Physics-Guided Deep Learning for Spatiotemporal Evolution of Urban Pluvial Flooding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Framework of Deep Learning-Based Urban Flood Predictions
2.2. Physics-Based Inundation Model
2.3. Deep Learning-Based Flood Prediction Model (CNN)
2.4. Performance Assessment
2.4.1. Binary Classification Measures
2.4.2. Flood Depth Prediction Measures
2.5. Study Area and Data
2.6. Experimental Setup
3. Results
3.1. Comparison of Spatiotemporal Evolution Between Physics-Based and Deep Learning Models
3.2. Computational Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Woo, H.; Choi, H.; Kim, M.; Noh, S.J. Estimating urban inundation using physics-informed deep learning: A case study of the Oncheon-cheon catchment. J. Korea Water Resour. Assoc. 2024, 57, 989–1001. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Güneralp, B.; Li, X.; Zhao, K.; Zhang, H. Increasing global urban exposure to flooding: An analysis of long-term annual dynamics. Sci. Total Environ. 2022, 817, 153012. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, P.; Li, Y.; Sheng, Y.; Wang, B.; Popovych, N.; Hu, T. Contributions of climate change and urbanization to urban flood hazard changes in China’s 293 major cities since 1980. J. Environ. Manag. 2024, 353, 120113. [Google Scholar] [CrossRef]
- Azizi, K.; Diko, S.K.; Saija, L.; Zamani, M.G.; Meier, C.I. Integrated community-based approaches to urban pluvial flooding research, trends and future directions: A review. Urban Clim. 2022, 44, 101237. [Google Scholar] [CrossRef]
- Yang, F.; Ding, W.; Zhao, J.; Song, L.; Yang, D.; Li, X. Rapid urban flood inundation forecasting using a physics-informed deep learning approach. J. Hydrol. 2024, 643, 131998. [Google Scholar] [CrossRef]
- Jiang, C.; Kang, Y.; Qu, K.; Long, Y.; Ma, Y.; Yan, S. Towards a high-resolution modelling scheme for local-scale urban flood risk assessment based on digital aerial photogrammetry. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2240392. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Engel, B.A.; Yu, T.; Zhang, X.; Qian, Y. A probabilistic assessment of urban flood risk and impacts of future climate change. J. Hydrol. 2023, 618, 129267. [Google Scholar] [CrossRef]
- Qi, W.; Ma, C.; Hongshi, X.; Zifan, C.; Zhao, K.; Han, H. A review on applications of urban flood models in flood mitigation strategies. Nat. Hazards 2021, 108, 31–62. [Google Scholar] [CrossRef]
- Sanders, B.F. Hydrodynamic Modeling of Urban Flood Flows and Disaster Risk Reduction. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Lee, S.; Kim, B.; Choi, H.; Noh, S.J. A review on urban inundation modeling research in South Korea: 2001–2022. J. Korea Water Resour. Assoc. 2022, 55, 707–721. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Sampson, C.C.; Smith, A.M.; Johnson, K.A.; Erickson, T.A. Validation of a 30 m resolution flood hazard model of the conterminous United States. Water Resour. Res. 2017, 53, 7968–7986. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, Y.; Wang, H. Urban flood simulation based on the SWMM model. Proc. IAHS 2015, 368, 186–191. [Google Scholar] [CrossRef]
- Neal, J.; Dunne, T.; Sampson, C.; Smith, A.; Bates, P. Optimisation of the two-dimensional hydraulic model LISFOOD-FP for CPU architecture. Environ. Model. Softw. 2018, 107, 148–157. [Google Scholar] [CrossRef]
- Bulti, D.T.; Abebe, B.G. A review of flood modeling methods for urban pluvial flood application. Model. Earth Syst. Environ. 2020, 6, 1293–1302. [Google Scholar] [CrossRef]
- Guo, K.; Guan, M.; Yu, D. Urban surface water flood modelling—A comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 2021, 25, 2843–2860. [Google Scholar] [CrossRef]
- Henonin, J.; Russo, B.; Mark, O.; Gourbesville, P. Real-time urban flood forecasting and modelling—A state of the art. J. Hydroinformatics 2013, 15, 717–736. [Google Scholar] [CrossRef]
- Kim, H.I.; Han, K.Y.; Lee, J.Y. Prediction of Urban Flood Extent by LSTM Model and Logistic Regression. J. Korean Soc. Civ. Eng. 2020, 40, 273–283. [Google Scholar] [CrossRef]
- Guo, K.; Guan, M.; Yan, H.; Xia, X. A spatially distributed hydrodynamic model framework for urban flood hydrological and hydraulic processes involving drainage flow quantification. J. Hydrol. 2023, 625, 130135. [Google Scholar] [CrossRef]
- Hasan, H.H.; Mohd Razali, S.F.; Ahmad Zaki, A.Z.I.; Mohamad Hamzah, F. Integrated Hydrological-Hydraulic Model for Flood Simulation in Tropical Urban Catchment. Sustainability 2019, 11, 6700. [Google Scholar] [CrossRef]
- Abdessamed, D.; Abderrazak, B. Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: Case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 2019, 78, 586. [Google Scholar] [CrossRef]
- Natarajan, S.; Radhakrishnan, N. An Integrated Hydrologic and Hydraulic Flood Modeling Study for a Medium-Sized Ungauged Urban Catchment Area: A Case Study of Tiruchirappalli City Using HEC-HMS and HEC-RAS. J. Inst. Eng. (India) Ser. A 2020, 101, 381–398. [Google Scholar] [CrossRef]
- Peker, İ.B.; Gülbaz, S.; Demir, V.; Orhan, O.; Beden, N. Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping. Sustainability 2024, 16, 1226. [Google Scholar] [CrossRef]
- Noh, S.J.; Lee, J.H.; Lee, S.; Kawaike, K.; Seo, D.J. Hyper-resolution 1D-2D urban flood modelling using LiDAR data and hybrid parallelization. Environ. Model. Softw. 2018, 103, 131–145. [Google Scholar] [CrossRef]
- Morales-Hernández, M.; Sharif, M.B.; Kalyanapu, A.; Ghafoor, S.K.; Dullo, T.T.; Gangrade, S.; Kao, S.C.; Norman, M.R.; Evans, K.J. TRITON: A Multi-GPU open source 2D hydrodynamic flood model. Environ. Model. Softw. 2021, 141, 105034. [Google Scholar] [CrossRef]
- Luan, G.; Hou, J.; Wang, T.; Li, D.; Zhou, Q.; Liu, L.; Duan, C. A 1D-2D dynamic bidirectional coupling model for high-resolution simulation of urban water environments based on GPU acceleration techniques. J. Clean. Prod. 2023, 428, 139494. [Google Scholar] [CrossRef]
- Dottori, F.; Todini, E. Developments of a flood inundation model based on the cellular automata approach: Testing different methods to improve model performance. Phys. Chem. Earth Parts A/B/C 2011, 36, 266–280. [Google Scholar] [CrossRef]
- Ghimire, B.; Chen, A.S.; Guidolin, M.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. J. Hydroinformatics 2012, 15, 676–686. [Google Scholar] [CrossRef]
- Guidolin, M.; Chen, A.S.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Model. Softw. 2016, 84, 378–394. [Google Scholar] [CrossRef]
- Cea, L.; Sañudo, E.; Montalvo, C.; Farfán, J.; Puertas, J.; Tamagnone, P. Recent advances and future challenges in urban pluvial flood modelling. Urban Water J. 2025, 22, 149–173. [Google Scholar] [CrossRef]
- Assumpção, T.H.; Popescu, I.; Jonoski, A.; Solomatine, D.P. Citizen observations contributing to flood modelling: Opportunities and challenges. Hydrol. Earth Syst. Sci. 2018, 22, 1473–1489. [Google Scholar] [CrossRef]
- Guo, K.; Guan, M.; Yan, H. Utilising social media data to evaluate urban flood impact in data scarce cities. Int. J. Disaster Risk Reduct. 2023, 93, 103780. [Google Scholar] [CrossRef]
- Alemu, A.N.; Haile, A.T.; Carr, A.B.; Trigg, M.A.; Mengistie, G.K.; Walsh, C.L. Filling data gaps using citizen science for flood modeling in urbanized catchment of Akaki. Nat. Hazards Res. 2023, 3, 395–407. [Google Scholar] [CrossRef]
- Yan, Z.; Guo, X.; Zhao, Z.; Tang, L. Achieving fine-grained urban flood perception and spatio-temporal evolution analysis based on social media. Sustain. Cities Soc. 2024, 101, 105077. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, W.; Nathan, R.; Wang, Q.J. A rapid flood inundation modelling framework using deep learning with spatial reduction and reconstruction. Environ. Model. Softw. 2021, 143, 105112. [Google Scholar] [CrossRef]
- Kabir, S.; Patidar, S.; Xia, X.; Liang, Q.; Neal, J.; Pender, G. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. J. Hydrol. 2020, 590, 125481. [Google Scholar] [CrossRef]
- Hosseiny, H. A deep learning model for predicting river flood depth and extent. Environ. Model. Softw. 2021, 145, 105186. [Google Scholar] [CrossRef]
- Zhou, Q.; Teng, S.; Situ, Z.; Liao, X.; Feng, J.; Chen, G.; Zhang, J.; Lu, Z. A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions. Hydrol. Earth Syst. Sci. 2023, 27, 1791–1808. [Google Scholar] [CrossRef]
- Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; et al. Global prediction of extreme floods in ungauged watersheds. Nature 2024, 627, 559–563. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Zhang, S. Fast Prediction of Urban Flooding Water Depth Based on CNN–LSTM. Water 2023, 15, 1397. [Google Scholar] [CrossRef]
- Xu, L.; Gao, L. A hybrid surrogate model for real-time coastal urban flood prediction: An application to Macao. J. Hydrol. 2024, 642, 131863. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H.; Peng, L. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol. 2020, 582, 124482. [Google Scholar] [CrossRef]
- Seleem, O.; Ayzel, G.; Bronstert, A.; Heistermann, M. Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany. Nat. Hazards Earth Syst. Sci. 2023, 23, 809–822. [Google Scholar] [CrossRef]
- Pal, S.; Saha, A.; Gogoi, P.; Saha, S. An Ensemble of J48 Decision Tree with AdaBoost and Bagging for Flood Susceptibility Mapping in the Sundarbans of West Bengal, India. In Geomorphic Risk Reduction Using Geospatial Methods and Tools; Springer: Singapore, 2024; pp. 117–133. [Google Scholar] [CrossRef]
- Bukhari, S.A.S.; Shafi, I.; Ahmad, J.; Butt, H.T.; Khurshaid, T.; Ashraf, I. Enhancing flood monitoring and prevention using machine learning and IoT integration. Nat. Hazards 2025, 121, 4837–4864. [Google Scholar] [CrossRef]
- Bukhari, S.A.S.; Shafi, I.; Ahmad, J.; Villar, S.G.; Villena, E.G.; Khurshaid, T.; Ashraf, I. Review of flood monitoring and prevention approaches: A data analytic perspective. Nat. Hazards 2024. [Google Scholar] [CrossRef]
- Löwe, R.; Böhm, J.; Jensen, D.G.; Leandro, J.; Rasmussen, S.H. U-FLOOD—Topographic deep learning for predicting urban pluvial flood water depth. J. Hydrol. 2021, 603, 126898. [Google Scholar] [CrossRef]
- Hofmann, J.; Schüttrumpf, H. floodGAN: Using Deep Adversarial Learning to Predict Pluvial Flooding in Real Time. Water 2021, 13, 2255. [Google Scholar] [CrossRef]
- Burrichter, B.; Hofmann, J.; Koltermann da Silva, J.; Niemann, A.; Quirmbach, M. A Spatiotemporal Deep Learning Approach for Urban Pluvial Flood Forecasting with Multi-Source Data. Water 2023, 15, 1760. [Google Scholar] [CrossRef]
- Kumar, V.; Azamathulla, H.M.; Sharma, K.V.; Mehta, D.J.; Maharaj, K.T. The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management. Sustainability 2023, 15, 10543. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Bhattarai, Y.; Bista, S.; Talchabhadel, R.; Duwal, S.; Sharma, S. Rapid prediction of urban flooding at street-scale using physics-informed machine learning-based surrogate modeling. Total Environ. Adv. 2024, 12, 200116. [Google Scholar] [CrossRef]
- Guglielmo, G.; Montessori, A.; Tucny, J.M.; La Rocca, M.; Prestininzi, P. A priori physical information to aid generalization capabilities of neural networks for hydraulic modeling. Front. Complex Syst. 2025, 2, 1508091. [Google Scholar] [CrossRef]
- Choi, H.; Lee, S.; Woo, H.; Noh, S.J. High-resolution Urban Flood Modeling using Cellular Automata-based WCA2D in the Oncheon-cheon Catchment in Busan, South Korea. Ksce J. Civ. Environ. Eng. Res. 2023, 43, 587–599. [Google Scholar] [CrossRef]
- Gibson, M.J.; Savic, D.A.; Djordjevic, S.; Chen, A.S.; Fraser, S.; Watson, T. Accuracy and Computational Efficiency of 2D Urban Surface Flood Modelling Based on Cellular Automata. Procedia Eng. 2016, 154, 801–810. [Google Scholar] [CrossRef]
- Cao, R.; Li, F.; Feng, P. Exploring the hydrologic response to the urban building coverage ratio by model simulation. Theor. Appl. Climatol. 2020, 140, 1005–1015. [Google Scholar] [CrossRef]
- Lee, S.; Choi, H.; Woo, H.; Kim, M.; Lee, E.; Kim, S.; Noh, S.J. Development and application of cellular automata-based urban inundation and water cycle model CAW. J. Korea Water Resour. Assoc. 2024, 57, 165–179. [Google Scholar] [CrossRef]
- Rasool, U.; Yin, X.; Xu, Z.; Rasool, M.A.; Hussain, M.; Siddique, J.; Hai, N.T. Quantifying pluvial flood simulation in ungauged urban area; A case study of 2022 unprecedented pluvial flood in Karachi, Pakistan. J. Hydrol. 2025, 655, 132905. [Google Scholar] [CrossRef]
- EA. What is the Risk of Flooding from Surface Water Map? Environment Agency: Bristol, UK, 2019.
- Woo, H. Estimating Urban Inundation Using Physics-Informed Deep Learning. Master’s Thesis, Kumoh National Institute of Technology, Gumi, Republic of Korea, 2025. [Google Scholar]
- Shon, T.S.; Kang, D.H.; Jang, J.K.; Shin, H.S. A study of Assessment for Internal Inundation Vulnerability in Urban Area using SWMM. J. Korean Soc. Hazard Mitig. 2010, 10, 105–117. [Google Scholar]
- Feng, D.; Tan, Z.; He, Q. Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model. Water Resour. Res. 2023, 59, e2022WR033168. [Google Scholar] [CrossRef]
- Donnelly, J.; Daneshkhah, A.; Abolfathi, S. Physics-informed neural networks as surrogate models of hydrodynamic simulators. Sci. Total Environ. 2024, 912, 168814. [Google Scholar] [CrossRef]
- Qi, X.; de Almeida, G.A.M.; Maldonado, S. Physics-informed neural networks for solving flow problems modeled by the 2D Shallow Water Equations without labeled data. J. Hydrol. 2024, 636, 131263. [Google Scholar] [CrossRef]
Inundated Grid in CNN | Non-Inundated Grid in CNN | |
---|---|---|
Inundated grid in CADDIES-caflood | a (Hits) | c (Misses) |
Non-inundated grid in CADDIES-caflood | b (False alarms) | d (True negatives) |
Synthetic Experiment | Real Experiment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Time (h) | HR | FAR | CSI | Misses | RMSE (m) | HR | FAR | CSI | Misses | RMSE (m) |
06:00 | 0.78 | 0.31 | 0.57 | 0.22 | 0.10 | 0.96 | 0.32 | 0.66 | 0.04 | 0.11 |
08:00 | 0.86 | 0.04 | 0.84 | 0.14 | 0.12 | 0.82 | 0.06 | 0.77 | 0.18 | 0.11 |
10:00 | 0.90 | 0.04 | 0.87 | 0.10 | 0.22 | 0.95 | 0.17 | 0.80 | 0.05 | 0.13 |
12:00 | 0.96 | 0.06 | 0.90 | 0.04 | 0.12 | 0.95 | 0.22 | 0.75 | 0.05 | 0.21 |
14:00 | 0.97 | 0.06 | 0.91 | 0.03 | 0.15 | 0.99 | 0.28 | 0.72 | 0.01 | 0.34 |
16:00 | 0.98 | 0.04 | 0.94 | 0.02 | 0.15 | 0.98 | 0.21 | 0.78 | 0.02 | 0.13 |
Average | 0.85 | 0.11 | 0.79 | 0.15 | 0.15 | 0.93 | 0.22 | 0.73 | 0.07 | 0.17 |
Model | CADDIES-Caflood (Sequential) | CADDIES-Caflood (OpenMP) | CNN |
---|---|---|---|
Simulation time (s) | 608.53 | 121.70 | 7.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, H.; Choi, H.; Kim, M.; Noh, S.J. Physics-Guided Deep Learning for Spatiotemporal Evolution of Urban Pluvial Flooding. Water 2025, 17, 1239. https://doi.org/10.3390/w17081239
Woo H, Choi H, Kim M, Noh SJ. Physics-Guided Deep Learning for Spatiotemporal Evolution of Urban Pluvial Flooding. Water. 2025; 17(8):1239. https://doi.org/10.3390/w17081239
Chicago/Turabian StyleWoo, Hyuna, Hyeonjin Choi, Minyoung Kim, and Seong Jin Noh. 2025. "Physics-Guided Deep Learning for Spatiotemporal Evolution of Urban Pluvial Flooding" Water 17, no. 8: 1239. https://doi.org/10.3390/w17081239
APA StyleWoo, H., Choi, H., Kim, M., & Noh, S. J. (2025). Physics-Guided Deep Learning for Spatiotemporal Evolution of Urban Pluvial Flooding. Water, 17(8), 1239. https://doi.org/10.3390/w17081239