Addressing the Uncertainties in the Environmental Analysis, Modeling, Source and Risk Assessment of Emerging Contaminants
Abstract
:1. Introduction
2. Uncertainty in Environmental Sampling and Analysis of ECs
2.1. Spatial and Temporal Variability in the Occurrence of ECs
2.2. Uncertainty in Environmental Sample Collection of ECs
2.3. Uncertainty in the Sample Analysis of ECs
2.4. Interlaboratory Comparison
3. Uncertainty in Environmental Modeling of ECs
3.1. Uncertainty of Model Input Data
3.2. Uncertainty in Model Structures
3.3. Uncertainty in Model Output
4. Uncertainty in Priority Screening and Environmental Risk Assessment of ECs
4.1. Uncertainty in Priority Screening of ECs
4.2. Uncertainty in the Environmental Risk Assessment of ECs
5. Uncertainty in Source Characterization of ECs
6. Suggestions and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Yu, G. Emerging contaminant control: From science to action. Front. Environ. Sci. Eng. 2022, 16, 81. [Google Scholar] [CrossRef]
- Wang, B.; Sui, Q.; Liu, H.; Yu, G.; Qu, J. Promoting Environmental Risk Assessment and Control of Emerging Contaminants in China. Engineering 2024, 37, 13–17. [Google Scholar] [CrossRef]
- Anagnostopoulpou, K.; Nannou, C.; Aschonitis, V.G.; Lambropoulou, D.A. Screening of pesticides and emerging contaminants in eighteen Greek lakes by using target and non-target HRMS approaches: Occurrence and ecological risk assessment. Sci. Total Environ. 2022, 849, 157887. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Lou, Q.; Pan, J.; Wang, J.; Men, S.; Yan, Z. Ecological risk assessment of 50 emerging contaminants in surface water of the Greater Bay Area, China. Sci. Total Environ. 2024, 907, 168105. [Google Scholar] [CrossRef]
- Singh, V.; Suthar, S. Occurrence, seasonal variation, mass loading and fate of pharmaceuticals and personal care products (PPCPs) in sewage treatment plants in cities of upper Ganges bank, India. J. Water Process Eng. 2021, 44, 102399. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Oussadou, S.E.; Mousa, M.; Shabib, A.; Semerjian, L.; Semreen, M.H.; Almanassra, I.W.; Atieh, M.A.; Shanableh, A. Fate of emerging contaminants in an advanced SBR wastewater treatment and reuse facility incorporating UF, RO, and UV processes. Water Res. 2024, 267, 122518. [Google Scholar] [CrossRef] [PubMed]
- Mary Ealias, A.; Meda, G.; Tanzil, K. Recent Progress in Sustainable Treatment Technologies for the Removal of Emerging Contaminants from Wastewater: A Review on Occurrence, Global Status and Impact on Biota. Rev. Environ. Contam. Toxicol. 2024, 262, 16. [Google Scholar] [CrossRef]
- Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Ahammad, S.Z.; Chakma, S. Recent advances in the occurrence, transport, fate, and distribution modeling of emerging contaminants—A review. In Soil-Water, Agriculture, and Climate Change; Dubey, S.K., Jha, P.K., Gupta, P.K., Nanda, A., Gupta, V., Eds.; Springer: Cham, Switzerland, 2022; Volume 113, pp. 185–203. [Google Scholar]
- Liu, Z.; Gan, Y.; Luo, J.; Luo, X.; Ding, C.; Cui, Y. Current Status of Emerging Contaminant Models and Their Applications Concerning the Aquatic Environment: A Review. Water 2025, 17, 85. [Google Scholar] [CrossRef]
- Winkler, A.S.; Cherubini, A.; Rusconi, F.; Santo, N.; Madaschi, L.; Pistoni, C.; Moschetti, G.; Sarnicola, M.L.; Crosti, M.; Rosso, L.; et al. Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants. Environ. Int. 2022, 163, 107200. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Zhang, X.; Liu, Z.S.; Yang, C.X.; Li, S.; Zhou, H.Y.; Gao, Z.X. The impact of emerging contaminants exposure on human health effects: A review of organoid assessment models. Chem. Eng. J. 2024, 498, 155882. [Google Scholar] [CrossRef]
- Du, R.; Zhang, Q.; Wang, B.; Huang, J.; Deng, S.; Yu, G. Quantitative structure-activity relationship models for the reaction rate coefficients between dissolved organic matter and PPCPs. J. Hazard. Mater. 2023, 458, 131845. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Q.; Huang, P.; Li, X.W.; Liu, S.S.; Lu, B.Q. Derivation of water quality criteria for paraquat, bisphenol A and carbamazepine using quantitative structure-activity relationship and species sensitivity distribution (QSAR-SSD). Sci. Total Environ. 2024, 948, 174739. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Malule, H.; Quiñones-Murillo, D.H.; Manotas-Duque, D. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerg. Contam. 2020, 6, 179–193. [Google Scholar] [CrossRef]
- Barton, H.A.; Chiu, W.A.; Setzer, R.W.; Andersen, M.E.; Bailer, A.J.; Bois, F.Y.; Dewoskin, R.S.; Hays, S.; Johanson, G.; Jones, N.; et al. Characterizing uncertainty and variability in physiologically based pharmacokinetic models: State of the science and needs for research and implementation. Toxicol. Sci. 2007, 99, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Cordner, A.; Brown, P. Moments of uncertainty: Ethical considerations and emerging contaminants. Sociol. Forum 2013, 28, 469–494. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Y.; Duan, L.; Bekele, D.; Naidu, R. Uncertainties in human health risk assessment of environmental contaminants: A review and perspective. Environ. Int. 2015, 85, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fan, L.; Khan, S.J.; Roddick, F.A. Fugacity modelling of the fate of micropollutants in aqueous systems—Uncertainty and sensitivity issues. Sci. Total Environ. 2020, 699, 134249. [Google Scholar] [CrossRef] [PubMed]
- Matott, L.S.; Babendreier, J.E.; Purucker, S.T. Evaluating uncertainty in integrated environmental models: A review of concepts and tools. Water Resour. Res. 2009, 45, W06421. [Google Scholar] [CrossRef]
- Damgaard, C. Measurement uncertainty in ecological and environmental models. Trends Ecol. Evol. 2020, 35, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Meyer, P.D.; Lin, Y.-F.; Neuman, S.P. Quantification of model uncertainty in environmental modeling. Stoch. Environ. Res. Risk Assess. 2010, 24, 807–808. [Google Scholar] [CrossRef]
- Fenner, K.; Scheringer, M.; MacLeod, M.; Matthies, M.; McKone, T.; Stroebe, M.; Beyer, A.; Bonnell, M.; Le Gall, A.C.; Klasmeier, J.; et al. Comparing estimates of persistence and long-range transport potential among multimedia models. Environ. Sci. Technol. 2005, 39, 1932–1942. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shi, W.; Liu, W.; Li, H.; Zhang, W.; Hu, J.; Ke, Y.; Sun, W.; Ni, J. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 2018, 615, 906–917. [Google Scholar] [CrossRef]
- Lin, X.; Xu, J.; Keller, A.A.; He, L.; Gu, Y.; Zheng, W.; Sun, D.; Lu, Z.; Huang, J.; Huang, X.; et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020, 744, 140977. [Google Scholar] [CrossRef] [PubMed]
- Brewer, A.J.; Ort, C.; Banta-Green, C.J.; Berset, J.D.; Field, J.A. Normalized diurnal and between-day trends in illicit and legal drug loads that account for changes in population. Environ. Sci. Technol. 2012, 46, 8305–8314. [Google Scholar] [CrossRef]
- Miege, C.; Choubert, J.M.; Ribeiro, L.; Eusebe, M.; Coquery, M. Fate of pharmaceuticals and personal care products in wastewater treatment plants–Conception of a database and first results. Environ. Pollut. 2009, 157, 1721–1726. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, D.J.; Karpuzcu, M.E.; Arnold, W.A.; Barber, B.L.; Kaufenberg, E.F.; Koskinen, W.C.; Novak, P.J.; Rice, P.J.; Swackhamer, D.L. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed. Sci. Total Environ. 2015, 505, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Ort, C.; Gujer, W. Sampling for representative micropollutant loads in sewer systems. Water Sci. Technol. 2006, 54, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Ort, C.; Lawrence, M.G.; Reungoat, J.; Mueller, J.F. Sampling for ppcps in wastewater systems: Comparison of different sampling modes and optimization strategies. Environ. Sci. Technol. 2010, 44, 6289–6296. [Google Scholar] [CrossRef] [PubMed]
- Ort, C.; Lawrence, M.G.; Rieckermann, J.; Joss, A. Sampling for pharmaceuticals and personal care products (ppcps) and illicit drugs in wastewater systems: Are your conclusions valid? A critical review. Environ. Sci. Technol. 2010, 44, 6024–6035. [Google Scholar] [CrossRef]
- Miège, C.; Budzinski, H.; Jacquet, R.; Soulier, C.; Pelte, T.; Coquery, M. Polar organic chemical integrative sampler (POCIS): Application for monitoring organic micropollutants in wastewater effluent and surface water. J. Environ. Monit. 2012, 14, 626–635. [Google Scholar] [CrossRef] [PubMed]
- de Boer, J.; Cofino, W.P. First world-wide interlaboratory study on polybrominated diphenylethers (PBDEs). Chemosphere 2002, 46, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Blessing, M.; Jochmann, M.A.; Schmidt, T.C. Pitfalls in compound-specific isotope analysis of environmental samples. Anal. Bioanal. Chem. 2008, 390, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Musshoff, F.; Madea, B. Analytical pitfalls in hair testing. Anal. Bioanal. Chem. 2007, 388, 1475–1494. [Google Scholar] [CrossRef]
- Blessing, M.; Baran, N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Anal. Chem. 2022, 157, 116730. [Google Scholar] [CrossRef]
- Petrovic, M. Methodological challenges of multi-residue analysis of pharmaceuticals in environmental samples. Trends Environ. Anal. Chem. 2014, 1, e25–e33. [Google Scholar] [CrossRef]
- de Boer, J.; Wells, D.E. Pitfalls in the analysis of brominated flame retardants in environmental, human and food samples-including results of three international interlaboratory studies. Trends Anal. Chem. 2006, 25, 364–372. [Google Scholar] [CrossRef]
- Hermes, N.; Jewell, K.S.; Wick, A.; Ternes, T.A. Quantification of more than 150 micropollutants including transformation products in aqueous samples by liquid chromatography-tandem mass spectrometry using scheduled multiple reaction monitoring. J. Chromatogr. A 2018, 1531, 64–73. [Google Scholar] [CrossRef]
- Bi, Q.; Liu, Q.; Han, S.; Zhang, L.; Xing, L.; Zhang, X.; Wang, Z.; Miao, Y.; Tan, N. An integrated multiple reaction monitoring strategy based on predicted precursor ions and characteristic product ions for global profiling Rubiaceae-type cyclopeptides in three Rubiaspecies. J. Chromatogr. A 2020, 1618, 460902. [Google Scholar] [CrossRef] [PubMed]
- Gosetti, F.; Mazzucco, E.; Zampieri, D.; Gennaro, M.C. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 3929–3937. [Google Scholar] [CrossRef]
- Steiner, D.; Krska, R.; Malachova, A.; Taschl, I.; Sulyok, M. Evaluation of matrix effects and extraction efficiencies of LC-MS/MS methods as the essential part for proper validation of multiclass contaminants in complex feed. J. Agric. Food Chem. 2020, 68, 3868–3880. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Patel, H.K.; Gor, H.N.; Vaghela, K.M.; Solanki, P.P.; Shah, P.G. Evaluation of matrix effects in multiresidue analysis of pesticide residues in vegetables and spices by LC-MS/MS. J. AOAC Int. 2017, 100, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Jemal, M.; Schuster, A.; Whigan, D.B. Liquid chromatography/tandem mass spectrometry methods for quantitation of mevalonic acid in human plasma and urine: Method validation, demonstration of using a surrogate analyte, and demonstration of unacceptable matrix effect in spite of use of a stable isotope analog internal standard. Rapid Commun. Mass Spectrom. 2003, 17, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cyronak, M.; Yang, E. Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma. J. Pharm. Biomed. Anal. 2007, 43, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Isobe, A.; Buenaventura, N.T.; Chastain, S.; Chavanich, S.; Cozar, A.; DeLorenzo, M.; Hagmann, P.; Hinata, H.; Kozlovskii, N.; Lusher, A.L.; et al. An interlaboratory comparison exercise for the determination of microplastics in standard sample bottles. Mar. Pollut. Bull. 2019, 146, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Bijlsma, L.; Covaci, A.; Emke, E.; Hernandez, F.; Reid, M.; Ort, C.; Thomas, K.V.; van Nuijs, A.L.; de Voogt, P.; et al. Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers. Environ. Sci. Technol. 2013, 47, 1452–1460. [Google Scholar] [CrossRef]
- van Nuijs, A.L.N.; Lai, F.Y.; Been, F.; Andres-Costa, M.J.; Barron, L.; Baz-Lomba, J.A.; Berset, J.-D.; Benaglia, L.; Bijlsma, L.; Burgard, D.; et al. Multi-year inter-laboratory exercises for the analysis of illicit drugs and metabolites in wastewater: Development of a quality control system. Trends Anal. Chem. 2018, 103, 34–43. [Google Scholar] [CrossRef]
- Aizpurua, O.; Cantu-Salazar, L.; San Martin, G.; Biver, G.; Brotons, L.; Titeux, N. Reconciling expert judgement and habitat suitability models as tools for guiding sampling of threatened species. J. Appl. Ecol. 2015, 52, 1608–1616. [Google Scholar] [CrossRef]
- Banjac, Z.; Ginebreda, A.; Kuzmanovic, M.; Marce, R.; Nadal, M.; Riera, J.M.; Barcelo, D. Emission factor estimation of ca. 160 emerging organic microcontaminants by inverse modeling in a Mediterranean river basin (Llobregat, NE Spain). Sci. Total Environ. 2015, 520, 241–252. [Google Scholar] [CrossRef]
- Song, S.; Su, C.; Lu, Y.; Wang, T.; Zhang, Y.; Liu, S. Urban and rural transport of semivolatile organic compounds at regional scale: A multimedia model approach. J. Environ. Sci. 2016, 39, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Schenker, U.; Scheringer, M.; Sohn, M.D.; Maddalena, R.L.; McKone, T.E.; Hungerbuhler, K. Using information on uncertainty to improve environmental fate modeling: A case study on DDT. Environ. Sci. Technol. 2009, 43, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Pontolillo, J.; Eganhouse, R.P. The Search for Reliable Aqueous Solubility (Sw) and Octanol-Water Partition Coefficient (Kow) Data for Hydrophobic Organic Compounds: DDT and DDE as a Case Study; US Geological Survey, US Department of the Interior: Reston, VA, USA, 2001. [Google Scholar]
- Linkov, I.; Ames, M.R.; Crouch, E.A.C.; Satterstrom, F.K. Uncertainty in octanol-water partition coefficient: Implications for risk assessment and remedial costs. Environ. Sci. Technol. 2005, 39, 6917–6922. [Google Scholar] [CrossRef] [PubMed]
- Klasmeier, J.; Matthies, M.; Macleod, M.; Fenner, K.; Scheringer, M.; Stroebe, M.; Le Gall, A.C.; Mckone, T.; Van De Meent, D.; Wania, F. Application of multimedia models for screening assessment of long-range transport potential and overall persistence. Environ. Sci. Technol. 2006, 40, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Thackray, C.P.; Friedman, C.L.; Zhang, Y.X.; Selin, N.E. Quantitative assessment of parametric uncertainty in northern hemisphere PAH concentrations. Environ. Sci. Technol. 2015, 49, 9185–9193. [Google Scholar] [CrossRef]
- Wang, B.; Dai, G.H.; Deng, S.B.; Huang, J.; Wang, Y.J.; Yu, G. Linking the environmental loads to the fate of PPCPs in Beijing: Considering both the treated and untreated wastewater sources. Environ. Pollut. 2015, 202, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Wania, F. What environmental fate processes have the strongest influence on a completely persistent organic chemical’s accumulation in the Arctic? Atmos. Environ. 2007, 41, 2757–2767. [Google Scholar] [CrossRef]
- Valle, M.D.; Codato, E.; Marcomini, A. Climate change influence on POPs distribution and fate: A case study. Chemosphere 2007, 67, 1287–1295. [Google Scholar] [CrossRef]
- Consonni, V.; Ballabio, D.; Todeschini, R. Evaluation of model predictive ability by external validation techniques. J. Chemom. 2010, 24, 194–201. [Google Scholar] [CrossRef]
- Scior, T.; Medina-Franco, J.L.; Do, Q.T.; Martinez-Mayorga, K.; Rojas, J.A.Y.; Bernard, P. How to recognize and workaround pitfalls in QSAR studies: A critical review. Curr. Med. Chem. 2009, 16, 4297–4313. [Google Scholar] [CrossRef]
- Dearden, J.C.; Cronin, M.T.D.; Kaiser, K.L.E. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res. 2009, 20, 241–266. [Google Scholar] [CrossRef] [PubMed]
- Cronin, M.T.; Richarz, A.-N.; Schultz, T.W. Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction. Regul. Toxicol. Pharmacol. 2019, 106, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Belfield, S.J.; Enoch, S.J.; Firman, J.W.; Madden, J.C.; Schultz, T.W.; Cronin, M.T.D. Determination of “fitness-for-purpose” of quantitative structure-activity relationship (QSAR) models to predict (eco-)toxicological endpoints for regulatory use. Regul. Toxicol. Pharmacol. 2021, 123, 104956. [Google Scholar] [CrossRef] [PubMed]
- Jolliet, O.; Hauschild, M. Modeling the influence of intermittent rain events on long-term fate and transport of organic air pollutants. Environ. Sci. Technol. 2005, 39, 4513–4522. [Google Scholar] [CrossRef]
- Lohmann, R.; Lammel, G. Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling. Environ. Sci. Technol. 2004, 38, 3793–3803. [Google Scholar] [CrossRef]
- Hertwich, E.G.; McKone, T.E.; Pease, W.S. A systematic uncertainty analysis of an evaluative fate and exposure model. Risk Anal. 2000, 20, 439–454. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, M.; Fraser, A.J.; Mackay, D. Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ. Toxicol. Chem. 2002, 21, 700–709. [Google Scholar] [CrossRef]
- Dubus, I.G.; Brown, C.D.; Beulke, S. Sources of uncertainty in pesticide fate modelling. Sci. Total Environ. 2003, 317, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Gouin, T.; van Egmond, R.; Price, O.R.; Hodges, J.E.N. Prioritising chemicals used in personal care products in China for environmental risk assessment: Application of the RAIDAR model. Environ. Pollut. 2012, 165, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Sui, Q.; Wang, B.; Zhao, W.T.; Huang, J.; Yu, G.; Deng, S.B.; Qiu, Z.F.; Lu, S.G. Identification of priority pharmaceuticals in the water environment of China. Chemosphere 2012, 89, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Mackay, D. Policies for chemical hazard and risk priority setting: Can persistence, bioaccumulation, toxicity, and quantity information be combined? Environ. Sci. Technol. 2008, 42, 4648–4654. [Google Scholar] [CrossRef]
- Mackay, D.; McCarty, L.S.; MacLeod, M. On the validity of classifying chemicals for persistence, bioaccumulation, toxicity, and potential for long-range transport. Environ. Toxicol. Chem. 2001, 20, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, P.B.; Mogensen, B.B.; Carlsen, L.; Thomsen, M. The influence on partial order ranking from input parameter uncertainty—Definition of a robustness parameter. Chemosphere 2000, 41, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Hertwich, E.G.; Mateles, S.F.; Pease, W.S.; McKone, T.E. Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environ. Toxicol. Chem. 2001, 20, 928–939. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Thissen, U.; Jager, T.; van de Meent, D.; Ragas, A.M.J. Priority assessment of toxic substances in life cycle assessment. Part II: Assessing parameter uncertainty and human variability in the calculation of toxicity potentials. Chemosphere 2000, 41, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Ying, G.G.; Liu, Y.S.; Chen, F.; Yang, J.F.; Wang, L.; Yang, X.B.; Stauber, J.L.; Warne, M.S. Occurrence and a screening-level risk assessment of human pharmaceuticals in the pearl river system, South China. Environ. Toxicol. Chem. 2010, 29, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.T.; Ding, G.Q.; Wu, Y.N.; Pan, G.S.; Zhou, X.P.; Han, J.L.; Li, J.G.; Wen, S. Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in breast milk from Zhejiang, China. Environ. Int. 2012, 42, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Linkov, I.; von Stackelberg, K.E.; Burmistrov, D.; Bridges, T.S. Uncertainty and variability in risk from trophic transfer of contaminants in dredged sediments. Sci. Total Environ. 2001, 274, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Diao, H.; Han, J.; Wang, B.; Yu, G. Understanding and addressing the environmental risk of microplastics. Front. Environ. Sci. Eng. 2022, 17, 12. [Google Scholar] [CrossRef]
- Rist, S.; Almroth, B.C.; Hartmann, N.B.; Karlsson, T.M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 2018, 626, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Gin, K.Y.H.; Lin, A.Y.C.; Reinhard, M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.Y.C.; Yu, T.H.; Lin, C.F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 2008, 74, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, G.; Huang, J.; Yu, Y.J.; Hu, H.Y.; Wang, L.S. Tiered aquatic ecological risk assessment of organochlorine pesticides and their mixture in Jiangsu reach of Huaihe River, China. Environ. Monit. Assess. 2009, 157, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Gobas, F.A.P.C. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Morin, A.E.; Gobas, F.A.P.C. Food web-specific biomagnification of persistent organic pollutants. Science 2007, 317, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Mackay, D.; Webster, E.; Southwood, J.M. Screening level risk assessment model for chemical fate and effects in the environment. Environ. Sci. Technol. 2006, 40, 2316–2323. [Google Scholar] [CrossRef]
- Dietrich, S.; Ploessl, F.; Bracher, F.; Laforsch, C. Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna—A multigenerational study. Chemosphere 2010, 79, 60–66. [Google Scholar] [CrossRef]
- Rosal, R.; Rodea-Palomares, I.; Boltes, K.; Fernandez-Pinas, F.; Leganes, F.; Petre, A. Ecotoxicological assessment of surfactants in the aquatic environment: Combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 2010, 81, 288–293. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.; Huang, J.; Deng, S.; Wang, Y.; Blaney, L.; Brennan, G.L.; Cagnetta, G.; Jia, Q.; Yu, G. A machine-learning approach clarifies interactions between contaminants of emerging concern. One Earth 2022, 5, 1239–1249. [Google Scholar] [CrossRef]
- Rodea-Palomares, I.; Gao, Z.; Weyers, A.; Ebeling, M. Risk from unintentional environmental mixtures in EU surface waters is dominated by a limited number of substances. Sci. Total Environ. 2023, 856 Pt 2, 159090. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Li, H.; Brooks, B.W.; You, J. Retrospective risk assessment of chemical mixtures in the big data era: An alternative classification strategy to integrate chemical and toxicological data. Environ. Sci. Technol. 2020, 54, 5925–5927. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Wang, B.; Huang, J.; Dong, R.; Deng, S.; Yu, G. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 2015, 119, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Wang, B.; Duan, L.; Giovanni, C.; Yu, G. Emerging contaminants in the northwest area of the Tai Lake Basin, China: Spatial autocorrelation analysis for source apportionment and wastewater-based epidemiological analysis. Sci. Total Environ. 2023, 865, 161176. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.K.; Rehman, M.Y.A.; Junaid, M.; Lv, M.; Yue, L.; Haq, I.-u.; Xu, N.; Malik, R.N. Occurrence, source apportionment and potential risks of selected PPCPs in groundwater used as a source of drinking water from key urban-rural settings of Pakistan. Sci. Total Environ. 2022, 807, 151010. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Halbach, T.R.; Simcik, M.F.; Gulliver, J.S. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination by exploratory data analysis. Water Res. 2012, 46, 3101–3109. [Google Scholar] [CrossRef]
- Li, A.; Jang, J.K.; Scheff, P.A. Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environ. Sci. Technol. 2003, 37, 2958–2965. [Google Scholar] [CrossRef] [PubMed]
Source of Uncertainty | Results | Reference |
---|---|---|
Sampling frequencies | The load of benzotriazole calculated at the highest temporal resolution (10 s) was 3022 mg. At intervals of 5 min and 15 min, the load became 2954 mg and 1949 mg, respectively. | [30] |
Composite sampling modes | The highest concentration of ranitidine was measured on day 4 in sampling mode B1 (flow-proportional, continuous), followed by the concentrations on day 1, 3, and 2. But a reverse concentration order was obtained with sampling mode B4 (one grab sampling). | [31] |
Flow variations | The flow variations with different diurnal flow patterns reflected factors of about 2 or 10 between the night minimum and maximum dry weather flow. The pollutant load would be misestimated in time-proportional sampling when the flow rate varied. | [32] |
Passive sampling | The concentrations of hormone and β-blocker were overestimated because of the enhanced matrix effect of polar organic chemical integrative sampler. | [33] |
Major Parts in QSAR Models | Uncertainty Factors |
---|---|
Data preparation and preprocessing | Data size and variety Errors and inappropriate operations in experiments Some contraindications for QSAR models |
Model generation and validation, applicability domain characterization | Selection of descriptors Collinearity of variables Robust statistical methods or “black boxes” Over- and under-determined equations Linearity assumption Model quality and outliers Starting geometries in 3D-QSAR models 3D-QSAR blindness Selection of applicability domain characterization approaches |
Model interpretation | Wrong understanding between correlations and causalities Chance correlation Multiple solutions Extrapolation and interpolation Without validation nor biased validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Wang, B.; Yu, G. Addressing the Uncertainties in the Environmental Analysis, Modeling, Source and Risk Assessment of Emerging Contaminants. Water 2025, 17, 215. https://doi.org/10.3390/w17020215
Zhao W, Wang B, Yu G. Addressing the Uncertainties in the Environmental Analysis, Modeling, Source and Risk Assessment of Emerging Contaminants. Water. 2025; 17(2):215. https://doi.org/10.3390/w17020215
Chicago/Turabian StyleZhao, Wenxing, Bin Wang, and Gang Yu. 2025. "Addressing the Uncertainties in the Environmental Analysis, Modeling, Source and Risk Assessment of Emerging Contaminants" Water 17, no. 2: 215. https://doi.org/10.3390/w17020215
APA StyleZhao, W., Wang, B., & Yu, G. (2025). Addressing the Uncertainties in the Environmental Analysis, Modeling, Source and Risk Assessment of Emerging Contaminants. Water, 17(2), 215. https://doi.org/10.3390/w17020215