Jones, L. Evaluating the benefits of urban green infrastructure: Methods, indicators, and gaps. Heliyon 2024, 10, e38446. [Google Scholar] [CrossRef]
- Langemeyer, J.; Baró, F. Nature-based solutions as nodes of green-blue infrastructure networks: A cross-scale, co-creation approach. Nat.-Based Solut. 2021, 1, 100006. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Soluciones Basadas en la Naturaleza para Abordar los Desafíos Sociales Globales; UICN: Gland, Switzerland, 2016; Volume 97, pp. 2016–2036. [Google Scholar]
- World Resources Institute. Ecosystem Services: A Guide for Decision Makers; Rnaganathan, J., Raudsepp-Hearne, C., Lucas, N., Irwin, F., Zurek, M., Bennett, K., Ash, N., West, R., Eds.; World Resources Institute Publisher: Washington DC, USA, 2008; Available online: https://www.wri.org/research/ecosystem-services (accessed on 15 March 2024).
- Quagliolo, C.; Roebeling, P.; Matos, F.S.; Pezzoli, A.; Comino, E. Pluvial flood adaptation using nature-based solutions: An Integrated biophysical-economic assessment. Sci. Total Environ. 2023, 902, 166202. [Google Scholar] [CrossRef]
- Kang, J.; Qing, Y.; Lu, W. Construction and optimization of the Saihanba ecological network. Ecol. Indic. 2023, 153, 110401. [Google Scholar] [CrossRef]
- Xie, L.; Wang, H.; Xie, P.; Liu, S. How to design an ecological restoration project in fragile inland basins: A case study in arid regions of China. Glob. Ecol. Conserv. 2022, 39, e02298. [Google Scholar] [CrossRef]
- Zeballos, C. Atlas Ambiental de Arequipa; Universidad Católica de Santa María: Arequipa, Peru, 2020. [Google Scholar]
- Instituto Municipal de Planeamiento. Memoria del PDM Arequipa Plan de Desarrollo Metropolitano de Arequipa. 2016. Available online: http://impla.gob.pe/publicaciones/pdm-2016-2025/2 (accessed on 20 January 2024).
- Autoridad Nacional del Agua. Generación del Mapa Temático de Curva Número. 2015. Available online: https://hdl.handle.net/20.500.12543/5675 (accessed on 13 July 2024).
- Servicio Nacional de Meteorología e Hidrología del Perú—SENAHMI. Sistemas de Seguimiento de la Escorrentía a Nivel Nacional. 2015. Available online: https://sigrid.cenepred.gob.pe/sigridv3/documento/1916 (accessed on 13 July 2024).
- Ragini, H.R.; Debnath, M.K.; Gupta, D.S.; Deb, S.; Ajith, S. Modelling and Monitoring land use: Land cover change dynamics of Cooch Behar District of West Bengal using Multi-Temporal Satellite data. Agric. Res. 2023, 12, 387–396. [Google Scholar] [CrossRef]
- Rahimi-Ajdadi, F. Land suitability assessment for second cropping in terms of low temperature stresses using LandsAT TIRS sensor. Comput. Electron. Agric. 2022, 200, 107205. [Google Scholar] [CrossRef]
- Rujoiu-Mare, M.; Mihai, B. Mapping land cover using remote sensing data and GIS techniques: A case study of Prahova subcarpathians. Procedia Environ. Sci. 2016, 32, 244–255. [Google Scholar] [CrossRef]
- Carpio, J.; Quispe, B.; Peña, F.; Sulca, P. Hidrogeología de la cuenca del río Quilca–Vitor–Chili (132). INGEMMET. Boletín Ser. H Hidrogeol. 2022, 15, 381. [Google Scholar]
- Yang, Y.; Feng, Z.; Wu, K.; Qi, L. How to construct a coordinated ecological network at different levels: A case from Ningbo City, China. Ecol. Inform. 2022, 70, 101742. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Cao, C.; Luo, Y.; Xu, L.; Xi, Y.; Zhou, Y. Construction of ecological security pattern based on InVEST-Conefor-MCRM: A case study of Xinjiang, China. Ecol. Indic. 2024, 159, 111647. [Google Scholar] [CrossRef]
- Kumar, M.; Shaikh, V.R. Site suitability analysis for urban development using GIS based Multicriteria evaluation technique. J. Indian Soc. Remote Sens. 2012, 41, 417–424. [Google Scholar] [CrossRef]
- Damschen, E.I.; Brodie, J.F. Landscape Corridors; En Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2024; pp. 773–783. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Pan, J.; Wu, X.; Zhu, X. Optimizing the ecological source area identification method and building ecological corridors using a genetic algorithm: A case study in Weihe River Basin, NW China. Ecol. Inform. 2024, 80, 102519. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Sun, L.; Lv, C. Construction and optimization of green space ecological networks in urban fringe areas: A case study with the urban fringe area of Tongzhou district in Beijing. J. Clean. Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Wanghe, K.; Guo, X.; Wang, M.; Zhuang, H.; Ahmad, S.; Khan, T.U.; Xiao, Y.; Luan, X.; Li, K. Gravity model toolbox: An automated and open- source ArcGIS tool to build and prioritize ecological corridors in urban landscapes. Glob. Ecol. Conserv. 2020, 22, e01012. [Google Scholar] [CrossRef]
- Mckendry, T. Ecological Corridors in Urban Landscapes: Identifying and Assessing an Ecological Corridor in Johannesburg; University of the Witwatersrand: Johannesburg, South Africa, 2019; Available online: https://hdl.handle.net/10539/28052 (accessed on 27 September 2024).
- Costadone, L.; Lai, T.; Hurskainen, P.; Kopperoinen, L. Co-creating urban ecosystem accounting: Physical and monetary accounts of runoff retention service provided by urban green spaces. Ecosyst. Serv. 2024, 65, 101576. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, W.; Peng, Z.; Wang, Y. Improving landscape ecological network connectivity in urbanizing areas from dual dimensions of structure and function. Ecol. Model. 2023, 482, 110380. [Google Scholar] [CrossRef]
- Chin, E.Y.; Kupfer, J.A. Identification of environmental drivers in urban greenway communities. Urban For. Urban Green. 2020, 47, 126549. [Google Scholar] [CrossRef]
- Lopes, I.J.C.; Biondi, D.; Dallacorte, A.P.; Reis, A.R.N.D.; Oliveira, T.G.S. A methodological framework to create an urban greenway network promoting avian connectivity: A case study of Curitiba City. Urban For. Urban Green. 2023, 87, 128050. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J.; Francis, C.A. Do organic farming practices improve soil physical properties? Soil Use Manag. 2023, 40, e12999. [Google Scholar] [CrossRef]
- Li, P.; Lyu, F.; Zhou, Y.; Yu, Z. Assessing whether peri-urban agricultural land or plantation forest is a better green infrastructure for ground arthropods at local and landscape scales. Ecol. Indic. 2024, 158, 111499. [Google Scholar] [CrossRef]
- Stanturf, J.A. Landscape Degradation and Restoration; En Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2021; pp. 125–159. [Google Scholar] [CrossRef]
- Padeiro, M. Conformance in land-use planning: The determinants of decision, conversion and transgression. Land Use Policy 2016, 55, 285–299. [Google Scholar] [CrossRef]
- Rodrigues, B.N.; Molina, V.E.; Canteras, F.B. Green infrastructure as a solution to mitigate the effects of climate change in a coastal area of social vulnerability in Fortaleza (Brazil). Environ. Adv. 2023, 13, 100398. [Google Scholar] [CrossRef]
- Kaur, R.; Gupta, K. Blue-Green Infrastructure (BGI) network in urban areas for sustainable storm water management: A geospatial approach. City Environ. Interact. 2022, 16, 100087. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Huang, L.; Xu, Q.; Cao, Z. Synergistic ecological network approach for sustainable development of highly urbanized area in the Bay Bottom region: A study in Chengyang District, Qingdao. Ecol. Indic. 2024, 158, 111443. [Google Scholar] [CrossRef]
- Rivera, M.; Vílchez, M.; Vela, J. Peligros por huaicos en la ciudad de Arequipa. In Proceedings of the Taller Internacional Fortalecimiento de Capacidades para Mitigar los Impactos de Huaicos en Perú, Arequipa, Perú, 15–19 October 2018; Available online: https://hdl.handle.net/20.500.12544/2589 (accessed on 14 August 2024).
- Dai, K.; Shen, S.; Cheng, C.; Song, Y. Integrated evaluation and attribution of urban flood risk mitigation capacity: A case of Zhengzhou, China. J. Hydrol. Reg. Stud. 2023, 50, 101567. [Google Scholar] [CrossRef]
- Taye, G.; Tesfaye, S.; Van Parijs, I.; Poesen, J.; Vanmaercke, M.; Van Wesemael, B.; Guyassaa, E.; Nyssen, J.; Deckers, J.; Haregeweyn, N. Impact of soil and water conservation structures on the spatial variability of topsoil moisture content and crop productivity in semi-arid Ethiopia. Soil Tillage Res. 2024, 238, 105998. [Google Scholar] [CrossRef]
- Cortinovis, C.; Olsson, P.; Boke-Olén, N.; Hedlund, K. Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban For. Urban Green. 2022, 67, 127450. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Wang, M. Construction of ecological security pattern of national ecological barriers for ecosystem health maintenance. Ecol. Indic. 2023, 146, 109801. [Google Scholar] [CrossRef]
- Lin, S.; Maruthaveeran, S.; Yusof, M.J.M. The Usage and Constraints of Urban River Corridor from a Socio-ecological Perspective: A Systematic Review. Landsc. Online 2024, 99, 1121. [Google Scholar] [CrossRef]
- Sohn, W.; Bae, J.; Newman, G. Green infrastructure for coastal flood protection: The longitudinal impacts of green infrastructure patterns on flood damage. Appl. Geogr. 2021, 135, 102565. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, W.; Chen, Z.; Xie, X.; Yu, J.; Lei, X.; Guo, S.; Zheng, D. Ecological network construction for bird communities in high-density urban areas: A perspective of integrated approaches. Ecol. Indic. 2024, 158, 111592. [Google Scholar] [CrossRef]
- Li, Y.; Ji, C.; Wang, P.; Huang, L. Proactive intervention of green infrastructure on flood regulation and mitigation service based on landscape pattern. J. Clean. Prod. 2023, 419, 138152. [Google Scholar] [CrossRef]
- Kim, M.; Song, K.; Chon, J. Key coastal landscape patterns for reducing flood vulnerability. Sci. Total Environ. 2020, 759, 143454. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Wu, C.; Zhou, Z.; Lord, E.; Zheng, Z. Multipurpose greenway planning for changing cities: A framework integrating priorities and a least-cost path model. Landsc. Urban Plan. 2011, 103, 1–14. [Google Scholar] [CrossRef]
- Balbi, M.; Petit, E.; Croci, S.; Nabucet, J.; Georges, R.; Madec, L.; Ernoult, A. Title: Ecological relevance of least cost path analysis: An easy implementation method for landscape urban planning. J. Environ. Manag. 2019, 244, 61–68. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Xu, C. Increasing urban ecological resilience based on ecological security pattern: A case study in a resource- based city. Ecol. Eng. 2022, 175, 106486. [Google Scholar] [CrossRef]
- Luo, Z.; Tian, J.; Zeng, J.; Pilla, F. Resilient landscape pattern for reducing coastal flood susceptibility. Sci. Total Environ. 2023, 856, 159087. [Google Scholar] [CrossRef]
- Kousky, C.; Walls, M. Floodplain conservation as a flood mitigation strategy: Examining costs and benefits. Ecol. Econ. 2014, 104, 119–128. [Google Scholar] [CrossRef]
- Ribeiro, L.; Barão, T. Greenways for recreation and maintenance of landscape quality: Five case studies in Portugal. Landsc. Urban Plan. 2005, 76, 79–97. [Google Scholar] [CrossRef]
- Agnew, D.; Fryirs, K.; Leishman, M.R. Cost-benefit analysis of working with recovery in river management using Marxan. Front. Environ. Sci. 2024, 12, 1425668. [Google Scholar] [CrossRef]
- Sini, R. Singapore’s Green Infrastructure and Biophilic Urbanism; Springer Nature: Singapore, 2020; pp. 211–251. [Google Scholar] [CrossRef]
- Chang, H.S.; Lin, Z.H.; Hsu, Y.Y. Planning for green infrastructure and mapping synergies and trade-offs: A case study in the Yanshuei River Basin, Taiwan. Urban For. Urban Green. 2021, 65, 127325. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; De Meulder, B.; Wang, S. Can greenways perform as a new planning strategy in the Pearl River Delta, China? Landsc. Urban Plan. 2019, 187, 81–95. [Google Scholar] [CrossRef]
- Sharma, A. Urban greenways: Operationalizing design syntax and integrating mathematics and science in design. Front. Archit. Res. 2015, 4, 24–34. [Google Scholar] [CrossRef]
- Valente de Macedo, L.S.; Barda Picavet, M.E.; Puppim de Oliveira, J.A.; Shih, W.Y. Urban green and blue infrastructure: A critical analysis of research on developing countries. J. Clean. Prod. 2021, 313, 127898. [Google Scholar] [CrossRef]
- Frischenbruder, M.T.M.; Pellegrino, P. Using greenways to reclaim nature in Brazilian cities. Landsc. Urban Plan. 2004, 76, 67–78. [Google Scholar] [CrossRef]
- Lin, B.B.; Ossola, A.; Alberti, M.; Andersson, E.; Bai, X.; Dobbs, C.; Elmqvist, T.; Evans, K.L.; Frantzeskaki, N.; Fuller, R.A.; et al. Integrating solutions to adapt cities for climate change. Lancet Planet. Health 2021, 5, e479–e486. [Google Scholar] [CrossRef] [PubMed]
- Isely, E.S.; Isely, P.; Seedang, S.; Mulder, K.; Thompson, K.; Steinman, A.D. Addressing the information gaps associated with valuing green infrastructure in west Michigan: INtegrated Valuation of Ecosystem Services Tool (INVEST). J. Great Lakes Res. 2010, 36, 448–457. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
Model Inputs | Data Source |
---|---|
Rainfall Depth | Intensity–duration–frequency curves and precipitation intensity data from SENAMHI |
Land-Use | Landsat 8-9 data from Earth Explorer and Geo Server of Instituto Geográfico Nacional |
Soil Hydrologic Group | Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) from NASA |
Biophysical Table | Data from [23,24] |
Model Inputs | Data Source |
---|---|
Land-Use | Landsat 8-9 data from Earth Explorer and GeoServer of Instituto Geográfico Nacional |
Slope | DEM from Ministerio del Ambiente GeoServer |
Proximity to Roads | GeoFabrik database from OpenStreetMap |
Proximity to Hydrographic Networks | GeoServer of Instituto Geográfico Nacional |
Intensity of Importance | Description | Suitable Class |
---|---|---|
1 | Equal importance | Lowest suitability |
2 | Equal to moderate importance | Very low suitability |
3 | Moderate importance | Low suitability |
4 | Moderate to strong importance | Moderately low suitability |
5 | Strong importance | Moderate suitability |
6 | Strong to very strong importance | Moderate high suitability |
7 | Very strong importance | High suitability |
8 | Very strong to extremely strong importance | Very high suitability |
9 | Extremely importance | Highest suitability |
Lucode | Land-Use | Curve Number | |||
---|---|---|---|---|---|
cn_a | cn_b | cn_c | cn_d | ||
1 | Non-agricultural vegetation | 49 | 69 | 79 | 84 |
2 | Agricultural area | 62 | 71 | 78 | 81 |
3 | Bare soil | 72 | 82 | 83 | 87 |
4 | Urban area | 80 | 85 | 90 | 95 |
5 | Water | 100 | 100 | 100 | 100 |
Criteria | Subcriteria | Value | |
---|---|---|---|
Land-use | Non-agricultural vegetation | 1 | Contributes to ecological processes [40]. Helps maintain the health of urban ecosystems by providing ecosystem services [41]. |
Water bodies | 2 | Facilitate natural connectivity of ecologically relevant fragments [42]. Provide multiple ecosystem services. | |
Agricultural areas | 3 | Play a significant role in improving water and air quality and adapting to climate fluctuations [43]. Considered green infrastructure in urban areas [44] | |
Bare soil | 4 | Exposed to erosion, leading to loss of nutrients and permeability. Require stabilization through restoration plans, which increase resource costs [45]. | |
Urban area | 5 | Fragment natural areas. Integrating ecological corridors in spaces with dense infrastructure presents logistical challenges and may lead to land-use conflicts [30,46]. | |
Slope | <4% | 2 | Steep slopes are not suitable for infiltration and retention measures. Green infrastructure is appropriate for slopes up to 20% [47]. Ideal slopes are between 5% and 15% [48]. |
4–15% | 1 | ||
15–25% | 3 | ||
25–50% | 4 | ||
>50% | 5 | ||
Proximity to roads | 0–50 m | 5 | Roads represent an obstacle for establishing corridors due to their social and economic importance, making alteration difficult [49]. The surrounding environment suffers damage and reduced capacity to resist environmental risks. |
50–100 m | 4 | ||
100–150 m | 3 | ||
150–200 m | 2 | ||
>200 m | 1 | ||
Proximity to hydrographic networks | 0 m | 1 | The environments surrounding water bodies provide multiple ecosystem services, which are intended to be enhanced. Additionally, hydrographic networks are natural corridors. |
0–30 m | 2 | ||
30–100 m | 3 | ||
100–300 m | 4 | ||
>300 m | 5 |
Criteria | Land-Use | Proximity to Hydrographic Network | Slope | Proximity to Road Network |
---|---|---|---|---|
Land-use | 1 | 2 | 3 | 4 |
Proximity to hydrographic network | 0.50 | 1 | 2 | 4 |
Slope | 0.33 | 0.50 | 1 | 3 |
Proximity to road network | 0.25 | 0.25 | 0.33 | 1 |
Total | 2.08 | 3.75 | 6.33 | 12 |
Criteria | Land-Use | Proximity to Hydrographic Network | Slope | Proximity to Road Network | Weight |
---|---|---|---|---|---|
Land-use | 0.48 | 0.53 | 0.47 | 0.33 | 0.45 |
Proximity to hydrographic network | 0.24 | 0.27 | 0.32 | 0.33 | 0.29 |
Slope | 0.16 | 0.13 | 0.16 | 0.25 | 0.18 |
Proximity to road network | 0.12 | 0.07 | 0.05 | 0.08 | 0.08 |
Total | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Acosta, Y.; Cárdenas-Pillco, B.; Chanove-Manrique, A. Assessment of Pluvial Flood Mitigation Ecosystem Service in a Riverside City Using the Integrated Valuation of Ecosystem Services and Tradeoffs Model for Ecological Corridor Mapping. Water 2025, 17, 143. https://doi.org/10.3390/w17020143
Castillo-Acosta Y, Cárdenas-Pillco B, Chanove-Manrique A. Assessment of Pluvial Flood Mitigation Ecosystem Service in a Riverside City Using the Integrated Valuation of Ecosystem Services and Tradeoffs Model for Ecological Corridor Mapping. Water. 2025; 17(2):143. https://doi.org/10.3390/w17020143
Chicago/Turabian StyleCastillo-Acosta, Yajaira, Berly Cárdenas-Pillco, and Andrea Chanove-Manrique. 2025. "Assessment of Pluvial Flood Mitigation Ecosystem Service in a Riverside City Using the Integrated Valuation of Ecosystem Services and Tradeoffs Model for Ecological Corridor Mapping" Water 17, no. 2: 143. https://doi.org/10.3390/w17020143
APA StyleCastillo-Acosta, Y., Cárdenas-Pillco, B., & Chanove-Manrique, A. (2025). Assessment of Pluvial Flood Mitigation Ecosystem Service in a Riverside City Using the Integrated Valuation of Ecosystem Services and Tradeoffs Model for Ecological Corridor Mapping. Water, 17(2), 143. https://doi.org/10.3390/w17020143