Research Status and Trends of Hydrodynamic Separation (HDS) for Stormwater Pollution Control: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Research Trends
3.2. Stormwater Characteristics
3.3. Stormwater Separation Technology
3.3.1. Density Separation
Settling
Publication | Study Region | Method | Device | Pollutant | Remarks |
---|---|---|---|---|---|
[99] | Australia | Laboratory experiment | Cylindrical pollutant trap | Suspended particles and oil | Device is effective in separating fine particles but less so for suspended oils. |
[90] | South Korea | Field study | HDS | Suspended particles | Single large device provides a better performance than multiple small devices in removing suspended particles. |
[91] | South Korea | Laboratory experiment | HDS | Suspended particles | Device is effective in removing particles larger than 75 μm, with a removal efficiency of 8.54 to 43.69%. |
[92] | USA | Laboratory experiment | HDS | Metals and bacteria | Device is not able to remove particles smaller than 75 μm, which are the most predominant particles in urban runoff. |
[89] | USA | Model simulation | HDS | Sediment | Device is efficient in removing heavy particles. |
[86] | USA | Field study | HDS and dry detention basin | Suspended particles | Device is able to remove large particles, but not small particles. Dry detention pool is able to remove large and medium particles. |
[93] | USA | Model simulation | HDVS | Suspended particles | Device is effective in removing suspended solids. |
[94] | China | Laboratory experiment | HDVS | Suspended particles | Device is effective in removing suspended particles. |
[84] | South Korea | Model simulation | Hydrocyclone separator | Suspended particles and hydrocarbons | Device is effective in removing pollutants and nutrients. |
[96] | France | Model simulation | Hydrocyclone separator | Organic matter, trace elements, hydrocarbons, and PAHs | Device is able to separate fine participles with a size of 60 μm, with a removal efficiency of 70%. |
[97] | South Korea | Model simulation | Hydrocyclone separator with baffle | Suspended particles, hydrocarbons, and nutrients | Inlet baffle increases the device’s particle removal efficiency by about 5–10%. |
[100] | USA | Laboratory experiment | Mini-hydrocyclone separator | Microplastic | Device shows potential in separating microplastics in industry and urban stormwater systems. |
[101] | China | Model simulation | Interception system overflows | NH3-N | Sewer separation can significantly reduce pollutant loads. |
[85] | China | Laboratory experiment | Settling lab experiment | Suspended particles | Particle distribution has the largest impact on the settling performance, followed by density and fluid temperature. De-icing salt concentration and particle shape do not have an impact on the performance. |
[98] | Germany | Laboratory experiment | Settling lab experiment | Suspended particles | Separation limit of 20 µm is sufficient for removing suspended particles. |
[88] | Canada | Model simulation | Detention pool | Suspended particles | Two-stage facilities and multi-level outlet are important design elements in increasing the removal efficiency of suspended particles in dry ponds. |
[83] | New Zealand | Model simulation | Detention basin | Suspended particles and dissolved zinc and copper | Poor removal efficiency of pollutants. |
[66] | France | Field study | Detention basin | Microplastics | Microplastics with sizes of 50 to 500 μm can be removed through a settling process. |
[87] | USA | Field study | Stormwater ponds | Microplastics | Settling can remove regular-shaped microplastics. |
Flotation
Publication | Study Region | Method | Device | Pollutant | Remarks |
---|---|---|---|---|---|
[105] | Malaysia | Field study | CPI | Oil–grit | CPI can effectively separate and remove oil from stormwater in airports. |
[106] | Poland | Laboratory experiment | Separator lab experiment | Biofuel | Device is able to remove 99% of biofuel. |
[103] | USA | Laboratory experiment | DAF | Suspended solid | DAF can efficiently remove the suspended solids of the drainage. |
[107] | Canada | Field study | OGSs | Oil–grit | Device is efficient in removing oil and grit from road stormwater runoff. |
3.3.2. Size Separation
Filtration
Publication | Study Region | Method | Device | Pollutant | Remarks |
---|---|---|---|---|---|
[108] | Germany | Model simulation | Stormwater infiltration | Sewerage | Infiltration has potential in the treatment of combined sewer overflows. |
[109] | Germany | Model simulation | Road and drainage infiltration | Di (2-ethylhexyl) phthalate (DEHP) | Reducing pollutants released into the environment is considered a best practice in improving the river quality when compared with modification of the infiltration process. |
[110] | USA | Field study | Using microplastics as pavement material improving infiltration | Metal | It can offer a solution to the pollution of surface runoff. |
[111] | USA and Italy | Field study | Pavement filtration system: a bituminous-pavement, open-graded friction course (BPFC) and an aggregate-filled infiltration trench | Suspended particles | Devices are able to reduce the environmental impact. |
[112] | USA | Laboratory experiment | Wetland | Biological pollutants | Wetlands help prevent climate-related migration of E. coli to the shore. |
[113] | South Korea | Laboratory experiment | Wetland | Nitrogen | Wetlands perform effectively in removing nitrogen pollutants. |
[83] | New Zealand | Model simulation | Wetland, bioretention, and permeable pavement | Suspended Solids and dissolved zinc and copper | All approaches meet the discharge criteria for suspended solid and zinc; however, they do not perform well in removing copper. Permeable pavement can prevent 2/3 of the pollutants from urban stormwater. |
[115] | USA | Model simulation | Bioretention basin | - | Bioretention basin recharge has the potential to raise the water table, which has negative impacts on the underground infrastructure and urban water cycle. |
[114] | China | Laboratory experiment | Bioretention media comprised a mixture of modifiers and traditional BSM | Phosphorus | Green zeolite, fly ash, vermiculite, and turfy perform well in removing nitrogen pollutants. |
[65] | Australia | Field study | Conventional and activated sludge (AS) lagoon system | Microplastics | This is a low-energy, low-cost, and effective water treatment measure for removing MPs. |
[116] | China | Field study | Retention soil filter | Pharmaceutical pollutant | Retention soil filter is able to remove pharmaceutical concentrations from combined sewer overflow. |
[126] | USA | Laboratory experiment | Filtration paper and nylon net | Suspended particles | Nylon net has a better performance in filtering particles smaller than 20 μm than filtration paper. |
[117] | USA | Laboratory experiment | Filter with media of hydrous ferric oxide | Suspended particles and metal | Device is efficient in removing metallic pollutants. |
[124] | India | Laboratory experiment | Filter with media comprising a mixture of gravel, coconut fiber, and sand | Sediment, NO, SO, suspended particles, Mg2+, and Na+ | Device is efficient in removing pollutants and being economic at the same time. |
[125] | Australia | Laboratory experiment | Filter with media of compost | Metal (Zn) | Particle size of compost impacts the filtration efficiency. |
[119] | China | Field study | Filter with media of plain sand, granular activated carbon, and cementitious media to oxide-coated/admixture media (MOCM) | Metal (Pb, Cu, Cd, and Zn) | MOCM performs best in removing metals from stormwater runoff compared to other media. |
[120] | Germany | Field study | Filter with media of granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides | Metal (Cd, Cu, Ni, Pb, and Zn) | Most of the media are able to filter Cu and Pb from stormwater. |
[118] | USA | Field study | Filter with media of Al-Mg/GO | Phosphate, copper (II), and Diclofenac (DCF) | Al-Mg/GO showed a good performance in removing all three pollutants. |
[127] | Norway | Laboratory experiment | Filter with media comprising a mixture of crushed clay and granular activated carbon | Organic de-icing chemicals | Achieved removal efficiency on DOC. |
[123] | USA | Laboratory experiment | Filter with media of a low-cost, granular activated carbon–rice husk (GAC–RH) filter system, river gravel–granular activated carbon (GR–GAC) filter system, rice husk only (RH) filter system, and the conventional PVC O&G trap (COT) | Oil and grease | GAC-RH has the highest removal efficiency of oil and grease, followed by RH, GR-GA, and COT. More improvement is required for future research. |
[122] | China | Laboratory experiment | Filter with media of synthetic loess-loaded silica gel (CSG) | Nitrogen and phosphorus | Filter is able to remove nitrogen and phosphorus and is more effective for the removal of ammonium and nitrate nitrogen. |
[51] | Poland | Laboratory experiment | Rapid filtration on sand filters | Suspended particles, hydrocarbon, and biological pollutants | Rapid filtration on sand filters can remove hydrocarbon, nitrogen, and phosphorus. |
[121] | Canada | Laboratory experiment | 0.22 μm filter, centrifugation, and ballasted flocculation | Microplastics | Three treatments perform well in removing particles; however, smaller particles might escape and enter into the environment. |
Screening
3.4. Combined Separation
3.5. Advantages of CDS Technology
3.6. Future Trends and Research Gaps
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aragon-Durand, F. Urbanisation and flood vulnerability in the peri-urban interface of Mexico City. Disasters 2007, 31, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Nirupama, N.; Simonovic, S.P. Increase of flood risk due to urbanisation: A canadian example. Nat. Hazards 2007, 40, 25–41. [Google Scholar] [CrossRef]
- Korah, P.I.; Cobbinah, P.B. Juggling through Ghanaian urbanisation: Flood hazard mapping of Kumasi. GeoJournal 2017, 82, 1195–1212. [Google Scholar] [CrossRef]
- Rossi, L.; De Alencastro, L.; Kupper, T.; Tarradellas, J. Urban stormwater contamination by polychlorinated biphenyls (PCBs) and its importance for urban water systems in Switzerland. Sci. Total Environ. 2004, 322, 179–189. [Google Scholar] [CrossRef]
- Wong, T.; Brown, R. Water sensitive urban design. In Water Resources Planning and Management; Grafton, R.Q., Hussey, K., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 483–504. ISBN 978-0-521-76258-8. [Google Scholar]
- Feng, B.; Zhang, Y.; Bourke, R. Urbanization impacts on flood risks based on urban growth data and coupled flood models. Nat. Hazards 2021, 106, 613–627. [Google Scholar] [CrossRef]
- Beshir, A.A.; Song, J. Urbanization and its impact on flood hazard: The case of Addis Ababa, Ethiopia. Nat. Hazards 2021, 109, 1167–1190. [Google Scholar] [CrossRef]
- Carle, M.; Halpin, P.; Stow, C. Patterns of watershed urbanization and impacts on water quality. J. Am. Water Resour. Assoc. 2005, 41, 693–708. [Google Scholar] [CrossRef]
- Di Salvo, C.; Ciotoli, G.; Pennica, F.; Cavinato, G.P. Pluvial flood hazard in the city of Rome (Italy). J. Maps 2017, 13, 545–553. [Google Scholar] [CrossRef]
- Yang, L.; Ma, K.-M.; Zhao, J.-Z.; Bai, X.; Guo, Q.-H. The relationships of urbanization to surface water quality in four lakes of Hanyang, China. Int. J. Sustain. Dev. World Ecol. 2007, 14, 317–327. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Liu, Y.; Xu, M.; Zhang, L.; Deng, Q. Impacts of rainfall intensity and urbanization on water environment of urban lakes. Ecohydrol. Hydrobiol. 2020, 20, 513–524. [Google Scholar] [CrossRef]
- Gafri, H.; Zuki, F.; Zeeda, F.; Affan, N.; Sulaiman, A.; Norasiah, S. Study on Water Quality Status of Varsity Lake and Pantai River, Anak Air Batu River in Um Kuala Lumpur, Malaysia and Classify It Based ON (WQI) Malaysia. EQA-Int. J. Environ. Qual. 2018, 29, 51–65. [Google Scholar] [CrossRef]
- San Liew, Y.; Desa, S.; Noh, M.; Tan, M.; Zakaria, N.; Chang, C. Assessing the Effectiveness of Mitigation Strategies for Flood Risk Reduction in the Segamat River Basin, Malaysia. Sustainability 2021, 13, 3286. [Google Scholar] [CrossRef]
- Jarvie, J.; Arthur, S.; Beevers, L. A Field Approach for Comparing the Ecosystem Services From Suds and Non-Suds Ponds: Preliminary Results; Mynett, A., Ed.; IAHR: Beijing, China, 2015; pp. 382–391. [Google Scholar]
- Melville-Shreeve, P.; Cotterill, S.; Grant, L.; Arahuetes, A.; Stovin, V.; Farmani, R.; Butler, D. State of SuDS delivery in the United Kingdom. Water Environ. J. 2018, 32, 9–16. [Google Scholar] [CrossRef]
- El Hattab, M.; Mijic, A. Adaptation of SuDS Modelling Complexity to End-Use Application. In New Trends in Urban Drainage Modelling; Mannina, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 91–95. [Google Scholar]
- Humphrey, J.; Rowett, C.; Tyers, J.; Gregson, M.; Comber, S. Are sustainable drainage systems (SuDS) effective at retaining dissolved trace elements? Environ. Technol. 2023, 44, 1450–1463. [Google Scholar] [CrossRef]
- Zhang, P.; Ariaratnam, S. Life cycle cost savings analysis on traditional drainage systems from low impact development strategies. Front. Eng. Manag. 2021, 8, 88–97. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Toro-Huertas, E.; Güereca, L. Lifecycle sustainability assessment for the comparison of traditional and sustainable drainage systems. Sci. Total Environ. 2022, 817, 152959. [Google Scholar] [CrossRef]
- Duffy, A.; Jefferies, C.; Waddell, G.; Shanks, G.; Blackwood, D.; Watkins, A. A cost comparison of traditional drainage and SUDS in Scotland. Water Sci. Technol. 2008, 57, 1451–1459. [Google Scholar] [CrossRef]
- Cojoc, L.; de Castro-Català, N.; de Guzmán, I.; González, J.; Arroita, M.; Besolí-Mestres, N.; Cadena, I.; Freixa, A.; Gutiérrez, O.; Larrañaga, A.; et al. Pollutants in urban runoff: Scientific evidence on toxicity and impacts on freshwater ecosystems. Chemosphere 2024, 369, 143806. [Google Scholar] [CrossRef]
- Rathnayake, D.; Bal Krishna, K.C.; Kastl, G.; Sathasivan, A. The role of pH on sewer corrosion processes and control methods: A review. Sci. Total Environ. 2021, 782, 146616. [Google Scholar] [CrossRef]
- Rodriguez, M.; Fu, G.; Butler, D.; Yuan, Z.; Cook, L. Global resilience analysis of combined sewer systems under continuous hydrologic simulation. J. Environ. Manag. 2023, 344, 118607. [Google Scholar] [CrossRef]
- van der Werf, J.A.; Kapelan, Z.; Langeveld, J. Real-time control of combined sewer systems: Risks associated with uncertainties. J. Hydrol. 2023, 617, 128900. [Google Scholar] [CrossRef]
- Brears, R.C. Blue-Green Infrastructure in Managing Urban Water Resources. In Blue and Green Cities: The Role of Blue-Green Infrastructure in Managing Urban Water Resources; Brears, R.C., Ed.; Palgrave Macmillan: London, UK, 2018; pp. 43–61. ISBN 978-1-137-59258-3. [Google Scholar]
- Chung, M.G.; Frank, K.A.; Pokhrel, Y.; Dietz, T.; Liu, J. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sustain. 2021, 4, 1068–1075. [Google Scholar] [CrossRef]
- Osman, M.; Yusof, K.; Takaijudin, H.; Goh, H.; Malek, M.; Azizan, N.; Ab Ghani, A.; Abdurrasheed, A. A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. Sustainability 2019, 11, 5415. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Eadie, M.L. Water sensitive urban design: A paradigm shift in urban design. In Proceedings of the 10th World Water Congress, Bali, Indonesia, 18–25 May 2000. [Google Scholar]
- Sage, J.; Berthier, E.; Gromaire, M.-C. Stormwater Management Criteria for On-Site Pollution Control: A Comparative Assessment of International Practices. Environ. Manag. 2015, 56, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lawluvy, Y.; Shi, Y.; Yap, P. Low Impact Development (LID) Practices: A Review on Recent Developments, Challenges and Prospects. Water. Air. Soil Pollut. 2021, 232, 344. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.; Hu, X. Study on Sponge City Planning in Central City of Tangshan. In Proceedings of the 2017 International Conference on Materials, Energy, Civil Engineering and Computer (MATECC 2017), Sanya, China, 27–29 September 2017; Li, R., Ed.; pp. 59–65. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, F.; Liu, L.; Chen, M.; Sun, D.; Nan, J. How do urban rainfall-runoff pollution control technologies develop in China? A systematic review based on bibliometric analysis and literature summary. Sci. Total Environ. 2021, 789, 148045. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Retrofitting the Low Impact Development Practices into Developed Urban areas Including Barriers and Potential Solution. Open Geosci. 2017, 9, 240–254. [Google Scholar] [CrossRef]
- Gulshad, K.; Szydłowski, M.; Yaseen, A.; Aslam, R.W. A comparative analysis of methods and tools for low impact development (LID) site selection. J. Environ. Manag. 2024, 354, 120212. [Google Scholar] [CrossRef]
- Hatt, B.E.; Morison, P.; Fletcher, T.D.; Deletic, A. Stormwater Biofiltration Systems—Adoption Guidelines; Monash University Publishing: Clayton, VIC, Australia, 2009; ISBN 978-0-9805831-1-3. [Google Scholar]
- Pritchard, J.C.; Hawkins, K.M.; Cho, Y.-M.; Spahr, S.; Higgins, C.P.; Luthy, R.G. Flow rate and kinetics of trace organic contaminants removal in black carbon-amended engineered media filters for improved stormwater runoff treatment. Water Res. 2024, 258, 121811. [Google Scholar] [CrossRef]
- Fitzgerald, J.; Laufer, J. Governing green stormwater infrastructure: The Philadelphia experience. Local Environ. 2017, 22, 256–268. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability; Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Vogel, J.R.; Moore, T.L. Urban Stormwater Characterization, Control, and Treatment. Water Environ. Res. 2016, 88, 1918–1950. [Google Scholar] [CrossRef] [PubMed]
- Simpson, I.M.; Winston, R.J.; Brooker, M.R. Effects of land use, climate, and imperviousness on urban stormwater quality: A meta-analysis. Sci. Total Environ. 2022, 809, 152206. [Google Scholar] [CrossRef]
- Rodak, C.; Moore, T.; David, R.; Jayakaran, A.; Vogel, J. Urban stormwater characterization, control, and treatment. Water Environ. Res. 2019, 91, 1034–1060. [Google Scholar] [CrossRef]
- Qin, H.; He, K.; Fu, G. Modeling middle and final flush effects of urban runoff pollution in an urbanizing catchment. J. Hydrol. 2016, 534, 638–647. [Google Scholar] [CrossRef]
- Xu, P.; He, J.; Zhang, Y.; Zhang, J.; Sun, K. Runoff Pollutant Characteristics and First Flush Analysis in Different Urban Functional Areas: A Case Study in China. Fresenius Environ. Bull. 2016, 25, 2444–2453. [Google Scholar]
- Bach, P.M.; McCarthy, D.T.; Deletic, A. Redefining the stormwater first flush phenomenon. Water Res. 2010, 44, 2487–2498. [Google Scholar] [CrossRef]
- Peter, K.T.; Hou, F.; Tian, Z.; Wu, C.; Goehring, M.; Liu, F.; Kolodziej, E.P. More Than a First Flush: Urban Creek Storm Hydrographs Demonstrate Broad Contaminant Pollutographs. Environ. Sci. Technol. 2020, 54, 6152–6165. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Chia, B.; Wang, D. Upstream-downstream water quality comparisons of restored channelized streams. Ecol. Eng. 2021, 170, 106367. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Zhou, K.; Feng, P.; Dong, L. The effects of surface pollution on urban river water quality under rainfall events in Wuqing district, Tianjin, China. J. Clean. Prod. 2021, 293, 126136. [Google Scholar] [CrossRef]
- He, T.; Xue, C.; Li, J.; Wang, W.; Du, X.; Gong, Y.; Zhao, Y.; Liang, M.; Ren, Y. Effects of Dry Periods on Nitrogen and Phosphorus Removal in Runoff Infiltration Devices and Their Biological Succession Patterns. Water 2024, 16, 2372. [Google Scholar] [CrossRef]
- Jeon, J.C.; Kwon, K.H.; Jung, Y.J.; Kang, M.-J.; Min, K.S. Characteristics of stormwater runoff from junkyard. Desalin. Water Treat. 2015, 53, 3039–3047. [Google Scholar] [CrossRef]
- Pieniaszek, A.; Wojciechowska, E.; Kulbat, E.; Nawrot, N.; Pempkowiak, J.; Obarska-Pempkowiak, H.; Czerwionka, K. Stormwater As An Alternative Water Source: Quality Changes With Rainfall Duration And Implications For Treatment Approaches. Int. J. Conserv. Sci. 2021, 12, 713–730. [Google Scholar]
- Soonthornnonda, P.; Christensen, E.R. Source apportionment of pollutants and flows of combined sewer wastewater. Water Res. 2008, 42, 1989–1998. [Google Scholar] [CrossRef]
- Deffontis, S.; Vialle, C.; Sablayrolles, C.; Breton, A.; Vignoles, C.; Montrejaud-Vignoles, M. Monitoring of stormwater between 2002 and 2010—What is the evolution of stormwater quality? Fresenius Environ. Bull. 2016, 25, 5650–5659. [Google Scholar]
- Ying, G.; Sansalone, J. Granulometric relationships for urban source area runoff as a function of hydrologic event classification and sedimentation. Water. Air. Soil Pollut. 2008, 193, 229–246. [Google Scholar] [CrossRef]
- Kim, J.; Sansalone, J. Event-based size distributions of particulate matter transported during urban rainfall-runoff events. Water Res. 2008, 42, 2756–2768. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, P.; Zhang, Y.; Li, J.; Zhang, T.; Yu, T. Total and settling velocity-fractionated pollution potential of sewer sediments in Jiaxing, China. Environ. Sci. Pollut. Res. 2017, 24, 23133–23143. [Google Scholar] [CrossRef]
- Sakson, G.; Brzezinska, A.; Zawilski, M. Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation on the example of Lodz city. Environ. Monit. Assess. 2018, 190, 281. [Google Scholar] [CrossRef]
- Ozaki, N.; Yamauchi, T.; Kindaichi, T.; Ohashi, A. Stormwater inflow loading of polycyclic aromatic hydrocarbons into urban domestic wastewater treatment plant for separate sewer system. Water Sci. Technol. 2019, 79, 1426–1436. [Google Scholar] [CrossRef]
- Järlskog, I.; Strömvall, A.-M.; Magnusson, K.; Galfi, H.; Björklund, K.; Polukarova, M.; Garção, R.; Markiewicz, A.; Aronsson, M.; Gustafsson, M.; et al. Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction. Sci. Total Environ. 2021, 774, 145503. [Google Scholar] [CrossRef] [PubMed]
- Endreny, T.; Burke, D.J.; Burchhardt, K.M.; Fabian, M.W.; Kretzer, A.M. Bioretention column study of bacteria community response to salt-enriched artificial stormwater. J. Environ. Qual. 2012, 41, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Tian, Z.; Peter, K.T.; Wu, C.; Gipe, A.D.; Zhao, H.; Alegria, E.A.; Liu, F.; Kolodziej, E.P. Quantification of organic contaminants in urban stormwater by isotope dilution and liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 7791–7806. [Google Scholar] [CrossRef] [PubMed]
- Morihama, A.C.D.; Amaro, C.; Tominaga, E.N.S.; Yazaki, L.F.O.L.; Pereira, M.C.S.; Porto, M.F.A.; Mukai, P.; Lucci, R.M. Integrated solutions for urban runoff pollution control in Brazilian metropolitan regions. Water Sci. Technol. 2012, 66, 704–711. [Google Scholar] [CrossRef]
- Petrie, B. A review of combined sewer overflows as a source of wastewater-derived emerging contaminants in the environment and their management. Environ. Sci. Pollut. Res. 2021, 28, 32095–32110. [Google Scholar] [CrossRef]
- Soupir, M.; Mostaghimi, S.; Love, N. Method to Partition Between Attached and Unattached E-coli in Runoff from Agricultural Lands. J. Am. Water Resour. Assoc. 2008, 44, 1591–1599. [Google Scholar] [CrossRef]
- Fan, L.; Mohseni, A.; Schmidt, J.; Evans, B.; Murdoch, B.; Gao, L. Efficiency of lagoon-based municipal wastewater treatment in removing microplastics. Sci. Total Environ. 2023, 876, 162714. [Google Scholar] [CrossRef]
- Iannuzzi, Z.; Mourier, B.; Winiarski, T.; Lipeme-Kouyi, G.; Polomé, P.; Bayard, R. Contribution of different land use catchments on the microplastic pollution in detention basin sediments. Environ. Pollut. 2024, 348, 123882. [Google Scholar] [CrossRef]
- Ong, Z.C.; Asadsangabifard, M.; Ismail, Z.; Tam, J.H.; Roushenas, P. Design of a compact and effective greywater treatment system in Malaysia. Desalin. Water Treat. 2019, 146, 141–151. [Google Scholar] [CrossRef]
- Mannina, G.; Viviani, G. Separate and combined sewer systems: A long-term modelling approach. Water Sci. Technol. 2009, 60, 555–565. [Google Scholar] [CrossRef]
- Singh, K.; Bonthu, S.; Purvaja, R.; Robin, R.; Kannan, B.; Ramesh, R. Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes. Atmos. Res. 2018, 202, 219–234. [Google Scholar] [CrossRef]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Zahari, N.; Said, N.; Sidek, L.; Basri, H.; Noor, M.; Husni, M.; Jajarmizadeh, M.; Roseli, Z.; Dom, N. Gross Pollutant Traps: Wet Load Assessment at Sungai Kerayong, Malaysia; Shamsuddin, A., AbdRahman, A., Misran, H., Eds.; IOP: London, UK, 2016; Volume 32. [Google Scholar]
- Sidek, L.; Basri, H.; Lee, L.; Foo, K. The performance of gross pollutant trap for water quality preservation: A real practical application at the Klang Valley, Malaysia. Desalin. Water Treat. 2016, 57, 24733–24741. [Google Scholar] [CrossRef]
- Zahari, N.; Sidek, L.; Basri, H.; Said, N.; Noor, M.; Jajarmizadeh, M.; Abidin, M.; Dom, N. Wet Load Study of Gross Pollutant Traps: Kemensah River, Malaysia; Shamsuddin, A., AbdRahman, A., Misran, H., Eds.; IOP: London, UK, 2016; Volume 32. [Google Scholar]
- Nayeb Yazdi, M.; Scott, D.; Sample, D.J.; Wang, X. Efficacy of a retention pond in treating stormwater nutrients and sediment. J. Clean. Prod. 2021, 290, 125787. [Google Scholar] [CrossRef]
- Wilson, M.A.; Mohseni, O.; Gulliver, J.S.; Hozalski, R.M.; Stefan, H.G. Assessment of Hydrodynamic Separators for Storm-Water Treatment. J. Hydraul. Eng. 2009, 135, 383–392. [Google Scholar] [CrossRef]
- Arya, S.; Kumar, A. Evaluation of stormwater management approaches and challenges in urban flood control. Urban Clim. 2023, 51, 101643. [Google Scholar] [CrossRef]
- Quigley, M.M. The Integrated Unit Process Design Approach for Urban Water Quality Design. In World Water and Environmental Resources Congress 2005, Impacts of Global Climate Change; Walton, R., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2005; p. 192. [Google Scholar]
- Minton, G.R. A Tower of Babel: A Systems-Based Approach Toward an Integrative Management Strategy. J. Surf. Water Qual. Prof. Stormwater 2007. [Google Scholar]
- Shrestha, R.R.; Brodie, I.M. Classification of Stormwater Treatment Devices for Performance Evaluation; University of Southern Queensland: Brisbane, QLD, Australia, 2011. [Google Scholar]
- Yagna Prasad, K. Sedimentation in Water and Used Water Purification. In Handbook of Water and Used Water Purification; Lahnsteiner, J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–27. ISBN 978-3-319-66382-1. [Google Scholar]
- Yokojima, S.; Takashima, R.; Asada, H.; Miyahara, T. Impacts of particle shape on sedimentation of particles. Eur. J. Mech.-BFluids 2021, 89, 323–331. [Google Scholar] [CrossRef]
- Fassman, E. Stormwater BMP treatment performance variability for sediment and heavy metals. Sep. Purif. Technol. 2012, 84, 95–103. [Google Scholar] [CrossRef]
- Yu, J.; Kim, Y.; Kim, Y. Removal of non-point pollutants from bridge runoff by a hydrocyclone using natural water head. Front. Environ. Sci. Eng. 2013, 7, 886–895. [Google Scholar] [CrossRef]
- Rommel, S.H.; Gelhardt, L.; Welker, A.; Helmreich, B. Settling of road-deposited sediment: Influence of particle density, shape, low temperatures, and deicing salt. Water Switz. 2020, 12, 3126. [Google Scholar] [CrossRef]
- Ferreira, M.; Stenstrom, M. The Importance of Particle Characterization in Stormwater Runoff. Water Environ. Res. 2013, 85, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.M.; Stewart, C.J.; Haberstroh, C.J.; Arias, M.E. Characteristics and fate of plastic pollution in urban stormwater ponds. Environ. Pollut. 2023, 320, 121052. [Google Scholar] [CrossRef] [PubMed]
- Shammaa, Y.; Zhu, D.Z.; Gyũrék, L.L.; Labatiuk, C.W. Effectiveness of dry ponds for stormwater total suspended solids removal. Can. J. Civ. Eng. 2002, 29, 316–324. [Google Scholar] [CrossRef]
- Yelton, R. Cleaning the: Marketing the separation units allows producers to expand their markets. Concr. Prod. 2009, 27, 41–42. [Google Scholar]
- Tran, D.; Kang, J.-H. Optimal design of a hydrodynamic separator for treating runoff from roadways. J. Environ. Manag. 2013, 116, 1–9. [Google Scholar] [CrossRef]
- Lee, D.H.; Min, K.S.; Kang, J.-H. Performance evaluation and a sizing method for hydrodynamic separators treating urban stormwater runoff. Water Sci. Technol. 2014, 69, 2122–2131. [Google Scholar] [CrossRef]
- Brown, J.; Stein, E.; Ackerman, D.; Dorsey, J.; Lyon, J.; Carter, P. Metals and bacteria partitioning to various size particles in Ballona creek storm water runoff. Environ. Toxicol. Chem. 2013, 32, 320–328. [Google Scholar] [CrossRef]
- Meroney, R.N.; Sheker, R.E. Removing grit during wastewater treatment: CFD Analysis of HDVS performance. Water Environ. Res. 2016, 88, 438–448. [Google Scholar] [CrossRef]
- Mahaveer, M.; You, X.-Y. Optimization of hydrodynamic vortex separator for removal of sand particles from storm water by computational fluid dynamics. Desalin. Water Treat. 2021, 223, 54–70. [Google Scholar] [CrossRef]
- Heist, J.; Davey, A.; Hawkins, R.; Fitzgerald, J.; Warren, P. Continuous Deflective Separation (CDS) Use for Treating Sanitary Wet Weather Flows. In Proceedings of the World Water and Environmental Resources Congress 2004, Salt Lake City, UT, USA, 27 July 2004; p. 10, ISBN 978-0-7844-0737-0. [Google Scholar]
- Petavy, F.; Ruban, V.; Conil, P.; Viau, J.Y. Reduction of sediment micro-pollution by means of a pilot plant. Water Sci. Technol. 2008, 57, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.-H.; Kim, S.-W.; Kim, L.-H.; Kim, J.H.; Lee, S.; Min, K.-S. Particle removal properties of stormwater runoff with a lab-scale vortex separator. Desalin. Water Treat. 2012, 38, 349–353. [Google Scholar] [CrossRef]
- Neupert, J.W.; Lau, P.; Venghaus, D.; Barjenbruch, M. Development of a new testing approach for decentralised technical sustainable drainage systems. Water Switz. 2021, 13, 722. [Google Scholar] [CrossRef]
- Ismail, M.; Nikraz, H. Rocla Versatraps: Laboratory performance trials. Water 2007, 34, 67–72. [Google Scholar]
- Liu, L.; Sun, Y.; Kleinmeyer, Z.; Habil, G.; Yang, Q.; Zhao, L.; Rosso, D. Microplastics separation using stainless steel mini-hydrocyclones fabricated with additive manufacturing. Sci. Total Environ. 2022, 840, 156697. [Google Scholar] [CrossRef]
- Chen, S.; Qin, H.-P.; Zheng, Y.; Fu, G. Spatial variations of pollutants from sewer interception system overflow. J. Environ. Manag. 2019, 233, 748–756. [Google Scholar] [CrossRef]
- Radzuan, M.; Belope, M.; Thorpe, R. Removal of fine oil droplets from oil-in-water mixtures by dissolved air flotation. Chem. Eng. Res. Des. 2016, 115, 19–33. [Google Scholar] [CrossRef]
- Piaggio, A.L.; Soares, L.A.; Balakrishnan, M.; Guleria, T.; de Kreuk, M.K.; Lindeboom, R.E.F. High suspended solids removal of Indian drain water with a down-scaled Dissolved Air Flotation (DAF) for water recovery. Assessing water-type dependence on process control variables. Environ. Chall. 2022, 8, 100567. [Google Scholar] [CrossRef]
- Rajapakse, N.; Zargar, M.; Sen, T.; Khiadani, M. Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review. Sep. Purif. Technol. 2022, 289, 120772. [Google Scholar] [CrossRef]
- Velautham, K.D.; Chelliapan, S.; Kamaruddin, S.A.; Meyers, J.L. Design requirements for the treatment of stormwater contaminated with jet fuel oil using corrugated plate interceptor. Egypt. J. Chem. 2022, 65, 1–10. [Google Scholar]
- Tarnowski, K.; Bering, S.; Głowacka, A.; Mazur, J. Oil derivatives separating efficiency in treatment of water contaminated with diesel oil with bio-components. Desalin. Water Treat. 2018, 134, 52–56. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, D.Z.; van Duin, B. Note on sediment removal efficiency in oil-grit separators. Water Sci. Technol. 2018, 2017, 729–735. [Google Scholar] [CrossRef]
- Peters, C.; Keller, S.; Sieker, H.; Jekel, M. Potentials of real time control, stormwater infiltration and urine separation to minimize river impacts: Dynamic long term simulation of sewer network, pumping stations, pressure pipes and waste water treatment plant. Water Sci. Technol. 2007, 56, 1–10. [Google Scholar] [CrossRef]
- Gevaert, V.; Verdonck, F.; De Baets, B. A scenario analysis for reducing organic priority pollutants in receiving water using integrated dynamic urban fate models. Sci. Total Environ. 2012, 432, 422–431. [Google Scholar] [CrossRef]
- Liu, S.; Wu, J.; Sun, L.; Huang, M.; Qiu, X.; Tang, H.; Liu, J.; Wu, P. Analysis and study of the migration pattern of microplastic particles in saturated porous media pavement. Sci. Total Environ. 2023, 861, 160613. [Google Scholar] [CrossRef]
- Ranieri, V.; Coropulis, S.; Fedele, V.; Intini, P.; Sansalone, J. Flexible Permeable-Pavement System Sustainability: A Methodology for Stormwater Management Based on PM Granulometry. Infrastructures 2024, 9, 95. [Google Scholar] [CrossRef]
- Kinzelman, J.; Byappanahalli, M.N.; Nevers, M.B.; Shively, D.; Kurdas, S.; Nakatsu, C. Utilization of multiple microbial tools to evaluate efficacy of restoration strategies to improve recreational water quality at a Lake Michigan Beach (Racine, WI). J. Microbiol. Methods 2020, 178, 106049. [Google Scholar] [CrossRef]
- Niu, S.; Song, X.; Yu, J.; Kim, Y. Nitrogen reduction by fill-and-drain wetland receiving high pollution stormwater from impervious road generated by the initial precipitation. Desalin. Water Treat. 2020, 203, 150–159. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y. Nitrogen retention and purification efficiency from rainfall runoff via retrofitted bioretention cells. Sep. Purif. Technol. 2019, 220, 25–32. [Google Scholar] [CrossRef]
- Endreny, T.; Collins, V. Implications of bioretention basin spatial arrangements on stormwater recharge and groundwater mounding. Ecol. Eng. 2009, 35, 670–677. [Google Scholar] [CrossRef]
- Christoffels, E.; Brunsch, A.; Wunderlich-Pfeiffer, J.; Mertens, F.M. Monitoring micropollutants in the Swist river basin. Water Sci. Technol. 2016, 74, 2280–2296. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, T.; Vigneswaran, S.; Loganathan, P.; Kandasamy, J.; Aryal, R. Removal of Inorganic Contaminants from Simulated Stormwater by Three Sorbents in Columns Under Intermittent Runoff Condition. Sep. Sci. Technol. 2012, 47, 2340–2347. [Google Scholar]
- Ahmadi, A.; Yang, W.; Jones, S.; Wu, T. Separation-free Al-Mg/graphene oxide composites for enhancement of urban stormwater runoff quality. Adv. Compos. Hybrid Mater. 2018, 1, 591–601. [Google Scholar] [CrossRef]
- Liu, D.; Sansalone, J.J.; Cartledge, F.K. Comparison of sorptive filter media for treatment of metals in runoff. J. Environ. Eng. 2005, 131, 1178–1186. [Google Scholar] [CrossRef]
- Huber, M.; Hilbig, H.; Badenberg, S.C.; Fassnacht, J.; Drewes, J.E.; Helmreich, B. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications. Water Res. 2016, 102, 453–463. [Google Scholar] [CrossRef]
- Murray, A.; Örmeci, B. Removal effectiveness of nanoplastics (<400 nm) with separation processes used for water and wastewater treatment. Water Switz. 2020, 12, 635. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, J.; Hu, T.; Xia, Q. Loess-loaded silica gel materials for stormwater management facilities: Hydrology and water quality. Sep. Purif. Technol. 2024, 352, 127949. [Google Scholar] [CrossRef]
- Ataguba, C.O.; Brink, I. A comparison of oil and grease removal from automobile workshop stormwater runoff using gravel, granular activated carbon, rice husk and conventional oil and grease (O&G) trap. Water SA 2022, 48, 50–55. [Google Scholar] [CrossRef]
- Samuel, M.P.; Senthilvel, S.; Tamilmani, D.; Mathew, A.C. Performance evaluation and modelling studies of gravel-coir fibre-sand multimedia stormwater filter. Environ. Technol. 2012, 33, 2057–2069. [Google Scholar] [CrossRef]
- Al-Mashaqbeh, O.; McLaughlan, R. Non-equilibrium zinc uptake onto compost particles from synthetic stormwater. Bioresour. Technol. 2012, 123, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Kayhanian, M.; Givens, B. Processing and analysis of roadway runoff micro (<20 μm) particles. J. Environ. Monit. 2011, 13, 2720–2727. [Google Scholar] [CrossRef] [PubMed]
- Raspati, G.S.; Haug Lindseth, H.K.; Muthanna, T.M.; Azrague, K. Potential of biofilters for treatment of de-icing chemicals. Water Switz. 2018, 10, 620. [Google Scholar] [CrossRef]
- Scholz, M.; Xu, J.; Dodson, H.I. Comparison of Filter Media, Plant Communities and Microbiology within Constructed Wetlands Treating Wastewater Containing Heavy Metals. J. Chem. Technol. Biotechnol. 2001, 76, 827–835. [Google Scholar] [CrossRef]
- Zakharova, J.; Pouran, H.; Wheatley, A.; Arif, M. Assessment of oil-interceptor performance for solid removal in highway runoff. Environ. Technol. 2023, 44, 197–210. [Google Scholar] [CrossRef]
- Jago, R.A. Advances in stormwater pollution control. Water 2000, 49–50. [Google Scholar]
- Jago, R.A.; Davey, A. The CDS story: Continuous innovation. Water 2002, 29, 64–68. [Google Scholar]
- Birch, H.; Gouliarmou, V.; Lützhoft, H.-C.H.; Mikkelsen, P.S.; Mayer, P. Passive dosing to determine the speciation of hydrophobic organic chemicals in aqueous samples. Anal. Chem. 2010, 82, 1142–1146. [Google Scholar] [CrossRef]
- Magnuson, M.; Kelty, C.; Kelty, K. Trace metal loading on water-borne soil and dust particles characterized through the use of split-flow thin cell fractionation. Anal. Chem. 2001, 73, 3492–3496. [Google Scholar] [CrossRef]
- Phillips, D.; Jamwal, P.; Lindquist, M.; Gronewold, A. Assessing catchment-scale performance of in-stream Provisional Green Infrastructure interventions for Dry Weather Flows. Landsc. Urban Plan. 2022, 226, 104448. [Google Scholar] [CrossRef]
- Newman, A.P.; Aitken, D.; Antizar-Ladislao, B. Stormwater quality performance of a macro-pervious pavementcar park installation equipped with channel drainbased oil and silt retention devices. Water Res. 2013, 47, 7327–7336. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.H.; Chen, C.Y.; Hsu, W.Y.; Fukui, K.; Fukasawa, T.; Huang, A.N.; Kuo, H.P. Effect of the operation temperature on the hydrodynamics and performances of a cyclone separator. Adv. Powder Technol. 2022, 33, 103791. [Google Scholar] [CrossRef]
- Hreiz, R.; Gentric, C.; Midoux, N.; Lainé, R.; Fünfschilling, D. Hydrodynamics and velocity measurements in gas–liquid swirling flows in cylindrical cyclones. Chem. Eng. Res. Des. 2014, 92, 2231–2246. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Z.; Xiao, G.; Hu, X.; Chen, H.; Zhang, R.; Luo, X.; Wang, J.; Yang, Y. Monitoring the hydrodynamics and critical variation of separation efficiency of cyclone separator via acoustic emission technique with multiple analysis methods. Powder Technol. 2020, 373, 174–183. [Google Scholar] [CrossRef]
- Natarajan, P.; Davis, A.P. Ecological assessment of a transitioned stormwater infiltration basin. Ecol. Eng. 2016, 90, 261–267. [Google Scholar] [CrossRef]
- Amiri, M.; Mikielewicz, J.; Mikielewicz, D. CO2 capture using steam ejector condenser under electro hydrodynamic actuator with non-condensable gas and cyclone separator: A numerical study. Sep. Purif. Technol. 2024, 329, 125236. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Wang, L.; Yu, B. A comprehensive review of the bio-corrosion mechanisms, hydrodynamics and antifouling measures on marine concrete. Ocean Eng. 2024, 310, 118696. [Google Scholar] [CrossRef]
- Jurczak, T.; Wagner, I.; Kaczkowski, Z.; Szklarek, S.; Zalewski, M. Hybrid system for the purification of street stormwater runoff supplying urban recreation reservoirs. Ecol. Eng. 2018, 110, 67–77. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A. Adaptation of urban drainage networks to climate change: A review. Sci. Total Environ. 2021, 771, 145431. [Google Scholar] [CrossRef]
- Fowdar, H.S.; Neo, T.H.; Ong, S.L.; Hu, J.; McCarthy, D.T. Performance analysis of a stormwater green infrastructure model for flow and water quality predictions. J. Environ. Manag. 2022, 316, 115259. [Google Scholar] [CrossRef]
- Liu, H.; Sansalone, J. CFD and physical models of PM separation for urban drainage hydrodynamic unit operations. Water Res. 2019, 154, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, H.; Yao, J.; Cao, S.; Liu, X.; Cheng, G.; Hu, Q.; Wang, F.; Zhang, Z. Hydrodynamic characteristics analysis of series hydraulic cyclone separators for pond aquaculture wastewater purification. Aquac. Eng. 2024, 106, 102436. [Google Scholar] [CrossRef]
- Xi, J.; Zhou, Z.; Yuan, Y.; Xiao, K.; Qin, Y.; Wang, K.; An, Y.; Ye, J.; Wu, Z. Enhanced nutrient removal from stormwater runoff by a compact on-site treatment system. Chemosphere 2022, 290, 133314. [Google Scholar] [CrossRef]
- Azad, A.; Sheikh, M.N.; Hai, F.I. A critical review of the mechanisms, factors, and performance of pervious concrete to remove contaminants from stormwater runoff. Water Res. 2024, 251, 121101. [Google Scholar] [CrossRef]
- Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Environ. Sci. Policy 2016, 64, 101–117. [Google Scholar] [CrossRef]
- Rohith, A.N.; Sudheer, K.P. A novel safe-fail framework for the design of urban stormwater drainage infrastructures with minimal failure and flood severity. J. Hydrol. 2023, 627, 130393. [Google Scholar] [CrossRef]
- Xu, W.D.; Burns, M.J.; Cherqui, F.; Duchesne, S.; Pelletier, G.; Fletcher, T.D. Real-time controlled rainwater harvesting systems can improve the performance of stormwater networks. J. Hydrol. 2022, 614, 128503. [Google Scholar] [CrossRef]
- Price, W.D.; Burchell, M.R.; Hunt, W.F.; Chescheir, G.M. Long-term study of dune infiltration systems to treat coastal stormwater runoff for fecal bacteria. Ecol. Eng. 2013, 52, 1–11. [Google Scholar] [CrossRef]
- Monaghan, J.; Jaeger, A.; Agua, A.; Stanton, R.; Pirrung, M.; Gill, C.; Krogh, E. A Direct Mass Spectrometry Method for the Rapid Analysis of Ubiquitous Tire-Derived Toxin N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine Quinone (6-PPDQ). Environ. Sci. Technol. Lett. 2021, 8, 1051–1056. [Google Scholar] [CrossRef]
- Li, H.; Shatarah, M. Operator learning for urban water clarification hydrodynamics and particulate matter transport with physics-informed neural networks. Water Res. 2024, 251, 121123. [Google Scholar] [CrossRef]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Avellaneda, P.; Briggs, J.; Fowler, G.; Wildey, R. Seasonal performance variations for storm-water management systems in cold climate conditions. J. Environ. Eng. 2009, 135, 128–137. [Google Scholar] [CrossRef]
- Lee, J.H.; Bang, K.W.; Choi, C.S.; Lim, H.S. CFD modelling of flow field and particle tracking in a hydrodynamic stormwater separator. Water Sci. Technol. 2010, 62, 2381–2388. [Google Scholar] [CrossRef] [PubMed]
- Ferrans, P.; Torres, M.N.; Temprano, J.; Rodríguez Sánchez, J.P. Sustainable Urban Drainage System (SUDS) modeling supporting decision-making: A systematic quantitative review. Sci. Total Environ. 2022, 806, 150447. [Google Scholar] [CrossRef] [PubMed]
- Lindfors, S.; Österlund, H.; Lundy, L.; Viklander, M. Evaluation of measured dissolved and bio-met predicted bioavailable Cu, Ni and Zn concentrations in runoff from three urban catchments. J. Environ. Manag. 2021, 287, 112263. [Google Scholar] [CrossRef]
- Li, B.; Yuan, D.; Gao, C.; Zhang, H.; Li, Z. Synthesis and characterization of TiO2/ZnO heterostructural composite for ultraviolet photocatalytic degrading DOM in landfill leachate. Environ. Sci. Pollut. Res. 2022, 29, 85510–85524. [Google Scholar] [CrossRef]
- Duwiejuah, A.B.; Abubakari, A.H.; Quainoo, A.K.; Amadu, Y. Review of Biochar Properties and Remediation of Metal Pollution of Water and Soil. J. Health Pollut. 2020, 10, 200902. [Google Scholar] [CrossRef]
- Castiglioni, M.; Rivoira, L.; Ingrando, I.; Del Bubba, M.; Bruzzoniti, M.C. Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review. Molecules 2021, 26, 5063. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q.; Tang, Y.; Liu, Z.; Ye, L.; Chen, R.; Yuan, S. Application of biochar as an innovative soil ameliorant in bioretention system for stormwater treatment: A review of performance and its influencing factors. Water Sci. Technol. 2022, 86, 1232–1252. [Google Scholar] [CrossRef]
- Xiong, J.; Liang, L.; Shi, W.; Li, Z.; Zhang, Z.; Li, X.; Liu, Y. Application of biochar in modification of fillers in bioretention cells: A review. Ecol. Eng. 2022, 181, 106689. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Valenca, R.; Berger, A.W.; Yu, I.K.M.; Xiong, X.; Saunders, T.M.; Tsang, D.C.W. Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Sci. Total Environ. 2018, 625, 1644–1658. [Google Scholar] [CrossRef]
- Malyan, S.K.; Kumar, S.S.; Fagodiya, R.K.; Ghosh, P.; Kumar, A.; Singh, R.; Singh, L. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew. Sustain. Energy Rev. 2021, 149, 111379. [Google Scholar] [CrossRef]
- Blanco-Alegre, C.; Pont, V.; Calvo, A.I.; Castro, A.; Oduber, F.; Pimienta-del-Valle, D.; Fraile, R. Links between aerosol radiative forcing and rain characteristics: Stratiform and convective precipitation. Sci. Total Environ. 2022, 819, 152970. [Google Scholar] [CrossRef] [PubMed]
- Eramo, A.; Reyes, H.D.; Fahrenfeld, N.L. Partitioning of antibiotic resistance genes and fecal indicators varies intra and inter-storm during combined sewer overflows. Front. Microbiol. 2017, 8, 2024. [Google Scholar] [CrossRef] [PubMed]
- Boni, W.; Arbuckle-Keil, G.; Fahrenfeld, N.L. Inter-storm variation in microplastic concentration and polymer type at stormwater outfalls and a bioretention basin. Sci. Total Environ. 2022, 809, 151104. [Google Scholar] [CrossRef]
- Torres, A.; Bertrand-Krajewski, J.-L. Partial least squares local calibration of a UV-visible spectrometer used for in situ measurements of COD anD TSS concentrations in urban drainage systems. Water Sci. Technol. 2008, 57, 581–588. [Google Scholar] [CrossRef]
- Aryal, R.; Chong, M.N.; Beecham, S.; Mainali, B. Identifying the first flush in stormwater runoff using UV spectroscopy. Desalin. Water Treat. 2017, 96, 231–236. [Google Scholar] [CrossRef]
Criteria | Inclusion | Exclusion |
---|---|---|
Publication type | Journal articles | Conference proceeding papers, review articles, book chapters |
Language | English | Non-English |
Water treatment | Relate to stormwater treatment | Not related to stormwater treatment |
Period | Between 2000 and 2024 | Earlier than 2000 |
Publication | Study Region | Method | Device | Pollutant | Remarks |
---|---|---|---|---|---|
[129] | UK | Field study | Oil interceptors | Floatable impurities (leaves, oil) and total suspended solids | Interceptor achieves a removal efficiency of 70% for suspended solids; however, it is not able to separate particles smaller than 25 μm. |
[64] | USA | Field study | Lab experiment | E. coli | Screening filtration is not able to reduce the concentration of E. coli from lab tests. |
Publication | Study Region | Method | Types of Separation | Device | Pollutant | Remarks |
---|---|---|---|---|---|---|
[130] | Australia | Field study | Settling and screening | CDS | Suspended solids and dissolved species | It can effectively remove suspended solids, as well as the particles smaller than the screen aperture, from stormwater. |
[131] | Australia | Research study | Settling and screening | CDS | - | It can reduce several pollutants from raw sewage at high rates. |
[132] | Australia | Laboratory experiment | Settling and screening | CDS | Suspended solids, metal, and nitrogen | It can efficiently remove suspended solids, Cr, Cu, Pb, Mn, and Fe from stormwater; however, it does not perform well in removing Ni, Zn, and nitrogen. |
[133] | USA | Laboratory experiment | Settling and screening | SPLITT fractionation | Metal | SPLITT fractionation is capable of removing metallic pollutants smaller than 50 μm. |
[134] | India | Model simulation | Settling and filtration | PGI | Suspended solids and nitrogen | PGI integrates a silt trap and biofilter. It is able to achieve removal efficiencies for suspended solids and phosphorus from 50 to 90%. However, it cannot replace the conventional wastewater treatment plant. |
[135] | UK | Model simulation | Settling and floating | MPPS | Oil and heavy metal | MPPS consists of a floating mat interceptor and settling tank. The former is used to intercept oil and the latter is used for particle settling. It shows a high removal efficiency of hydrocarbon and heavy metal from road runoff. |
Attribute | HDS | HDVS | CDS |
---|---|---|---|
Pollutant removal efficiency | 60–70% for coarse particles [90]. | 70–80% for fine particles [97]. | Exceeding 80% for coarse and fine particles [136]. |
Mechanism of operation | Size and density-based separation [119]. | Vortex flow with size-based separation [137]. | Controlled vortex flow with deflection plates [138]. |
Performance under variable flow | Reduced efficiency at high flow rates [139]. | Improved performance, but may still struggle [94]. | Maintains high efficiency under variable flow conditions [140]. |
Space requirements | Larger footprint needed for effective operation [119]. | Compact design, space-saving benefits [141]. | Very compact, easily integrated into existing systems [142]. |
Maintenance requirements | Moderate; potential for clogging [143]. | Lower than traditional separators [144]. | Low; designed to minimize clogging and operational issues [145]. |
Initial investment cost | Typically lower initial costs [146]. | Moderate investment needed for installation [147]. | Potentially higher, but cost-effective over time due to efficiency and low maintenance [148]. |
Integration with existing systems | May require significant modifications [149]. | Can be retrofitted into some systems [150]. | Easily integrated with minimal disruption [151]. |
Environmental impact | May not effectively address all pollutants [152]. | Good for fine sediment, but limited in some scenarios [153]. | Comprehensive approach, effectively manages a wide range of pollutants [154]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, Y.L.; Chen, Y.; Selvarajoo, A.; Law, C.L.; Teo, F.Y. Research Status and Trends of Hydrodynamic Separation (HDS) for Stormwater Pollution Control: A Review. Water 2025, 17, 498. https://doi.org/10.3390/w17040498
Wong YL, Chen Y, Selvarajoo A, Law CL, Teo FY. Research Status and Trends of Hydrodynamic Separation (HDS) for Stormwater Pollution Control: A Review. Water. 2025; 17(4):498. https://doi.org/10.3390/w17040498
Chicago/Turabian StyleWong, Yah Loo, Yixiao Chen, Anurita Selvarajoo, Chung Lim Law, and Fang Yenn Teo. 2025. "Research Status and Trends of Hydrodynamic Separation (HDS) for Stormwater Pollution Control: A Review" Water 17, no. 4: 498. https://doi.org/10.3390/w17040498
APA StyleWong, Y. L., Chen, Y., Selvarajoo, A., Law, C. L., & Teo, F. Y. (2025). Research Status and Trends of Hydrodynamic Separation (HDS) for Stormwater Pollution Control: A Review. Water, 17(4), 498. https://doi.org/10.3390/w17040498