Nitrogen and Phosphorus Loss via Surface Flow and Interflow in Subtropical Chinese Tea Plantations: A Comparative Analysis Under Two Slope Gradients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Collection and Measuring
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Rainfall, Runoff Depth, and Sediment Yields
3.2. Nitrogen and Phosphorus Concentration in Surface Runoff and Interflow
3.3. Loss Loads of Nitrogen and Phosphorus in Surface Flow and Interflow
3.4. Environmental Factors on Nitrogen and Phosphorus Concentrations in Surface Flow
4. Discussion
4.1. Effects of Slope Gradient on Surface Flow and Interflow Generation
4.2. Nitrogen and Phosphorus Concentration in Surface Flow
4.3. Nitrogen and Phosphorus Concentration in Interflow
4.4. Nutrient Losses via Surface Runoff and Interflow Under Different Slopes
4.5. Importance of Environmental Factors on Nutrient Leaching Losses from Slope Tea Garden
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, S.; Liu, W.; Ni, C.; Yang, Q.; Ni, J.; Wei, C. Runoff harvesting engineering and its effects on soil nitrogen and phosphorus conservation in the Sichuan Hilly Basin of China. Agric. Ecosyst. Environ. 2020, 301, 107022. [Google Scholar] [CrossRef]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil 2001, 237, 287–307. [Google Scholar] [CrossRef]
- Luo, C.; Gao, Y.; Zhu, B.; Wang, T. Sprinkler-based rainfall simulation experiments to assess nitrogen and phosphorus losses from a hillslope cropland of purple soil in China. Sustain. Water Qual. Ecol. 2013, 1–2, 40–47. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Li, B.; Han, W.; Liu, D.; Gan, X. Nitrogen and phosphorus losses by runoff erosion: Field data monitored under natural rainfall in Three Gorges Reservoir Area, China. CATENA 2016, 147, 797–808. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.; Zhu, L.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X. Recent advances in control technologies for non point source pollution with nitrogen and phosphorous from agricultural runoff: Current practices and future prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar] [CrossRef]
- Sánchez-Colón, Y.M.; Schaffner, F.C. Identifying Nonpoint Sources of Phosphorus and Nitrogen: A Case Study of Pollution That Enters a Freshwater Wetland (Laguna Cartagena, Puerto Rico). J. Water Resour. Prot. 2021, 13, 588–604. [Google Scholar] [CrossRef]
- García-Serrana, M.; Gulliver, J.S.; Nieber, J.L. Description of soil micro-topography and fractional wetted area under runoff using fractal dimensions. Earth Surf. Process. Landforms 2018, 43, 2685–2697. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Z.; Li, D.; Hou, G.; Zheng, J. Infiltration Characteristics and Hydrodynamic Parameters in Response to Topographic Factors in Bare Soil Surfaces, Laboratory Experiments Based on Cropland Fields of Purple Soil in Southwest China. Agriculture 2024, 14, 1820. [Google Scholar] [CrossRef]
- Gao, K.; Kong, Z.; Li, Y.; Zhao, F.; Cai, B.; Shi, D.; Wang, R. Experimental Study on Runoff and Sediment Production of the Fully Weathered Granite Backfill Slope under Heavy Rain in Longling, Yunnan Province. Sustainability 2024, 16, 1454. [Google Scholar] [CrossRef]
- Fu, S.; Liu, B.; Liu, H.; Xu, L. The effect of slope on interrill erosion at short slopes. CATENA 2011, 84, 29–34. [Google Scholar] [CrossRef]
- Jourgholami, M.; Karami, S.; Tavankar, F.; Monaco, A.L.; Picchio, R. Effects of Slope Gradient on Runoff and Sediment Yield on Machine-Induced Compacted Soil in Temperate Forests. Forests 2020, 12, 49. [Google Scholar] [CrossRef]
- Fang, H.; Sun, L.; Tang, Z. Effects of rainfall and slope on runoff, soil erosion and rill development: An experimental study using two loess soils. Hydrol. Process. 2014, 29, 2649–2658. [Google Scholar] [CrossRef]
- Wu, S.; Yu, M.; Chen, L. Nonmonotonic and spatial-temporal dynamic slope effects on soil erosion during rainfall-runoff processes. Water Resour. Res. 2017, 53, 1369–1389. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, Z.; Zhang, K. Hydrodynamic characteristics of rill flow on steep slopes. Hydrol. Process. 2015, 29, 3677–3686. [Google Scholar] [CrossRef]
- Bagarello, V.; Caltabellotta, G.; Iovino, M. Estimation of hydrodynamic properties of a sandy-loam soil by two analysis methods of single-ring infiltration data. J. Hydrol. Hydromech. 2022, 70, 234–243. [Google Scholar] [CrossRef]
- Deng, L.; Fei, K.; Sun, T.; Zhang, L.; Fan, X.; Ni, L. Phosphorus Loss through Overland Flow and Interflow from Bare Weathered Granite Slopes in Southeast China. Sustainability 2019, 11, 4644. [Google Scholar] [CrossRef]
- Majewski, M.; Czuchaj, A.; Marciniak, M. Impact of rainfall intensity on soil erosion based on experimental research. Landf. Anal. 2023, 42, 25–36. [Google Scholar] [CrossRef]
- Kaufmann, V.; Pinheiro, A.; Castro, N.M.d.R. Simulating transport of nitrogen and phosphorus in a Cambisol after natural and simulated intense rainfall. J. Contam. Hydrol. 2014, 160, 53–64. [Google Scholar] [CrossRef]
- Franklin, D.; Truman, C.; Potter, T.; Bosch, D.; Strickland, T.; Bednarz, C. Nitrogen and Phosphorus Runoff Losses from Variable and Constant Intensity Rainfall Simulations on Loamy Sand under Conventional and Strip Tillage Systems. J. Environ. Qual. 2007, 36, 846–854. [Google Scholar] [CrossRef]
- Lin, T.-C.; Shaner, P.-J.L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C. Effects of mountain tea plantations on nutrient cycling at upstream watersheds. Hydrol. Earth Syst. Sci. 2015, 19, 4493–4504. [Google Scholar] [CrossRef]
- Peng, Y.; Qiu, B.; Tang, Z.; Xu, W.; Yang, P.; Wu, W.; Chen, X.; Zhu, X.; Zhu, P.; Zhang, X.; et al. Where is tea grown in the world: A robust mapping framework for agroforestry crop with knowledge graph and sentinels images. Remote Sens. Environ. 2024, 303, 114016. [Google Scholar] [CrossRef]
- Yan, T.; Wang, Z.; Liao, C.; Xu, W.; Wan, L. Effects of the morphological characteristics of plants on rainfall interception and kinetic energy. J. Hydrol. 2021, 592, 125807. [Google Scholar] [CrossRef]
- Jiang, X.J.; Liu, W.; Chen, C.; Liu, J.; Yuan, Z.-Q.; Jin, B.C.; Yu, X.Y. Effects of three morphometric features of roots on soil water flow behavior in three sites in China. Geoderma 2018, 320, 161–171. [Google Scholar] [CrossRef]
- Chen, C.F.; Lin, J.Y. Estimating the gross budget of applied nitrogen and phosphorus in tea plantations. Sustain. Environ. Res. 2016, 26, 124–130. [Google Scholar] [CrossRef]
- Wang, W.; Wu, X.; Yin, C.; Xie, X. Nutrition loss through surface runoff from slope lands and its implications for agricultural management. Agric. Water Manag. 2019, 212, 226–231. [Google Scholar] [CrossRef]
- HJ 636-2012; Water Quality—Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion-UV Spectrophotometry. China Environmental Science Press: Beijing, China, 2012.
- GB 11893-89; Water Quality—Determination of Total Phosphorus-Ammonium Molybdate Spectrophotometric Method. China Environmental Science Press: Beijing, China, 1989.
- GB 11901-89; Water Quality—Determination of Suspended Solids-Gravimetric Method. China Environmental Science Press: Beijing, China, 1989.
- Wang, T.; Zhu, B.; Zhou, M.; Hu, L.; Jiang, S.; Wang, Z. Nutrient loss from slope cropland to water in the riparian zone of the Three Gorges Reservoir: Process, pathway, and flux. Agric. Ecosyst. Environ. 2020, 302, 107108. [Google Scholar] [CrossRef]
- Yan, L.; Xue, L.; Petropoulos, E.; Qian, C.; Hou, P.; Xu, D.; Yang, L. Nutrient loss by runoff from rice-wheat rotation during the wheat season is dictated by rainfall duration. Environ. Pollut. 2021, 285, 117382. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, H.; Jiang, Y.; Zhang, X.; Tong, Y.; Zhang, Q. Effect of Slope Gradient on Erosion Evolution Process at Microtopographic Tillage Soil Surfaces. J. Geogr. Inf. Syst. 2019, 11, 481–492. [Google Scholar] [CrossRef]
- Simelane, M.P.Z.; Soundy, P.; Maboko, M.M. Effects of Rainfall Intensity and Slope on Infiltration Rate, Soil Losses, Runoff and Nitrogen Leaching from Different Nitrogen Sources with a Rainfall Simulator. Sustainability 2024, 16, 4477. [Google Scholar] [CrossRef]
- Nieber, J.L.; Sidle, R.C. How do disconnected macropores in sloping soils facilitate preferential flow? Hydrol. Process. 2010, 24, 1582–1594. [Google Scholar] [CrossRef]
- Jackson, C.R.; Bitew, M.; Du, E. When interflow also percolates: Downslope travel distances and hillslope process zones. Hydrol. Process. 2014, 28, 3195–3200. [Google Scholar] [CrossRef]
- Liang, K.; He, B. Naturally rainfall-induced changes in runoff-associated nitrogen and phosphorus losses in purple soil area: Roles of land disturbance and plot length. EGU Gen. Assem. Conf. Abstr. 2021, 21, 13919. [Google Scholar]
- Han, J.; Li, Z.; Li, P.; Tian, J. Nitrogen and phosphorous concentrations in runoff from a purple soil in an agricultural watershed. Agric. Water Manag. 2010, 97, 757–762. [Google Scholar] [CrossRef]
- Kato, T.; Kuroda, H.; Nakasone, H. Runoff characteristics of nutrients from an agricultural watershed with intensive livestock production. J. Hydrol. 2009, 368, 79–87. [Google Scholar] [CrossRef]
- Wu, L.; Peng, M.; Qiao, S.; Ma, X. Assessing impacts of rainfall intensity and slope on dissolved and adsorbed nitrogen loss under bare loessial soil by simulated rainfalls. CATENA 2018, 170, 51–63. [Google Scholar] [CrossRef]
- Wu, L.; Qiao, S.; Peng, M.; Ma, X. Coupling loss characteristics of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Environ. Sci. Pollut. Res. 2018, 25, 14018–14031. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Liu, C.; Jin, Y.; Li, F.; Khan, S.; Liang, X. Reduced colloidal phosphorus loss potential and enhanced phosphorus availability by manure-derived biochar addition to paddy soils. Geoderma 2021, 402, 115348. [Google Scholar] [CrossRef]
- Wang, N.; Wang, L.; Jin, L.; Wu, J.; Pang, M.; Wei, D.; Li, Y.; Wang, J.; Xu, T.; Yang, Z.; et al. Rainfall Runoff and Nitrogen Loss Characteristics on the Miyun Reservoir Slope. Water 2024, 16, 786. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Shi, J.; Chen, Y.; Sun, C.; Zhang, P.; Shen, Z. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Sci. Total. Environ. 2014, 468–469, 1069–1077. [Google Scholar] [CrossRef]
- Wang, Z.; Eltohamy, K.M.; Liu, B.; Jin, J.; Liang, X. Effects of drying-rewetting cycles on colloidal phosphorus composition in paddy and vegetable soils. Sci. Total. Environ. 2024, 907, 168016. [Google Scholar] [CrossRef]
- Bouraima, A.-K.; He, B.; Tian, T. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region. Environ. Sci. Pollut. Res. 2015, 23, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.C.; Lizaga, I.; Gaspar, L.; Quijano, L.; Navas, A. Effects of rainfall intensity and slope on sediment, nitrogen and phosphorous losses in soils with different use and soil hydrological properties. Agric. Water Manag. 2019, 226, 105789. [Google Scholar] [CrossRef]
- Du, Y.; Li, T.; He, B. Runoff-related nutrient loss affected by fertilization and cultivation in sloping croplands: An 11-year observation under natural rainfall. Agric. Ecosyst. Environ. 2021, 319, 107549. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Wu, J.; An, Z.; Suo, L.; Ding, J.; Li, S.; Wei, D.; Jin, L. Effects of the Rainfall Intensity and Slope Gradient on Soil Erosion and Nitrogen Loss on the Sloping Fields of Miyun Reservoir. Plants 2023, 12, 423. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, Q.; Wu, J.; Wang, S.; Pang, M.; Wang, J.; Zhou, C.; Han, Y.; Yang, Z.; et al. Research on Multi-Factor Effects of Nitrogen Loss in Slope Runoff. Water 2024, 16, 1431. [Google Scholar] [CrossRef]
- Ouyang, Y.; Norton, J.M. Nitrite Oxidizer Activity and Community Are More Responsive Than Their Abundance to Ammonium-Based Fertilizer in an Agricultural Soil. Front. Microbiol. 2020, 11, 1736. [Google Scholar] [CrossRef]
- Kraft, B.; Tegetmeyer, H.E.; Sharma, R.; Klotz, M.G.; Ferdelman, T.G.; Hettich, R.L.; Geelhoed, J.S.; Strous, M. The environmental controls that govern the end product of bacterial nitrate respiration. Science 2014, 345, 676–679. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, X.; Qian, X.; Dixit, A.; Herman, B.; Lei, Y.; McCutcheon, J.; Li, B. Enhancing the Understanding of Soil Nitrogen Fate Using a 3D-Electrospray Sensor Roll Casted with a Thin-Layer Hydrogel. Environ. Sci. Technol. 2022, 56, 4905–4914. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Ma, X. How biochar, horizontal ridge, and grass affect runoff phosphorus fractions and possible tradeoffs under consecutive rainstorms in loessial sloping land? Agric. Water Manag. 2021, 256, 107121. [Google Scholar] [CrossRef]
- Eltohamy, K.M.; Menezes-Blackburn, D.; Klumpp, E.; Liu, C.; Jin, J.; Xing, C.; Lu, Y.; Liang, X. Microbially Induced Soil Colloidal Phosphorus Mobilization Under Anoxic Conditions. Environ. Sci. Technol. 2024, 58, 7554–7566. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, H. Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals. Sci. Total Environ. 2021, 757, 143765. [Google Scholar] [CrossRef] [PubMed]
- Amadou, I.; Faucon, M.-P.; Houben, D. Role of soil minerals on organic phosphorus availability and phosphorus uptake by plants. Geoderma 2022, 428, 116125. [Google Scholar] [CrossRef]
- Eltohamy, K.M.; Li, J.; Gouda, M.; Menezes-Blackburn, D.; Milham, P.J.; Khan, S.; Li, F.; Liu, C.; Xu, J.; Liang, X. Nano andfine colloids suspended in the soil solution regulate phosphorusdesorption and lability in organic fertiliser-amended soils. Sci. Total Environ. 2023, 858, 160195. [Google Scholar] [CrossRef]
- Sensoy, H. Impact of Deforestation and Erosion on Some Soil Physicochemical Properties and Microbial Activity on Steep Slopes. Croat. J. For. Eng. 2024, 45, 305–318. [Google Scholar] [CrossRef]
- Guo, S.; Zhai, L.; Liu, J.; Liu, H.; Chen, A.; Wang, H.; Wu, S.; Lei, Q. Cross-ridge tillage decreases nitrogen and phosphorus losses from sloping farmlands in southern hilly regions of China. Soil Tillage Res. 2019, 191, 48–56. [Google Scholar] [CrossRef]
- Xie, M.; Šimůnek, J.; Zhang, Z.; Zhang, P.; Xu, J.; Lin, Q. Nitrate subsurface transport and losses in response to its initial distributions in sloped soils: An experimental and modelling study. Hydrol. Process. 2019, 33, 3282–3296. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, P.; Shi, Y.; Hong, D. Effects of hydrological processes on surface and subsurface nitrogen losses from purple soil slopes. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Fei, K.; Sun, T.-Y.; Zhang, L.-P.; Fan, X.-J.; Ni, L. Characteristics of runoff processes and nitrogen loss via surface flow and interflow from weathered granite slopes of Southeast China. J. Mt. Sci. 2019, 16, 1048–1064. [Google Scholar] [CrossRef]
- Harmel, R.D.; Smith, D.R.; Haney, R.L.; Allen, P.M. Comparison of nutrient loss pathways: Run-off and seepage flow in Vertisols. Hydrol. Process. 2019, 33, 2384–2393. [Google Scholar] [CrossRef]
- Gungor, K.; Karakaya, N.; Evrendilek, F.; Akgul, S.; Baskan, O.; Cebel, H.; Farhoud, H.J.; Turkecan, O.; Yasar, S.; Gumus, O. Spatiotemporal modeling of watershed nutrient transport dynamics: Implications for eutrophication abatement. Ecol. Inform. 2016, 34, 52–69. [Google Scholar] [CrossRef]
- Gao, R.; Dai, Q.; Gan, Y.; Yan, Y.; Peng, X. The mechanisms of nutrient output through water flow from sloping farmland with slight rocky desertification in a karst region. Environ. Res. Lett. 2020, 15, 094085. [Google Scholar] [CrossRef]
- Williams, M.R.; Livingston, S.J.; Penn, C.J.; Smith, D.R.; King, K.W.; Huang, C.-H. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin. J. Hydrol. 2018, 559, 749–761. [Google Scholar] [CrossRef]
- Pan, Q.; Jin, K.; Hu, Y. Influence of tea leaf morphology on water interception for droplet impact. Hydrol. Process. 2024, 38, 15090. [Google Scholar] [CrossRef]
- Chen, X.; Liang, Z.; Zhang, Z.; Zhang, L. Effects of Soil and Water Conservation Measures on Runoff and Sediment Yield in Red Soil Slope Farmland under Natural Rainfall. Sustainability 2020, 12, 3417. [Google Scholar] [CrossRef]
- Hou, F.; Ni, Z.; Wang, S.; Sun, H.; Zhao, F.; Zhong, W.; Zhang, Y. Study on Soil and Water Loss on Slope Surface and Slope Stability Under Rainfall Conditions. Water 2024, 16, 3643. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, L.; Bi, Y.; He, B.; Zeng, R.; Li, T. Effects of the angle between the rock strata and slope on flow hydraulics and sediment yield in karst trough valley: Laboratory scour experiment. Int. J. Sediment Res. 2023, 39, 100–109. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Dong, M.; Guan, M.; Wu, Y.; Xu, R. A simplified method for evaluating shallow slope stability of slopes based on an indirectly coupled runoff and groundwater seepage model. Hydrogeol. J. 2025, 33, 309–327. [Google Scholar] [CrossRef]
- Zare, M.; Soufi, M.; Nejabat, M.; Pourghasemi, H.R. The topographic threshold of gully erosion and contributing factors. Nat. Hazards 2022, 112, 2013–2035. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J. Effects of rainfall intensity and compaction on water transport from opencast coal mine soils: An experimental study. Hydrol. Process. 2019, 34, 258–269. [Google Scholar] [CrossRef]
- Wu, L.; Yen, H.; Ma, X. Effects of particulate fractions on critical slope and critical rainfall intensity for runoff phosphorus from bare loessial soil. CATENA 2021, 196, 104935. [Google Scholar] [CrossRef]
- Li, T.; Ma, F.; Wang, J.; Qiu, P.; Zhang, N.; Guo, W.; Xu, J.; Dai, T. Study on the Mechanism of Rainfall-Runoff Induced Nitrogen and Phosphorus Loss in Hilly Slopes of Black Soil Area, China. Water 2023, 15, 3148. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, R.; Li, T.; Song, L.; He, B. Intelligent Analysis Strategy for the Key Factor of Soil Nitrogen and Phosphorus Loss via Runoff under Simulated Karst Conditions. Forests 2023, 14, 2109. [Google Scholar] [CrossRef]
- Lang, M.; Li, P.; Yan, X. Runoff concentration and load of nitrogen and phosphorus from a residential area in an intensive agricultural watershed. Sci. Total. Environ. 2013, 458, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sun, Q.; Wang, Y.; Liu, Q.; Du, L.; Zhao, M.; Gao, X.; Hu, Y.; Guo, S. Temperature sensitivity of soil respiration: Synthetic effects of nitrogen and phosphorus fertilization on Chinese Loess Plateau. Sci. Total. Environ. 2017, 574, 1665–1673. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.; Taboada-Castro, M. Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrol. Sci. J. 2012, 57, 445–459. [Google Scholar] [CrossRef]
Number | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Slope (°) | 20 | 20 | 20 | 30 | 30 | 30 |
pH (−) | 4.68 | 4.74 | 4.72 | 5.07 | 5.09 | 4.97 |
TC (g kg−1) | 17.50 | 27.57 | 32.55 | 16.01 | 22.24 | 26.20 |
SOM (g kg−1) | 30.17 | 47.54 | 56.12 | 27.60 | 38.34 | 45.18 |
TN (g kg−1) | 1.06 | 1.05 | 0.83 | 0.94 | 0.93 | 0.80 |
DN (mg kg−1) | 11.29 | 14.60 | 27.46 | 11.24 | 8.80 | 10.14 |
NO3−-N (mg kg−1) | 6.85 | 7.79 | 16.57 | 6.38 | 4.25 | 5.91 |
NH4+-N (mg kg−1) | 3.94 | 5.48 | 10.08 | 3.51 | 4.28 | 4.09 |
TP (mg kg−1) | 674.50 | 600.63 | 697.50 | 466.63 | 494.38 | 474.75 |
DP (mg kg−1) | 49.38 | 52.50 | 71.63 | 60.25 | 64.68 | 41.50 |
Olsen-P (mg kg−1) | 68.77 | 68.77 | 74.04 | 52.95 | 63.09 | 61.06 |
Available K (mg kg−1) | 122.55 | 142.54 | 149.75 | 146.09 | 155.22 | 160.08 |
Bulk Density (g cm3) | 1.83 | 1.82 | 1.77 | 0.90 | 0.86 | 0.87 |
TN | DN | NH4+-N | NO3−-N | TP | DP | |
---|---|---|---|---|---|---|
Concentration in surface flow (mg·L−1) | ||||||
20° | 2.166 | 0.865 | 0.554 | 0.257 | 0.315 | 0.099 |
30° | 2.172 | 0.902 | 0.600 | 0.244 | 0.328 | 0.103 |
Ratio (30°/20°) | 1.002 | 1.043 | 1.082 | 1.054 | 1.042 | 1.036 |
Concentration in interflow (mg·L−1) | ||||||
20° | 8.182 | 7.779 | 6.730 | 0.491 | 0.353 | 0.287 |
30° | 13.789 | 12.969 | 11.261 | 0.724 | 1.124 | 0.751 |
Ratio (30°/20°) | 1.685 | 1.667 | 1.673 | 1.476 | 3.181 | 2.618 |
Slope Gradient (°) | NO3−-N (%) | NH4+-N (%) | PN (%) | DP (%) | PP (%) |
---|---|---|---|---|---|
Surface flow | |||||
20 | 35.1 ± 11.3 | 16.6 ± 9.4 | 45.1 ± 23.2 | 39.4 ± 19.9 | 60.6 ± 22.2 |
30 | 35.2 ± 12.4 | 16.5 ± 7.3 | 46.3 ± 19.5 | 33.7 ± 25.7 | 66.3 ± 25.8 |
Total | 35.2 ± 11.7 | 16.5 ± 8.8 | 45.7 ± 21.0 | 36.6 ± 24.7 | 63.4 ± 24.1 |
Interflow | |||||
20 | 80.3 ± 10.6 | 7.0 ± 6.1 | 5.3 ± 4.6 | 73.2 ± 23.9 | 26.8 ± 23.9 |
30 | 81.1 ± 7.5 | 6.8 ± 5.1 | 5.1 ± 4.7 | 70.9 ± 25.8 | 29.2 ± 25.8 |
Total | 80.5 ± 10.2 | 7.0 ± 6.8 | 5.3 ± 5.5 | 72.8 ± 24.2 | 27.2 ± 24.2 |
TN | DN | NH4+-N | NO3−-N | |
---|---|---|---|---|
Flux from surface flow | ||||
20° | 4.05 (2.11–18.64) | 3.02 (1.04–8.57) | 0.80 (0.32–3.17) | 1.68 (0.83–5.58) |
30° | 3.83 (1.87–15.18) | 2.38 (0.87–7.40) | 0.61 (0.28–2.14) | 1.53 (0.59–4.67) |
Ratio | 0.95 | 0.79 | 0.76 | 0.91 |
p | >0.05 | >0.05 | >0.05 | >0.05 |
Flux from interflow | ||||
20° | 63.71 (21.35–101.67) | 62.25 (19.80–85.37) | 1.29 (0.39–10.13) | 48.91 (16.85–81.45) |
30° | 183.19 (86.16–264.75) | 179.27 (74.29–253.40) | 10.07 (1.88–24.01) | 159.93 (67.34–217.98) |
Ratio | 2.88 | 2.88 | 7.81 | 3.27 |
p | <0.01 | <0.01 | <0.01 | <0.01 |
Total flux | ||||
20° | 81.34 (22.89–127.77) | 69.78 (20.62–104.02) | 3.86 (1.53–12.23) | 56.45 (17.41–86.89) |
30° | 209.75 (89.47–291.80) | 186.96 (78.43–258.92) | 10.56 (3.20–27.65) | 166.01 (69.93–223.04) |
Ratio | 2.58 | 2.67 | 2.74 | 2.94 |
p | <0.01 | <0.01 | <0.05 | <0.01 |
TP | DP | |
---|---|---|
Flux from surface flow | ||
20° | 0.87 (0.35–2.66) | 0.31 (0.16–0.72) |
30° | 0.76 (0.43–2.86) | 0.26 (0.15–0.46) |
Ratio | 0.87 | 0.84 |
p | >0.05 | >0.05 |
Flux from interflow | ||
20° | 1.71 (1.14–3.50) | 1.21 (0.60–3.37) |
30° | 7.64 (2.06–−21.48) | 4.11 (1.86–14.73) |
Ratio | 4.47 | 3.40 |
p | <0.01 | <0.01 |
Total flux | ||
20° | 3.77 (2.14–7.91) | 1.95 (1.01–4.43) |
30° | 12.93 (4.68–26.73) | 4.65 (2.78–15.54) |
Ratio | 3.43 | 2.38 |
p | <0.01 | <0.01 |
Abbreviations | Full Names |
---|---|
IRI | Instantaneous rainfall intensity |
AT | Air temperature |
RH | Relative humidity |
ATM | Atmospheres |
WS | Wind speed |
WD | Wind direction |
LI | Light intensity |
ST | Soil temperature |
SM | Soil Moisture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; He, S.; Eltohamy, K.M.; Feng, W.; Yang, X.; Xiao, H.; Wang, Y.; Wang, Z.; Liang, X. Nitrogen and Phosphorus Loss via Surface Flow and Interflow in Subtropical Chinese Tea Plantations: A Comparative Analysis Under Two Slope Gradients. Water 2025, 17, 1249. https://doi.org/10.3390/w17091249
Wang H, He S, Eltohamy KM, Feng W, Yang X, Xiao H, Wang Y, Wang Z, Liang X. Nitrogen and Phosphorus Loss via Surface Flow and Interflow in Subtropical Chinese Tea Plantations: A Comparative Analysis Under Two Slope Gradients. Water. 2025; 17(9):1249. https://doi.org/10.3390/w17091249
Chicago/Turabian StyleWang, Haitao, Shuang He, Kamel Mohamed Eltohamy, Weidong Feng, Xiangtian Yang, Hekang Xiao, Yucheng Wang, Zhirong Wang, and Xinqiang Liang. 2025. "Nitrogen and Phosphorus Loss via Surface Flow and Interflow in Subtropical Chinese Tea Plantations: A Comparative Analysis Under Two Slope Gradients" Water 17, no. 9: 1249. https://doi.org/10.3390/w17091249
APA StyleWang, H., He, S., Eltohamy, K. M., Feng, W., Yang, X., Xiao, H., Wang, Y., Wang, Z., & Liang, X. (2025). Nitrogen and Phosphorus Loss via Surface Flow and Interflow in Subtropical Chinese Tea Plantations: A Comparative Analysis Under Two Slope Gradients. Water, 17(9), 1249. https://doi.org/10.3390/w17091249