Lanthanum and Sludge Extracellular Polymeric Substances Coprecipitation-Modified Ceramic for Treating Low Phosphorus-Bearing Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Adsorbent Preparation
2.3. Characterization of Adsorbent
2.4. Batch-Scale Adsorption Experiment and Kinetic Analysis
2.5. Continuous-Flow Adsorption Column Test
3. Results and Discussion
3.1. Synthesis and Structural Characterization of Adsorbent
3.2. Adsorption Kinetics and Thermodynamics
3.3. Adsorption Mechanism
3.4. Practical Application Potential of the Adsorbent
Adsorption Material | Adsorption Capacity (mg P/g) | Fitted Adsorption Isotherm | Reference |
---|---|---|---|
La-Z | 17.20 | Langmuir | [26] |
La0.5-PC | 32.40 | Langmuir | [28] |
ACF-LaOH | 15.30 | Langmuir | [31] |
LMB | 10.19 | Langmuir | [39] |
SBP-La | 46.50 | Langmuir | [40] |
GNS-LaOH | 41.96 | Langmuir | [41] |
KLa | 24.42 | Langmuir–Freundlich | [42] |
La-doped silica spheres | 47.89 | Freundlich | [43] |
DSCT | 14.20 | Langmuir | [44] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gruau, G.; Legeas, M.; Riou, C.; Gallacier, E.; Martineau, F.; Hénin, O. The oxygen isotope composition of dissolved anthropogenic phosphates: A new tool for eutrophication research? Water Res. 2004, 39, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Zhang, Y.; Wang, Z.; Lv, M.; Tang, A.; Yu, Y.; Qu, X.; Chen, Z.; Wen, Q.; Li, A. Insight into the synthesis and adsorption mechanism of adsorbents for efficient phosphate removal: Exploration from synthesis to modification. Chem. Eng. J. 2022, 442, 136147. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Bolan, N.S. Removal and recovery of phosphate from water using sorption. Crit. Rev. Environ. Sci. Technol. 2014, 44, 741311. [Google Scholar] [CrossRef]
- Liu, B.; Gai, S.; Lan, Y.; Cheng, K.; Yang, F. Metal-based adsorbents for water eutrophication remediation: A review of performances and mechanisms. Environ. Res. 2022, 212, 113353. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhong, Y.; Hao, C.; Chen, J.; Gao, H.; Han, S.; Shen, Y.; Wang, X. Emulsion synthesis of cellulose/lanthanum alginate /La(Ⅲ) composite microspheres for efficient and selective adsorption of phosphate. Chem. Eng. J. 2024, 488, 150949. [Google Scholar] [CrossRef]
- Wang, Z.H.; Xia, D.W.; Cui, S.J.; Yu, W.P.; Wang, B.T.; Liu, H.Z. A high-capacity nanocellulose aerogel uniformly immobilized with a high loading of nano-La(OH)3 for phosphate removal. Chem. Eng. J. 2022, 433, 134439. [Google Scholar] [CrossRef]
- Tang, Q.; Shi, C.H.; Shi, W.M.; Huang, X.L.; Ye, Y.Y.; Jiang, W.; Kang, J.X.; Liu, D.Q.; Ren, Y.Z.; Li, D.S. Preferable phosphate removal by nano-La(III) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge. Sci. Total Environ. 2019, 662, 511–520. [Google Scholar] [CrossRef]
- Zhang, Y.; Ahmed, S.; Zheng, Z.; Liu, F.; Leung, C.-F.; Choy, T.-Y.; Kwok, Y.-T.; Pan, B.; Lo, I.M.C. Validation of pilot-scale phosphate polishing removal from surface water by lanthanum-based polymeric nanocomposite. Chem. Eng. J. 2021, 412, 128630. [Google Scholar] [CrossRef]
- Li, G.; Zhu, W.; Zhong, J.; Sun, J.; Wang, Y.; Mu, B.; Wang, X.; Xu, Y. Efficient phosphate recovery and treatment of high-phosphorus wastewater using sodium alginate-immobilized microspheres based on aluminum-rich water treatment plant sludge. Environ. Pollut. 2024, 363, 125139. [Google Scholar] [CrossRef]
- Wang, C.; Shan, S.; Yang, Z.; Xu, X.; Huang, X.; Li, X.; Liu, S.; Li, B.; Xu, Y.; Li, D. Synchronous sequestration of inorganic and organic phosphorus from eutrophic surface water and sediments via recoverable La-CaO2@HNTs/SA hydrogel beads. Chem. Eng. J. 2024, 499, 156593. [Google Scholar] [CrossRef]
- Feng, C.; Pan, X.; Lin, X.; Yang, Y.; Fan, F.; Jiang, C.; Mei, Y. Capacitive deionization exploiting La-based LDH composite electrode toward energy efficient and selective removal of phosphate. Desalination 2024, 594, 118259. [Google Scholar] [CrossRef]
- Fu, C.; Li, Y.; Zuo, Y.; Li, B.; Liu, C.; Liu, D.; Fu, Y.; Yin, Y. Fabrication of lanthanum/chitosan co-modified bentonite and phosphorus removal mechanism from low-concentration landscape water. Water Sci. Technol. 2022, 86, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Li, Q.; Zheng, X.; Chen, P.; Zhang, G.; Huang, Z. Lanthanum modified chitosan-attapulgite composite for phosphate removal from water: Performance, mechanisms and applicability. Int. J. Biol. Macromol. 2023, 224, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Banik, C.; Lawrinenko, M.; Bakshi, S.; Laird, D.A. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. J. Environ. Qual. 2018, 47, 452–461. [Google Scholar] [CrossRef]
- Lian, J.; Yang, Y.; Qiu, W.; Huang, L.; Wang, C.; Chen, Q.; Ke, Q.; Wang, Q. Fluorescent characteristics and metal binding properties of different molecular weight fractions in stratified extracellular polymeric substances of activated sludge. Separations 2021, 8, 120. [Google Scholar] [CrossRef]
- Yan, P.; Xia, J.-S.; Chen, Y.-P.; Liu, Z.-P.; Guo, J.-S.; Shen, Y.; Zhang, C.-C.; Wang, J. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry. Bioresour. Technol. 2017, 232, 354–363. [Google Scholar] [CrossRef]
- Peng, S.; Hu, A.; Ai, J.; Zhang, W.; Wang, D. Changes in molecular structure of extracellular polymeric substances (EPS) with temperature in relation to sludge macro-physical properties. Water Res. 2021, 201, 117316. [Google Scholar] [CrossRef]
- Ghodake, G.S.; Shinde, S.K.; Kadam, A.A.; Saratale, R.G.; Saratale, G.D.; Kumar, M.; Palem, R.R.; Al-Shwaiman, H.A.; Elgorban, A.M.; Syed, A.; et al. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. J. Clean. Prod. 2021, 297, 126645. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Deng, D.; Li, R.; Guo, C.; Ma, J.; Chen, M. Investigation of extracellular polymeric substances (EPS) in four types of sludge: Factors influencing EPS properties and sludge granulation. J. Water Process. Eng. 2021, 40, 101924. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Krishna Veni, D.; Kannan, P.; Jebakumar Immanuel Edison, T.N.; Senthilkumar, A. Biochar from green waste for phosphate removal with subsequent disposal. Waste Manag. 2017, 68, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, H.; Lu, Y.-Y.; Ren, Z.-Q.; Gao, N.; Wang, J.-J.; Huang, B.-C.; Jin, R.-C. In-situ synthesis of lanthanum-coated sludge biochar for advanced phosphorus adsorption. J. Environ. Manag. 2024, 373, 13607. [Google Scholar] [CrossRef]
- Pan, B.; Han, F.; Nie, G.; Wu, B.; He, K.; Lu, L. New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environ. Sci. Technol. 2014, 48, 5101–5107. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y.; Zhu, R.; Liu, J.; Usman, M.; Chen, Q.; He, H. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite. J. Colloid Interf. Sci. 2018, 530, 704–713. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lin, H.; Dong, Y.; Wang, L. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism. Appl. Surf. Sci. 2017, 426, 995–1004. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Guo, J.; Zhang, L. Removal of phosphate from wastewater by lanthanum modified bio-ceramisite. J. Environ. Chem. Eng. 2021, 9, 106123. [Google Scholar] [CrossRef]
- Koilraj, P.; Sasaki, K. Selective removal of phosphate using La-porous carbon composites from aqueous solutions: Batch and column studies. Chem. Eng. J. 2017, 317, 1059–1086. [Google Scholar] [CrossRef]
- Wu, B.; Fang, L.; Fortner, J.D.; Guan, X.; Lo, I.M.C. Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites. Water Res. 2017, 126, 179–188. [Google Scholar] [CrossRef]
- Xia, S.; Liang, S.; Qin, Y.; Chen, W.; Xue, B.; Zhang, B.; Xu, G. Significant improvement of adsorption for phosphate removal by lanthanum-loaded biochar. ACS Omega 2023, 8, 24853–24864. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Q.; Liu, J.; Chang, N.; Wan, L.; Chen, J. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chem. Eng. J. 2012, 185–186, 160–167. [Google Scholar] [CrossRef]
- Lan, Y.; Gai, S.; Cheng, K.; Li, J.; Yang, F. Lanthanum carbonate hydroxide/magnetite nanoparticles functionalized porous biochar for phosphate adsorption and recovery: Advanced capacity and mechanisms study. Environ. Res. 2022, 214, 113783. [Google Scholar] [CrossRef]
- Wei, Y.; Yuan, P.; Zhou, J.; Liu, J.; Losic, D.; Wu, H.; Bu, H.; Tan, X.; Li, Z. Direct atomic-scale insight into the precipitation formation at the lanthanum hydroxide nanoparticle/solution interface. J. Phys. Chem. Lett. 2023, 14, 3995–4003. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Liang, C.; Yu, J.; Zhang, Q.; Song, M.; Chen, F. Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration. Chem. Eng. J. 2017, 315, 345–354. [Google Scholar] [CrossRef]
- Zhang, Q.; Teng, J.; Zou, G.; Peng, Q.; Du, Q.; Jiao, T.; Xiang, J. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8, 7085–7093. [Google Scholar] [CrossRef]
- Qu, J.; Akindolie, M.S.; Feng, Y.; Jiang, Z.; Zhang, G.; Jiang, Q.; Deng, F.; Cao, B.; Zhang, Y. One-pot hydrothermal synthesis of NaLa(CO3)2 decorated magnetic biochar for efficient phosphate removal from water: Kinetics, isotherms, thermodynamics, mechanisms and reusability exploration. Chem. Eng. J. 2020, 394, 124915. [Google Scholar] [CrossRef]
- Pap, S.; Zhao, Q.; Cakin, I.; Gaffney, P.P.J.; Gibb, S.W.; Taggart, M.A. Lanthanum and cerium functionalised forestry waste biochar for phosphate removal: Mechanisms and real-world applications. Chem. Eng. J. 2024, 494, 152848. [Google Scholar] [CrossRef]
- Yu, J.; Xiang, C.; Zhang, G.; Wang, H.; Ji, Q.; Qu, J. Activation of Lattice Oxygen in LaFe(Oxy)hydroxides for Efficient Phosphorus Removal. Environ. Sci. Technol. 2019, 53, 9073–9080. [Google Scholar] [CrossRef]
- Haghseresht, F.; Wang, S.; Do, D.D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Appl. Clay Sci. 2009, 46, 369–375. [Google Scholar] [CrossRef]
- Pan, J.; Yang, H.; Liu, L.; Li, B.; Tang, X.; Wu, X.; Zhang, L.; Ying, G.-G. Sludge-based biochar with lanthanum modification for phosphate recovery from wastewater streams. Environ. Sci-Wat. Res. 2022, 8, 2873–2883. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Y.; Zhou, Q.; Kan, J.; Wang, Y. High-performance removal of phosphate from water by graphene nanosheets supported lanthanum hydroxide nanoparticles. Water Air Soil Pollut. 2014, 225, 1967. [Google Scholar] [CrossRef]
- Li, J.-R.; Wang, F.-K.; Xiao, H.; Xu, L.; Fu, M.-L. Layered chalcogenide modified by Lanthanum, calcium and magnesium for the removal of phosphate from water. Colloid Surface A 2018, 560, 306–314. [Google Scholar] [CrossRef]
- Huang, W.; Zhu, Y.; Tang, J. Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal. J. Mater. Chem. A 2014, 2, 8839–8848. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, A.R.; Cao, X.; Pullammanappallil, P.; Yang, L. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard. Mater. 2011, 190, 501–507. [Google Scholar] [CrossRef]
Adsorbent | Temperature | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
R12 | Qmax (mg/g-La) | KL (L/mg) | R22 | Kf (mg/g-La) | 1/n | ||
La-EPS-C-450 | 35 °C | 0.86 | 74.42 | 0.23 | 0.98 | 25.23 | 0.39 |
La-EPS-C-450 | 25 °C | 0.98 | 69.33 | 0.11 | 0.99 | 15.12 | 0.51 |
La-EPS-C-450 | 15 °C | 0.95 | 45.82 | 0.19 | 0.99 | 14.37 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.-Y.; Yang, C.-X.; Chen, K.-Y.; Wang, J.-J.; Huang, B.-C.; Jin, R.-C. Lanthanum and Sludge Extracellular Polymeric Substances Coprecipitation-Modified Ceramic for Treating Low Phosphorus-Bearing Wastewater. Water 2025, 17, 1237. https://doi.org/10.3390/w17081237
Lu Y-Y, Yang C-X, Chen K-Y, Wang J-J, Huang B-C, Jin R-C. Lanthanum and Sludge Extracellular Polymeric Substances Coprecipitation-Modified Ceramic for Treating Low Phosphorus-Bearing Wastewater. Water. 2025; 17(8):1237. https://doi.org/10.3390/w17081237
Chicago/Turabian StyleLu, Yao-Yao, Chao-Xi Yang, Ke-Yu Chen, Jiao-Jiao Wang, Bao-Cheng Huang, and Ren-Cun Jin. 2025. "Lanthanum and Sludge Extracellular Polymeric Substances Coprecipitation-Modified Ceramic for Treating Low Phosphorus-Bearing Wastewater" Water 17, no. 8: 1237. https://doi.org/10.3390/w17081237
APA StyleLu, Y.-Y., Yang, C.-X., Chen, K.-Y., Wang, J.-J., Huang, B.-C., & Jin, R.-C. (2025). Lanthanum and Sludge Extracellular Polymeric Substances Coprecipitation-Modified Ceramic for Treating Low Phosphorus-Bearing Wastewater. Water, 17(8), 1237. https://doi.org/10.3390/w17081237