The Role of Spatial Planning in Landscape-Based Groundwater Recharge: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Visualization Analysis
- Groundwater Recharge Potential Mapping: studies focusing on identifying and mapping areas with high groundwater recharge potential.
- Vulnerable relationship between climate change, urban landscape, and groundwater hydrology: research underscoring the vulnerable relationship between climate change and urban landscapes and factors affecting groundwater recharge and hydrological processes.
- Spatial Design in Groundwater Recharge: studies exploring spatial design interventions such as green infrastructure, water-sensitive urban design (WSUD), and landscape planning to enhance groundwater recharge.
- Participatory outlook: research focused on participatory approaches in groundwater management, emphasizing community and stakeholder engagement and collaborative decision-making processes.
3.2. Thematic Categorization in the Groundwater Recharge Literature from a Spatial Planning and Landscape Perspective
3.2.1. GWR Potential Mapping
3.2.2. Vulnerability Studies: Understanding the Relationship Between Groundwater, the Urban Landscape, and Climate Change
Landscape and Climate Conditions as Indicators of GW Vulnerability
Groundwater as a Marker of Landscape Fragility
GW in Ecosystem Services Evaluation
3.2.3. Spatial Design in Groundwater Recharge
Spatial Design as a Tool for Landscape-Based GWR
GW in an Integrated Urban Water Management Approach
3.2.4. Participatory Outlook
4. Discussion
4.1. Existing Research Trends and Gaps
4.2. Role of Remote Sensing and Digital Tools in Groundwater Management
4.3. Development of a Landscape-Based Framework for the Integration of GWR in Spatial Planning
4.4. Limitations
5. Conclusions
Future Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pavlova, D.; Milshina, Y. Sustainable water management in megacities of the future. In Urban Ecology: Emerging Patterns and Social-Ecological Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 201–219. [Google Scholar] [CrossRef]
- Backhaus, A.; Fryd, O.; Dam, T. Research in Landscape Architecture: Methods and Methodology; Van den Brink, A., Bruns, D., Tobi, H., Bell, S., Eds.; Routledge: London, UK, 2017; pp. 285–304. [Google Scholar]
- Irfan, M.; Kazmi, S.J.H.; Arsalan, M.H. Sustainable harnessing of the surface water resources for Karachi: A geographic review. Arab. J. Geosci. 2018, 11, 24. [Google Scholar] [CrossRef]
- Mclachlan, J.; Tanyanyiwa, C.T.; Schneuwly, R.; Carden, K.; Armitage, N.P.; Abrams, A.; Mguni, P.; Herslund, L.B. Pathways to water resilient South African cities—From mono-functional to multi-functional stormwater infrastructure. Sci. Afr. 2023, 20, e01674. [Google Scholar] [CrossRef]
- Bandari, A.; Sadhukhan, S. Analysis of spatial pattern of water supply continuity in an Indian metropolis: A case study of Hyderabad. Urban Water J. 2024, 21, 839–858. [Google Scholar] [CrossRef]
- Ahmad, I.; Hasan, H.; Jilani, M.M.; Ahmed, S.I. Mapping potential groundwater accumulation zones for Karachi city using GIS and AHP techniques. Environ. Monit. Assess. 2023, 195, 381. [Google Scholar] [CrossRef]
- UNESCO. The United Nations World Water Development Repot 2022: Groundwater—Making the Invisible Visible Executive Summary; UNESCO: Paris, France, 2022. [Google Scholar]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.C.R.; Serrao-Neumann, S.; de Oliveira Galvão, C. Groundwater Management in Coastal Areas through Landscape Scale Planning: A Systematic Literature Review. Environ. Manag. 2020, 65, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Damania, R.; Desbureaux, S.; Rodella, A.-S.; Russ, J.; Zaveri, E. Quality Unknown: The Invisible Water Crisis; World Bank: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 6 January 2025).
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The Nitrogen Cascade. BioScience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Foster, S.S.D.; Chilton, P.J. Groundwater: The processes and global significance of aquifer degradation. R. Soc. 2003, 358, 1957–1972. [Google Scholar] [CrossRef]
- Alley, W.M.; Reilly, T.E.; Franke, O.L. Sustainability of Ground-Water Resources. U.S. Deptartment of the Interior, U.S. Geological Survey: Washington, DC, USA, 1999. [Google Scholar]
- de Vries, J.J.; Simmers, I. Groundwater recharge: An overview of process and challenges. Hydrogeol. J. 2002, 10, 5–17. [Google Scholar] [CrossRef]
- McHarg, I.L. Design with Nature; Natural History Press: Philadelphia, PA, USA, 1969; Available online: https://archive.org/details/designwithnature00mcha/mode/2up (accessed on 16 January 2024).
- Reed, J.; Deakin, L.; Sunderland, T. What are ‘Integrated Landscape Approaches’ and how effectively have they been implemented in the tropics: A systematic map protocol. Environ. Evid. 2015, 4, 2. [Google Scholar] [CrossRef]
- Adhikari, R.K.; Yilmaz, A.G.; Mainali, B.; Dyson, P.; Imteaz, M.A. Methods of Groundwater Recharge Estimation under Climate Change: A Review. Sustainability 2022, 14, 15619. [Google Scholar] [CrossRef]
- Li, M.; Xie, Y.; Dong, Y.; Wang, L.; Zhang, Z. Review: Recent progress on groundwater recharge research in arid and semiarid areas of China. Hydrogeol. J. 2023, 32, 9–30. [Google Scholar] [CrossRef]
- Ali, M.; Mubarak, S. Approaches and Methods of Quantifying Natural Groundwater Recharge—A Review. Asian J. Environ. Ecol. 2017, 5, 1–27. [Google Scholar] [CrossRef]
- Banerjee, A.; Creedon, L.; Jones, N.; Gill, L.; Gharbia, S. Dynamic Groundwater Contamination Vulnerability Assessment Techniques: A Systematic Review. Hydrology 2023, 10, 182. [Google Scholar] [CrossRef]
- Al Atawneh, D.; Cartwright, N.; Bertone, E. Climate change and its impact on the projected values of groundwater recharge: A review. J. Hydrol. 2021, 601, 126602. [Google Scholar] [CrossRef]
- Fan, B.; Liu, X.; Zhu, Q.; Qin, G.; Li, J.; Lin, H.; Guo, L. Exploring the interplay between infiltration dynamics and Critical Zone structures with multiscale geophysical imaging: A review. Geoderma 2020, 374, 114431. [Google Scholar] [CrossRef]
- Gebru, A.B.; Gebreyohannes, T.; Kahsay, G.H.; Grum, B. The dilemma of choosing appropriate groundwater recharge estimation methods in Ethiopia: A systematic review of the existing methods. Groundw. Sustain. Dev. 2024, 27, 101358. [Google Scholar] [CrossRef]
- Zaresefat, M.; Ahrari, M.; Shoaei, G.R.; Etemadifar, M.; Aghamolaie, I.; Derakhshani, R. Identification of Suitable Site-specific Recharge Areas using Fuzzy Analytic Hierarchy Process (FAHP) Technique: A Case Study of Iranshahr Basin (Iran). Air Soil Water Res. 2022, 15, 11786221211063849. [Google Scholar] [CrossRef]
- Fujita, T.; Capozzoli, C.R.; Rafee, S.A.A.; de Freitas, E.D. Hydrological Modeling of Urbanized Basins. In Environmental Governance of the São Paulo Macrometropolis; Urban Book Series; Springer: Cham, Switzerland, 2024; Volume Part F3222, pp. 231–240. [Google Scholar] [CrossRef]
- Kebede, M.M.; Kumar, M.; Mekonnen, M.M.; Clement, T.P. Enhancing Groundwater Recharge Through Nature-Based Solutions: Benefits and Barriers. Hydrology 2024, 11, 195. [Google Scholar] [CrossRef]
- Yimer, E.A.; De Trift, L.; Lobkowicz, I.; Villani, L.; Nossent, J.; van Griensven, A. The underexposed nature-based solutions: A critical state-of-art review on drought mitigation. J. Environ. Manag. 2024, 352, 119903. [Google Scholar] [CrossRef] [PubMed]
- Kirby, A. Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. Publications 2023, 11, 10. [Google Scholar] [CrossRef]
- Zhang, H.; Nijhuis, S.; Newton, C. Freshwater blue space design and human health: A comprehensive research mapping based on scientometric analysis. Environ. Impact Assess. Rev. 2022, 97, 106859. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Lian, J.; Nijhuis, S.; Bracken, G.; Wu, X.; Wu, X.; Chen, D. Conservation and development of the historic garden in a landscape context: A systematic literature review. Landsc. Urban Plan. 2024, 246, 105027. [Google Scholar] [CrossRef]
- Bera, K.; Newcomer, M.E.; Banik, P. Groundwater recharge site suitability analysis through multi-influencing factors (MIF) in West Bengal dry-land areas, West Bengal, India. Acta Geochim. 2022, 41, 1030–1048. [Google Scholar] [CrossRef]
- Gizaw, E.A.; Bawoke, G.T.; Alemu, M.M.; Anteneh, Z.L. Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria decision analysis method in Fetam-Yisir catchment, Blue Nile Basin, Ethiopia. Appl. Geomatics 2023, 15, 659–681. [Google Scholar] [CrossRef]
- Singha, S.; Pasupuleti, S. Delineation of Groundwater Prospect Zones in Arang Block, Raipur District, Chhattisgarh, Central India, Using Analytical Network Process. J. Geol. Soc. India 2020, 95, 609–615. [Google Scholar] [CrossRef]
- De Souza, E.; Pontes, L.M.; Filho, E.I.F.; Schaefer, C.E.G.R.; Santos, E.E.D. Spatial and temporal potential groundwater recharge: The case of the doce river basin, Brazil. Rev. Bras. De Cienc. Do Solo 2019, 43, e0180010. [Google Scholar] [CrossRef]
- Chen, W.; Pradhan, B.; Li, S.; Shahabi, H.; Rizeei, H.M.; Hou, E.; Wang, S. Novel Hybrid Integration Approach of Bagging-Based Fisher’s Linear Discriminant Function for Groundwater Potential Analysis. Nat. Resour. Res. 2019, 28, 1239–1258. [Google Scholar] [CrossRef]
- Das, M.; Parveen, T.; Ghosh, D.; Alam, J. Assessing groundwater status and human perception in drought-prone areas: A case of Bankura-I and Bankura-II blocks, West Bengal (India). Environ. Earth Sci. 2021, 80, 636. [Google Scholar] [CrossRef]
- Collin, M.L.; Melloul, A.J. Assessing groundwater vulnerability to pollution to promote sustainable urban and rural development. J. Clean. Prod. 2003, 11, 727–736. [Google Scholar] [CrossRef]
- Nalini, N.S. Urbanisation and changing temperature patterns in the city of Bengaluru. Environ. Dev. Sustain. 2021, 23, 9090–9109. [Google Scholar] [CrossRef]
- Tomaškinová, J.; Tomaškin, J. Assessment of anthropogenic activity negative impact on the karst landscape and a proposal for revitalization measures. Carpathian J. Earth Environ. Sci. 2014, 9, 117–123. [Google Scholar]
- Falkowska, E. The significance of morphogenetic analysis in the assessment of soil-water conditions in Quaternary sediments. Geomorphology 2015, 246, 420–432. [Google Scholar] [CrossRef]
- Kuhlemann, L.-M.; Tetzlaff, D.; Smith, A.; Kleinschmit, B.; Soulsby, C. Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning. Hydrol. Earth Syst. Sci. 2021, 25, 927–943. [Google Scholar] [CrossRef]
- Lumongsod, R.M.G.; Ramos, N.T.; Dimalanta, C.B. Mapping the karstification potential of central Cebu, Philippines using GIS. Environ. Earth Sci. 2022, 81, 449. [Google Scholar] [CrossRef]
- Pereira, D.L.; Galvão, P.; Lucon, T.; Fujaco, M.A. Adapting the EPIK method to Brazilian Hydro(geo)logical context of the São Miguel watershed to assess karstic aquifer vulnerability to contamination. J. South Am. Earth Sci. 2018, 90, 191–203. [Google Scholar] [CrossRef]
- El-Rayes, A.E.; Arnous, M.O.; Shendi, E.-A.H.; Geriesh, M.H.; Gharib, R.A. Morphotectonic controls on hydro-environmental hazards in rift basins: A case study from Southern Suez Canal Province, Egypt. Geoenvironmental Disasters 2023, 10, 18. [Google Scholar] [CrossRef]
- Noriega-Puglisevich, J.A.; Eckhardt, K.I. Hydrological effects of the conversion of tropical montane forest to agricultural land in the central Andes of Peru. Environ. Qual. Manag. 2024, 34, e22221. [Google Scholar] [CrossRef]
- Negash, T.W.; Abagale, F.K.; Baatuuwie, B.N. Impact of land-use and land-cover change on watershed hydrology: A case study of Mojo watershed, Ethiopia. Environ. Earth Sci. 2022, 81, 536. [Google Scholar] [CrossRef]
- Busch, G. The impact of Short Rotation Coppice cultivation on groundwater recharge—A spatial (planning) perspective. Landbauforsch. Volkenrode 2009, 59, 207–221. [Google Scholar]
- Wu, M.; Ha, M.-A. Incorporating conservation practices into the future bioenergy landscape: Water quality and hydrology. In Bioenergy and Land Use Change; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Versace, V.L.; Ierodiaconou, D.; Stagnitti, F.; Hamilton, A.J. Appraisal of random and systematic land cover transitions for regional water balance and revegetation strategies. Agric. Ecosyst. Environ. 2008, 123, 328–336. [Google Scholar] [CrossRef]
- Li, R.; Zhu, G.; Lu, S.; Sang, L.; Meng, G.; Chen, L.; Jiao, Y.; Wang, Q. Effects of urbanization on the water cycle in the Shiyang River basin: Based on a stable isotope method. Hydrol. Earth Syst. Sci. 2023, 27, 4437–4452. [Google Scholar] [CrossRef]
- Dagar, J.C. Opportunities for Alternate Land Uses in Salty and Water Scarcity Areas. Int. J. Ecol. Environ. Sci. 2009, 35, 53–66. [Google Scholar]
- Al-Kindi, K.M.; Alqurashi, A.F.; Al-Ghafri, A.; Power, D. Assessing the Impact of Land Use and Land Cover Changes on Aflaj Systems over a 36-Year Period. Remote Sens. 2023, 15, 1787. [Google Scholar] [CrossRef]
- Vaddiraju, S.C.; Reshma, T. Urbanization implications on hydro-meteorological parameters of Saroor Nagar Watershed of Telangana. Environ. Chall. 2022, 8, 100562. [Google Scholar] [CrossRef]
- Randhir, T.O.; Tsvetkova, O. Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems. J. Hydrol. 2011, 404, 1–12. [Google Scholar] [CrossRef]
- Ramli, I.; Achmad, A.; Anhar, A.; Izzaty, A. Landscape patterns changes and relation to water infiltration of Krueng Peusangan Watershed in Aceh. IOP Conf. Series Earth Environ. Sci. 2021, 916, 012017. [Google Scholar] [CrossRef]
- Bhaskar, A.S.; Beesley, L.; Burns, M.J.; Fletcher, T.D.; Hamel, P.; Oldham, C.E.; Roy, A.H. Will it rise or will it fall? Managing the complex effects of urbanization on base flow. In Freshwater Science; University of Chicago Press: Chicago, IL, USA, 2016; pp. 293–310. [Google Scholar] [CrossRef]
- Leonard, L.S. Assessment of groundwater quality along cemeteries and associated potential health concerns in Dar es Salaam, Tanzania. Water Pract. Technol. 2022, 17, 1218–1229. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Qian, J.; Wen, X.; Xu, J. Prioritizing environmental risks of pharmaceuticals and personal care products in reclaimed water on urban green space in Beijing. Sci. Total Environ. 2019, 697, 133850. [Google Scholar] [CrossRef]
- Bester, M.L.; Frind, E.O.; Molson, J.W.; Rudolph, D.L. Numerical investigation of road salt impact on an urban wellfield. Groundwater 2006, 44, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Fatta, D.; Naoum, D.; Loizidou, M. Integrated environmental monitoring and simulation system for use as a management decision support tool in urban areas. J. Environ. Manag. 2002, 64, 333–343. [Google Scholar] [CrossRef]
- Gao, N.N.; Li, F.; Zeng, H.; Zheng, Y.R. The impact of human activities, natural factors and climate time-lag effects over 33 years in the heihe river basin, china. Appl. Ecol. Environ. Res. 2021, 19, 1589–1606. [Google Scholar] [CrossRef]
- Lagro, J.A.; Vowels, B.T.; Vondra, B. Exurban housing development, onsite wastewater disposal, and groundwater vulnerability within a changing policy context. Landsc. Urban Plan. 2017, 167, 60–71. [Google Scholar] [CrossRef]
- Baker, J.M.; Everett, Y.; Liegel, L.; Van Kirk, R. Patterns of Irrigated Agricultural Land Conversion in a Western U.S. Watershed: Implications for Landscape-Level Water Management and Land-Use Planning. Soc. Nat. Resour. 2014, 27, 1145–1160. [Google Scholar] [CrossRef]
- de Lima, G.N.; Fonseca-Salazar, M.A.; Campo, J. Urban growth and loss of green spaces in the metropolitan areas of São Paulo and Mexico City: Effects of land-cover changes on climate and water flow regulation. Urban Ecosyst. 2023, 26, 1739–1752. [Google Scholar] [CrossRef]
- Balha, A.; Singh, A.; Pandey, S.; Kumar, R.; Mallick, J.; Singh, C.K. Assessing the Impact of Land-Use Dynamics to Predict the Changes in Hydrological Variables Using Effective Impervious Area (EIA). Water Resour. Manag. 2023, 37, 3999–4014. [Google Scholar] [CrossRef]
- Muñoz, S.M.; Schoelynck, J.; Tetzlaff, D.; Debbaut, R.; Warter, M.; Staes, J. Assessing biodiversity and regulatory ecosystem services in urban water bodies which serve as aqua-Nature-based Solutions. Front. Environ. Sci. 2023, 11, 1304347. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, Q.; Xiao, S.; Xie, J.; Zou, S.; Yang, Q.; Si, J. The impacts of the ecological water diversion project on the ecology-hydrology-economy nexus in the lower reaches in an inland river basin. Resour. Conserv. Recycl. 2021, 164, 105154. [Google Scholar] [CrossRef]
- Gotkowitz, M.B.; Attig, J.W.; McDermott, T. Inondation par les eaux souterraines d’une terrasse fluvial dans le sud-ouest du Wisconsin, Etats Unis d’Amérique. Hydrogeol. J. 2014, 22, 1421–1432. [Google Scholar] [CrossRef]
- Batelaan, O.; De Smedt, F.; Triest, L. Regional groundwater discharge: Phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J. Hydrol. 2003, 275, 86–108. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. Groundwater of Abu Dhabi Emirate: A regional assessment by means of remote sensing and geographic information system. Arab. J. Geosci. 2015, 8, 11279–11292. [Google Scholar] [CrossRef]
- Böttcher, F.; Zosseder, K. Thermal influences on groundwater in urban environments—A multivariate statistical analysis of the subsurface heat island effect in Munich. Sci. Total. Environ. 2021, 810, 152193. [Google Scholar] [CrossRef]
- Gunawardhana, L.N.; Kazama, S. Using subsurface temperatures to derive the spatial extent of the land use change effect. J. Hydrol. 2012, 460–461, 40–51. [Google Scholar] [CrossRef]
- Van Walsum, P.E.V.; Runhaar, J.; Helming, J.F.M. Spatial planning for adapting to climate change. Water Sci. Technol. 2005, 51, 45–52. [Google Scholar] [CrossRef]
- Syrbe, R.U.; Bastian, O.; Röder, M.; James, P. A framework for monitoring landscape functions: The Saxon Academy Landscape Monitoring Approach (SALMA), exemplified by soil investigations in the Kleine Spree floodplain (Saxony, Germany). Landsc. Urban Plan. 2007, 79, 190–199. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhattacharjee, S.; Bera, B. Hydro-Geomorphological Mapping of Manbhum-Singhbhum Plateau (Part of Singhbhum Protocontinent, India) for Water Resource Development and Landuse Planning. J. Indian Soc. Remote Sens. 2023, 51, 1757–1775. [Google Scholar] [CrossRef]
- Avtar, R.; Singh, C.K.; Singh, G.; Verma, R.L.; Mukherjee, S.; Sawada, H. Landslide susceptibility zonation study using remote sensing and GIS technology in the Ken-Betwa River Link area, India. Bull. Eng. Geol. Environ. 2011, 70, 595–606. [Google Scholar] [CrossRef]
- Benzenine, F.; Allal, M.A.; Abdelbaki, C.; Kumar, N.; Goosen, M.; Gathenya, J.M. Multi-Hazard Risk Assessment and Landslide Susceptibility Mapping: A Case Study from Bensekrane in Algeria. Sustainability 2023, 15, 2812. [Google Scholar] [CrossRef]
- Liu, Q.; Jian, W.; Nie, W. Sustainable Cities and Society 69 (2021) 102817 Rainstorm-induced landslides early warning system in mountainous cities based on groundwater level change fast prediction. Sustain. Cities Soc. 2021, 69, 102817. [Google Scholar] [CrossRef]
- Wen, T.; Tiewang, W.; Arabameri, A.; Nalivan, O.A.; Pal, S.C.; Saha, A.; Costache, R. Land-subsidence susceptibility mapping: Assessment of an adaptive neuro-fuzzy inference system–genetic algorithm hybrid modell. Geocarto Int. 2022, 37, 12194–12218. [Google Scholar] [CrossRef]
- Marchionni, V.; Guyot, A.; Tapper, N.; Walker, J.P.; Daly, E. Water balance and tree water use dynamics in remnant urban reserves. J. Hydrol. 2019, 575, 343–353. [Google Scholar] [CrossRef]
- Arden, S.; Ma, X.; Brown, M. An ecohydrologic model for a shallow groundwater urban environment. Water Sci. Technol. 2014, 70, 1789–1797. [Google Scholar] [CrossRef]
- Božiček, B.; Koren, E. Management of Landslides in Small Settlements in Slovenia. In Advancing Culture of Living with Landslides; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 989–998. [Google Scholar] [CrossRef]
- Falconi, L.; Leoni, G.; Arestegui, P.M.; Puglisi, C.; Savini, S. Geomorphological processes and cultural heritage of Maca and Lari Villages: An opportunity for sustainable tourism development in the Colca Valley (Province of Caylloma, Arequipa, South Perù). In Landslide Science and Practice: Risk Assessment, Management and Mitigation; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2013; pp. 459–465. [Google Scholar] [CrossRef]
- Li, Z.; Wu, S.; Zhang, S.; Nie, C.; Li, Y.; Huang, Y. Optimization of land reuse structure in coal mining subsided areas considering regional economic development: A case study in Pei County, China. Sustainability 2020, 12, 3335. [Google Scholar] [CrossRef]
- Yilmaz, I. GIS based susceptibility mapping of karst depression in gypsum: A case study from Sivas basin (Turkey). Eng. Geol. 2007, 90, 89–103. [Google Scholar] [CrossRef]
- Tziritis, E.; Lombardo, L. Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: The case of eastern Kopaida, central Greece. Appl. Water Sci. 2017, 7, 2215–2229. [Google Scholar] [CrossRef]
- Fatoyinbo, I.O.; Bello, A.A.; Olajire, O.O.; Oluwaniyi, O.E.; Olabode, O.F.; Aremu, A.L.; Omoniyi, L.A. Municipal solid waste landfill site selection: A geotechnical and geoenvironmental-based geospatial approach. Environ. Earth Sci. 2020, 79, 231. [Google Scholar] [CrossRef]
- Crivelenti, R.C.; Bueno, C.R.P.; Pires, J.S.R.; Francisco, J.; Lessi, B.F. Ecological-economic zoning of the city of altinópolis—SP, Brazil. Eng. Agricola 2016, 36, 1218–1228. [Google Scholar] [CrossRef]
- Bao, A.; Yu, T.; Xu, W.; Lei, J.; Jiapaer, G.; Chen, X.; Komiljon, T.; Khabibullo, S.; Sagidullaevich, X.B.; Kamalatdin, I. Ecological problems and ecological restoration zoning of the Aral Sea. J. Arid. Land 2024, 16, 315–330. [Google Scholar] [CrossRef]
- Foomani, M.S.; Malekmohammadi, B. Site selection of sustainable urban drainage systems using fuzzy logic and multi-criteria decision-making. Water Environ. J. 2020, 34, 584–599. [Google Scholar] [CrossRef]
- Esterhuyse, S.; Sokolic, F.; Redelinghuys, N.; Avenant, M.; Kijko, A.; Glazewski, J.; Plit, L.; Kemp, M.; Smit, A.; Vos, A.T.; et al. Vulnerability mapping as a tool to manage the environmental impacts of oil and gas extraction. R. Soc. Open Sci. 2017, 4, 171044. [Google Scholar] [CrossRef]
- Xue, S.; Wang, C.; Wu, Y.; Zhou, Q.; Song, Z.; Wu, Y. Revised zoning method for environmental fragility evaluation to desertification in arid–semiarid areas: A case of Dousitu river basin. Environ. Earth Sci. 2021, 80, 541. [Google Scholar] [CrossRef]
- Sefati, Z.; Khalilimoghadam, B.; Nadian, H. Assessing urban soil quality by improving the method for soil environmental quality evaluation in a saline groundwater area of Iran. Catena 2019, 173, 471–480. [Google Scholar] [CrossRef]
- Nielsen-Pincus, M.; Goldberg, C.S.; Pocewicz, A.; Force, J.E.; Waits, L.P.; Morgan, P.; Vierling, L. Predicted effects of residential development on a northern Idaho landscape under alternative growth management and land protection policies. Landsc. Urban Plan. 2010, 94, 255–263. [Google Scholar] [CrossRef]
- Chen, Y.; Paydar, Z. Evaluation of potential irrigation expansion using a spatial fuzzy multi-criteria decision framework. Environ. Model. Softw. 2012, 38, 147–157. [Google Scholar] [CrossRef]
- Susilo, H.; Purwantoro, D.; Rahadiansyah, S. Model Performance Index of Ground Water Irrigation Systems in the Karst Mountain Region: Case Study in Gunung Kidul Regency, Yogyakarta. IOP Conf. Series Earth Environ. Sci. 2021, 641, 012014. [Google Scholar] [CrossRef]
- Kumar, N.; Khamzina, A.; Tischbein, B.; Knöfel, P.; Conrad, C.; Lamers, J.P.A. Spatio-temporal supply–demand of surface water for agroforestry planning in saline landscape of the lower Amudarya Basin. J. Arid. Environ. 2019, 162, 53–61. [Google Scholar] [CrossRef]
- Lasch, P.; Lindner, M.; Ebert, B.; Flechsig, M.; Gerstengarbe, F.; Suckow, F.; Werner, P. Regional impact analysis of climate change on natural and managed forests in the Federal State of Brandenburg, Germany. Environ. Model. Assess. 1999, 4, 273–286. [Google Scholar] [CrossRef]
- Langroodi, S.H.M.; Masoum, M.G.; Nasiri, H.; Javi, S.T. Spatial and temporal variability analysis of groundwater quantity to land-use/land-cover change in the Khanmirza agricultural plain in Iran. Arab. J. Geosci. 2015, 8, 8385–8397. [Google Scholar] [CrossRef]
- Kasimir, Å.; He, H.; Coria, J.; Nordén, A. Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics. Glob. Chang. Biol. 2018, 24, 3302–3316. [Google Scholar] [CrossRef] [PubMed]
- Hermoso, V.; Cattarino, L.; Linke, S.; Kennard, M.J. Catchment zoning to enhance co-benefits and minimize trade-offs between ecosystem services and freshwater biodiversity conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 1004–1014. [Google Scholar] [CrossRef]
- Lupp, G.; Steinhäußer, R.; Bastian, O.; Syrbe, R.-U. Impacts of increasing bioenergy use on ecosystem services on nature and society exemplified in the German district of Görlitz. Biomass Bioenergy 2015, 83, 131–140. [Google Scholar] [CrossRef]
- Zipper, S.C.; Soylu, M.E.; Kucharik, C.J.; Loheide, S.P. Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model. Ecol. Model. 2017, 359, 201–219. [Google Scholar] [CrossRef]
- Martínez-Santos, P.; Díaz-Alcaide, S.; De la Hera-Portillo, A.; Gómez-Escalonilla, V. Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification. J. Hydrol. 2021, 603, 126873. [Google Scholar] [CrossRef]
- McLaughlin, D.L.; Cohen, M.J. Realizing ecosystem services: Wetland hydrologic function along a gradient of ecosystem condition. Ecol. Appl. 2013, 23, 1619–1631. [Google Scholar] [CrossRef]
- Xiao, W.; Fu, Y.; Wang, T.; Lv, X. Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Aevermann, T.; Schmude, J. Quantification and monetary valuation of urban ecosystem services in Munich, Germany. Z. Wirtsch. 2015, 59, 188–200. [Google Scholar] [CrossRef]
- Pinke, Z.; Kiss, M.; Lövei, G.L. Developing an integrated land use planning system on reclaimed wetlands of the Hungarian Plain using economic valuation of ecosystem services. Ecosyst. Serv. 2018, 30, 299–308. [Google Scholar] [CrossRef]
- Tammi, I.; Mustajärvi, K.; Rasinmäki, J. Integrating spatial valuation of ecosystem services into regional planning and development. Ecosyst. Serv. 2017, 26, 329–344. [Google Scholar] [CrossRef]
- Bremer, L.L.; Mandle, L.; Trauernicht, C.; Pascua, P.; McMillen, H.L.; Burnett, K.; Wada, C.A.; Kurashima, N.; Quazi, S.A.; Giambelluca, T.; et al. Bringing multiple values to the table: Assessing future land-use and climate change in North Kona, Hawai‘i. Ecol. Soc. 2018, 23, 33. [Google Scholar] [CrossRef]
- Ha, L.T.; Bastiaanssen, W.G.M. Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model. Sustainability 2023, 15, 6247. [Google Scholar] [CrossRef]
- Doyle, M.R.; Thalmann, P.; Parriaux, A. Underground potential for urban sustainability: Mapping resources and their interactions with the Deep City method. Sustainability 2016, 8, 830. [Google Scholar] [CrossRef]
- Teal, M.; Huang, C.-S.; Rodiek, J. Open space planning for Travis Country, Austin, Texas: A collaborative design. Landsc. Urban Plan. 1998, 42, 259–268. [Google Scholar] [CrossRef]
- Matos, C.; Sá, A.B.; Bentes, I.; Pereira, S.; Bento, R. An approach to the implementation of Low Impact Development measures towards an EcoCampus classification. J. Environ. Manag. 2019, 232, 654–659. [Google Scholar] [CrossRef]
- Valujeva, K.; Burlakovs, J.; Grinfelde, I.; Pilecka, J.; Jani, Y.; Hogland, W. Phytoremediation as tool for prevention of contaminant flow to hydrological systems. Res. Rural. Dev. 2018, 188–194. [Google Scholar] [CrossRef]
- Boukalová, Z.; Těšitel, J.; Gurung, B.D. Nature-based water treatment solutions and their successful implementation in kathmandu valley, nepal. WIT Trans. Ecol. Environ. 2020, 242, 121–132. [Google Scholar] [CrossRef]
- Tang, Y.; Jia, H.F.; Jiang, Q.G.; Wang, J. Comprehensive rehabilitation planning of deserted pits and the case study in plain area of Beijing, China. Landsc. Urban Plan. 2011, 99, 123–132. [Google Scholar] [CrossRef]
- Brenner, A.; Cohen, H.; Gradus, O.; Koren, O.; Shandalov, S.; Zinger, Y. Incorporation of Hybrid Biofilters in Water-Sensitive urban Design. Present. Environ. Sustain. Dev. 2019, 13, 167–177. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Dhyani, S.; Dasgupta, R.; Kumar, P.; Matli, C. Urban sustainability and resilience building: Blue-green infrastructure for air pollution abatement and realizing multiple co-benefits. In Blue-Green Infrastructure Across Asian Countries: Improving Urban Resilience and Sustainability; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 397–417. [Google Scholar] [CrossRef]
- Singh, I.; Bakshi, V. Geospatial approach for reducing water stress: Case study of Delhi. In Climate Change, Community Response and Resilience: Insight for Socio-Ecological Sustainability; Elsevier: Amsterdam, The Netherlands, 2023; pp. 467–497. [Google Scholar] [CrossRef]
- Novotny, V.; Hill, K. Diffuse pollution abatement—A key component in the integrated effort towards sustainable urban basins. In Water Science and Technology; IWA Publishing: London, UK, 2007; pp. 1–9. [Google Scholar] [CrossRef]
- Tjallingii, S. Water flows and urban planning. In Sustainable Urban Environments: An Ecosystem Approach; Springer: Dordrecht, The Netherlands, 2012; pp. 91–111. [Google Scholar] [CrossRef]
- Melloul, A.J.; Wollman, S.H. Qualitative hydrological and land-use planning tool for the Israel Coastal aquifer. Sci. Total. Environ. 2003, 309, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fryd, O.; Backhaus, A.; Birch, H.; Fratini, C.F.; Ingvertsen, S.T.; Jeppesen, J.; Panduro, T.E.; Roldin, M.; Jensen, M.B. Water sensitive urban design retrofits in Copenhagen—40% to the sewer, 60% to the city. Water Sci. Technol. 2013, 67, 1945–1952. [Google Scholar] [CrossRef]
- Lancia, M.; Zheng, C.; He, X.; Lerner, D.N.; Andrews, C.; Tian, Y. Hydrogeological constraints and opportunities for ‘Sponge City’ development: Shenzhen, southern China. J. Hydrol. Reg. Stud. 2020, 28, 100679. [Google Scholar] [CrossRef]
- Chandran, S.; Thiruchelve, S.R.; Dhanasekarapandian, M. Integrated urban water resources management strategy for a smart city in India. Water Supply 2021, 21, 736–749. [Google Scholar] [CrossRef]
- Palmer, M.A.; Lettenmaier, D.P.; Poff, N.L.; Postel, S.L.; Richter, B.; Warner, R. Climate change and river ecosystems: Protection and adaptation options. Environ. Manag. 2009, 44, 1053–1068. [Google Scholar] [CrossRef]
- Sheikh, B. Long-range planning for water reuse in the city of Los Angeles. Water Sci. Technol. 1991, 24, 11–17. [Google Scholar] [CrossRef]
- Panayi, A. Use of a Public Perceptions Study to Assist Policy Making for Reclaimed Water Reuse. Water Development Department Ministry of Agriculture, Natural Resources and Environment Republic of Cyprus. In Proceedings of the 13th International Conference on Environmental Science and Technology, Qingdao, China, 21–23 October 2022. [Google Scholar]
- Fertas, L.; Alouat, M.; Benmahamed, H. The Emergence of Irrigated Agriculture in Semi-Arid Zones in the Face of Climate Change and Urbanization in Peri-Urban Areas in Setif, Algeria. Sustainability 2024, 16, 1112. [Google Scholar] [CrossRef]
- Roggema, R.; Bruin-Baerts, K. Waterman. In Trends in Urban Design; Springer: Cham, Switzerland, 2023; Volume Part F8. [Google Scholar] [CrossRef]
- Alaerts, G.J. Water, physically connected yet institutionally fragmented—Investing in its strategies, asset classes, and organizations. In Financing Investment in Water Security: Recent Developments and Perspectives; Elsevier: Amsterdam, The Netherlands, 2022; pp. 17–55. [Google Scholar] [CrossRef]
- Everard, M.; Sharma, O.P.; Vishwakarma, V.K.; Khandal, D.; Sahu, Y.K.; Bhatnagar, R.; Singh, J.K.; Kumar, R.; Nawab, A.; Kumar, A.; et al. Assessing the feasibility of integrating ecosystem-based with engineered water resource governance and management for water security in semi-arid landscapes: A case study in the Banas catchment, Rajasthan, India. Sci. Total. Environ. 2018, 612, 1249–1265. [Google Scholar] [CrossRef]
- Newman, G.; Shi, T.; Yao, Z.; Li, D.; Sansom, G.; Kirsch, K.; Casillas, G.; Horney, J. Citizen science-informed community master planning: Land use and built environment changes to increase flood resilience and decrease contaminant exposure. Int. J. Environ. Res. Public Health 2020, 17, 486. [Google Scholar] [CrossRef]
- Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D’Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; et al. A Web-based spatial decision supporting system for land management and soil conservation. Solid Earth 2015, 6, 903–928. [Google Scholar] [CrossRef]
- Milz, D.; Zellner, M.; Hoch, C.; Radinsky, J.; Pudlock, K.; Lyons, L. Reconsidering Scale: Using Geographic Information Systems to Support Spatial Planning Conversations. Plan. Pract. Res. 2018, 33, 291–308. [Google Scholar]
- Mukuyu, P.; Nyambe, N.; Magombeyi, M.S.; Ebrahim, G.Y. Polycentric Groundwater Governance: Insights from the Kavango-Zambezi Transfrontier Conservation Area. Int. J. Commons 2024, 18, 322–336. [Google Scholar] [CrossRef]
- Yang, X.; Dong, J.; White, P.D. The key role of water resources management in ecological restoration in Western China. Geogr. Res. 2006, 44, 146–154. [Google Scholar] [CrossRef]
- Dhakal, K.P.; Chevalier, L.R. Urban Stormwater Governance: The Need for a Paradigm Shift. Environ. Manag. 2016, 57, 1112–1124. [Google Scholar] [CrossRef]
- Vollmer, D.; Pribadi, D.O.; Remondi, F.; Rustiadi, E.; Grêt-Regamey, A. Prioritizing ecosystem services in rapidly urbanizing river basins: A spatial multi-criteria analytic approach. Sustain. Cities Soc. 2016, 20, 237–252. [Google Scholar] [CrossRef]
- Rivas-Tabares, D.; Tarquis, A.M.; De Miguel, Á.; Gobin, A.; Willaarts, B. Enhancing LULC scenarios impact assessment in hydrological dynamics using participatory mapping protocols in semiarid regions. Sci. Total. Environ. 2022, 803, 149906. [Google Scholar] [CrossRef]
- Braune, E.; Xu, Y. The role of ground water in sub-Saharan Africa. Groundwater 2010, 48, 229–238. [Google Scholar] [CrossRef]
- Vejre, H.; Vesterager, J.P.; Kristensen, L.S.; Primdahl, J. Stakeholder and expert-guided scenarios for agriculture and landscape development in a groundwater protection area. J. Environ. Plan. Manag. 2011, 54, 1169–1187. [Google Scholar] [CrossRef]
- Kmoch, L.; Bou-Lahriss, A.; Plieninger, T. Drought threatens agroforestry landscapes and dryland livelihoods in a North African hotspot of environmental change. Landsc. Urban Plan. 2024, 245, 105022. [Google Scholar] [CrossRef]
- Nijhuis, S. Landscape-Based Urbanism: Cultivating Urban Landscapes Through Design. In Contemporary Urban Design Thinking; Springer Nature: Berlin/Heidelberg, Germany, 2022; Volume Part F7, pp. 249–277. [Google Scholar] [CrossRef]
- Nijhuis, S.; Xiong, L.; Cannatella, D. Towards a Landscape-based Regional Design Approach for Adaptive Transformation in Urbanizing Deltas. Res. Urban. Ser. 2021, 6, 55–80. [Google Scholar] [CrossRef]
- Bürgi, M.; Ali, P.; Chowdhury, A.; Heinimann, A.; Hett, C.; Kienast, F.; Mondal, M.K.; Upreti, B.R.; Verburg, P.H. Integrated landscape approach: Closing the gap between theory and application. Sustainability 2017, 9, 1371. [Google Scholar] [CrossRef]
- Alpak, E.M.; Özkan, D.G.; Düzenli, T. Systems approach in landscape design: A studio work. Int. J. Technol. Des. Educ. 2017, 28, 593–611. [Google Scholar] [CrossRef]
Author (Year) | Title | Conclusions | Limitations/Gaps/Further Recommendations |
---|---|---|---|
Braga et al. (2020) [9] | Groundwater Management in Coastal Areas through Landscape Scale Planning: A Systematic Literature Review | Understanding groundwater systems in terms of landscape units in spatial, temporal, and modification dimensions can help to improve groundwater management decisions. | Focused on coastal areas. |
Kumar et al. (2024) [28] | Enhancing Groundwater Recharge Through Nature-Based Solutions: Benefits and Barriers | Nature-based solutions can increase groundwater recharge. | Affective planning strategies are needed to enhance NBs for GWR. |
Yimer et al. (2024) [29] | The underexposed nature-based solutions: A critical state-of-the-art review on drought mitigation | Despite the potential, nature-based or landscape-based solutions are significantly underexplored, especially on a large scale globally. | The role of local stakeholders in enhancing the synergy between land use regulations and groundwater management needs to be explored. |
KW-1 | KW-2 | KW-3 |
---|---|---|
Groundwater recharge | Landscape | Spatial planning |
Related Keywords | ||
“Groundwater” OR “Groundwater recharge” OR “Aquifer recharge” OR “Groundwater Potential” OR “Managed Aquifer recharge” OR “Groundwater management” | “Landscape” OR “Landscape-scale planning” OR “Green space” OR “Landscape design” OR “Vegetation” OR “Landscape approach” OR “Nature-based solutions” | “Spatial planning” OR “Land-use planning” OR “Urban Design” OR “urban planning” OR “Regional planning” OR “Regional development” OR “Multiscale planning” |
Clusters | Numbers (Appendix) | Total Number | ||
---|---|---|---|---|
GWR potential mapping | 68, 74, 78, 91, 98, 117 | 6 | ||
Vulnerable relationship between climate change, urban landscape, and groundwater hydrology | Landscape and climate conditions as indicators of groundwater vulnerability | 7, 8, 10, 11, 12, 14, 15, 16, 18, 20, 21, 25, 30, 36, 37, 38, 39, 42, 44, 49, 50, 54, 56, 71, 72, 88, 89, 90, 92, 93, 99, 101, 102, 104, 107, 109, 110, 111, 112, 118, 119, 120 | 42 | 84 |
Groundwater as a marker of landscape fragility | 4, 6, 17, 23, 28, 29, 33, 35, 40, 52, 57, 59, 60, 69, 73, 75, 77, 80, 82, 83, 84, 87, 94, 95, 97, 100, 114, 115, 124, 125 | 30 | ||
Groundwater in ecosystem service evaluation | 34, 43, 47, 53, 55, 61, 63, 64, 65, 85, 106, 126 | 12 | ||
Spatial design in groundwater recharge | Spatial design to improve GWR | 5, 27, 46, 67, 70, 76, 108, 127 | 8 | 23 |
GW in an integrated urban water management approach | 2, 3, 9, 19, 26, 31, 32, 58, 79, 86, 96, 103, 113, 116, 121 | 15 | ||
Participatory outlook | 13, 22, 24, 41, 45, 48, 51, 62, 66, 81, 105, 122, 123 | 13 |
No. | Author | Country | Scale | Input Parameters | Highest Influencing Parameter | Model/ Methodology | Validation | Additional Associated Dimension |
---|---|---|---|---|---|---|---|---|
1 | De Souza et al. (2019) [39] | Brazil | Basin | Elevation Rainfall, Land Cover, and Soil Type | Rainfall | Random Forest Model and BALSEQ (Balance method for the evaluation of Groundwater Recharge Potential) Model | Soil Moisture Data | --- |
2 | Bara et al. (2022) [36] | India | Regional | Slope, Aspect, Altitude, Drainage Density, Pond Density, LULC, NDVI, Rainfall, Temperature, Lithology, Geomorphology, Lineament, and Soil Type | LULC and Lithology | Weighted Overlay Method and AHP (Analytical Hierarchy Process) | Groundwater Elevation Datasets | --- |
3 | Das et al. (2021) [41] | India | Sub-district | Lithology, Geomorphology, Lineament, Soil Type, LULC, Average Slope, and Drainage Density | Geomorphology | Weighted Overlay Method and AHP (Analytical Hierarchy process) | Groundwater Level | Human Adaptation Behavior |
4 | w. Chen et al. (2019) [40] | China | Regional | Elevation, Slope, Aspect, Plan Curvature, Profile Curvature, TWI, SPI, STI, Lithology, LULC, NDVI, Distance To Roads, and Distance To Streams | Lithology | FLDA (Fisher’s Linear Discriminant function), BFLDA (Integration Of Fisher’s Linear Discriminant Function With Bagging Ensemble), RFLDA (Integration Of Fisher’s Linear Discriminant Function With Rotation Forest Ensemble) | Friedman Test, Wilcoxon signed-rank Test, and ROC | --- |
5 | Gizaw et al. (2023) [37] | Ethiopia | Sub-Basin/catchment | Slope, Geomorphology, NDVI, Elevation, Geology, LULC, Soil, Rainfall, and Drainage Density | Slope | Weighted Overlay and AHP (Analytical Hierarchy Process) | Boreholes And Spring Yield Data | --- |
6 | Singha and Pasupuleti (2020) [38] | India | District | Aquifer, Soil, Geomorphology, Slope, Drainage Density, LULC, NDVI, and Rainfall | Aquifer | ANP (Analytical Network Process) | Groundwater Level | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, A.; Nijhuis, S.; Bobbink, I. The Role of Spatial Planning in Landscape-Based Groundwater Recharge: A Systematic Literature Review. Water 2025, 17, 862. https://doi.org/10.3390/w17060862
Riaz A, Nijhuis S, Bobbink I. The Role of Spatial Planning in Landscape-Based Groundwater Recharge: A Systematic Literature Review. Water. 2025; 17(6):862. https://doi.org/10.3390/w17060862
Chicago/Turabian StyleRiaz, Amna, Steffen Nijhuis, and Inge Bobbink. 2025. "The Role of Spatial Planning in Landscape-Based Groundwater Recharge: A Systematic Literature Review" Water 17, no. 6: 862. https://doi.org/10.3390/w17060862
APA StyleRiaz, A., Nijhuis, S., & Bobbink, I. (2025). The Role of Spatial Planning in Landscape-Based Groundwater Recharge: A Systematic Literature Review. Water, 17(6), 862. https://doi.org/10.3390/w17060862