Eliminating Noise of Pumping Test Data Using the Theis Solution Implemented in the Kalman Filter
Abstract
:1. Introduction
2. Methods
2.1. Equations That Describe Groundwater Movement
2.2. Theis Solution
- Homogeneous, isotropic and infinite extension;
- Radial flow and laminar regime;
- Absence of external recharges;
- Fully penetrating, zero diameter well;
- Constant pumping flow, which produces an immediate drop in level [14].
2.3. Kalman Filter
2.4. Implementation of the Theis Solution Within the Kalman Filter
Algorithm 1. Fitness function |
Input: Output:
|
Algorithm 2. Genetic algorithm optimization. |
Input: Output: F
|
3. Case Study
- 1.
- The “Oude Korendijk” pumping test presented in [32].
- 2.
- The “Todd and Mays” pumping test, which is found in [33].
4. Results
4.1. Interpretation of the “Oude Korendijk” Pumping Test
4.2. Interpretation of the “Todd and Mays” Pumping Test
4.3. Interpretation of the “Todd and Mays” Pumping Test Adding Noise to the Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papazotos, P.; Vlachomitrou, M.; Psarraki, D.; Vasileiou, E.; Perraki, M. Coupling Advanced Geo-Environmental Indices for the Evaluation of Groundwater Quality: A Case Study in NE Peloponnese, Greece. Environments 2025, 12, 14. [Google Scholar] [CrossRef]
- Herraiz, A.S. La importancia de las aguas subterráneas. Rev. De La Real Acad. De Cienc. Exactas Físicas Y Nat. 2009, 103, 97–114. [Google Scholar]
- Cardiff, M.; Sayler, C. Strategies for avoiding errors and ambiguities in the analysis of oscillatory pumping tests. J. Hydrol. 2016, 540, 1016–1021. [Google Scholar] [CrossRef]
- Aliouache, M.; Wang, X.; Fischer, P.; Massonnat, G.; Jourde, H. An inverse approach integrating flowmeter and pumping test data for three-dimensional aquifer characterization. J. Hydrol. 2021, 603, 126939. [Google Scholar] [CrossRef]
- Alzraiee, A.H.; Baú, D.; Elhaddad, A. Estimation of heterogeneous aquifer parameters using centralized and decentralized fusion of hydraulic tomography data. Hydrol. Earth Syst. Sci. 2014, 18, 3207–3223. [Google Scholar] [CrossRef]
- Lee, D. Ensemble Kalman Filter for Transient Pumping Test. Ph.D. Dissertation, Seoul National University Graduate School, Seoul, Republic of Korea, 2022. [Google Scholar]
- Sánchez-León, E.; Leven, C.; Erdal, D.; Cirpka, O.A. Comparison of two ensemble-Kalman filter based methods for estimating aquifer parameters from real 3-D hydraulic and tracer tomographic tests. Geosciences 2020, 10, 462. [Google Scholar] [CrossRef]
- Poeter, E.P.; Hill, M.C. Inverse models: A necessary next step in ground-water modeling. Groundwater 1997, 35, 250–260. [Google Scholar] [CrossRef]
- Tonkin, M.J.; Doherty, J. A hybrid regularized inversion methodology for highly parameterized environmental models. Water Resour. Res. 2005, 41, W10412. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Jardani, A.; Revil, A.; Dupont, J.-P. Hydraulic conductivity field characterization from the joint inversion of hydraulic heads and self-potential data. Water Resour. Res. 2014, 50, 3502–3522. [Google Scholar] [CrossRef]
- Jardani, A.; Revil, A.; Dupont, J.-P. Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging. Adv. Water Resour. 2013, 52, 62–77. [Google Scholar] [CrossRef]
- Leng, C.H.; Yeh, H.-D. Aquifer parameter identification using the extended Kalman filter. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Hantush, M.M.; Mariño, M.A. Estimation of spatially variable aquifer hydraulic properties using Kalman filtering. J. Hydraul. Eng. 1997, 123, 1027–1035. [Google Scholar] [CrossRef]
- Theis, C.V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Eos Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Cooper, H.H.C., Jr.; Jacob, C.E. A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans. Am. Geophys. Union 1946, 27, 526–534. [Google Scholar]
- Neuman, S.P. Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response. Water Resour. Res. 1974, 10, 303–312. [Google Scholar] [CrossRef]
- Hantush, M.S. Analysis of data from pumping tests in anisotropic aquifers. J. Geophys. Res. 1966, 71, 421–426. [Google Scholar] [CrossRef]
- Robledo-Zavala, S. Interpretación De Pruebas De Acuífero Empleando El Filtro De Kalman Dinámico. Bacherlor’s Thesis, Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Civil, Zacatecas, Mexico, 2018. [Google Scholar]
- Rathod, K.S.; Rushton, K.R. Interpretation of Pumping from Two-Zone Layered Aquifers Using a Numerical Model. Groundwater 1991, 29, 499–509. [Google Scholar] [CrossRef]
- Titov, K.; Konosavsky, P.; Narbut, M. Pumping test in a layered aquifer: Numerical analysis of self-potential signals. J. Appl. Geophys. 2015, 123, 188–193. [Google Scholar] [CrossRef]
- Naderi, M. Estimating confined aquifer parameters using a simple derivative-based method. Heliyon 2019, 5, e02657. [Google Scholar] [CrossRef]
- Kirlas, M.C.; Nagkoulis, N. Effects of pumping flow rates on the estimation of hydrogeological parameters. J. Hydroinformatics 2023, 25, 611–627. [Google Scholar] [CrossRef]
- Şen, Z. Adaptive pumping test analysis. J. Hydrol. 1984, 74, 259–270. [Google Scholar] [CrossRef]
- Júnez-Ferreira, H.E. Use of the Kalman Filter for the Interpretation of Aquifer Tests Including Model and Measurement Errors. Water 2022, 14, 522. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, C. Ground Water Management Optimization Using Genetic Algorithms and Simulated Annealing: Formulation and Comparison. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 519–530. [Google Scholar] [CrossRef]
- Tayfur, G. Modern optimization methods in water resources planning, engineering and management. Water Resour. Manag. 2017, 31, 3205–3233. [Google Scholar] [CrossRef]
- Ritzel, B.J.; Eheart, J.W.; Ranjithan, S. Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resour. Res. 1994, 30, 1589–1603. [Google Scholar] [CrossRef]
- Ayaz, M.D. Groundwater pollution source identification using genetic algorithm based optimization model. Int. J. Comput. Sci. Eng. 2017, 5, 65–72. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Wright, M.H. Direct search methods: Once scorned, now respectable. In Numerical Analysis: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis; Griffiths, D.F., Watson, G.A., Eds.; Addison-Wesley: Harlow, UK, 1996; pp. 191–208. [Google Scholar]
- Kruseman, G.P.; De Ridder, N.A.; Verweij, J.M. Analysis and Evaluation of Pumping Test Data; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1970; Volume 11. [Google Scholar]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Appiah-Adjei, E.K.; Shu, L.; Adjei, K.A.; Lu, C.; Deng, M. Interpretation of pumping test with radial collector well using a reservoir model. J. Hydrol. Eng. 2012, 17, 1397–1407. [Google Scholar] [CrossRef]
Time After Pumping Started (min) | Drawdown (m) | Time After Pumping Started (min) | Drawdown (m) |
---|---|---|---|
0.10 | 0.040 | 18.00 | 0.680 |
0.25 | 0.080 | 27.00 | 0.742 |
0.50 | 0.130 | 33.00 | 0.753 |
0.70 | 0.180 | 41.00 | 0.779 |
1.00 | 0.230 | 48.00 | 0.793 |
1.40 | 0.280 | 59.00 | 0.819 |
1.90 | 0.330 | 80.00 | 0.855 |
2.33 | 0.360 | 95.00 | 0.873 |
2.80 | 0.390 | 139.00 | 0.915 |
3.36 | 0.420 | 181.00 | 0.935 |
4.00 | 0.450 | 245.00 | 0.966 |
5.35 | 0.500 | 300.00 | 0.990 |
6.80 | 0.540 | 360.00 | 1.007 |
8.30 | 0.570 | 480.00 | 1.050 |
8.70 | 0.580 | 600.00 | 1.053 |
10.00 | 0.600 | 728.00 | 1.072 |
13.10 | 0.640 | 830.00 | 1.088 |
Time After Pumping Started (min) | Drawdown (m) | Time After Pumping Started (min) | Drawdown (m) |
---|---|---|---|
1 | 0.2 | 24 | 0.72 |
1.5 | 0.27 | 30 | 0.76 |
2 | 0.3 | 40 | 0.81 |
2.5 | 0.34 | 50 | 0.85 |
3 | 0.37 | 60 | 0.9 |
4 | 0.41 | 80 | 0.93 |
5 | 0.45 | 100 | 0.96 |
6 | 0.48 | 120 | 1 |
8 | 0.53 | 150 | 1.04 |
10 | 0.57 | 180 | 1.07 |
12 | 0.6 | 210 | 1.1 |
14 | 0.63 | 240 | 1.12 |
18 | 0.67 |
Parameter | Theis Procedure | Cooper–Jacob Procedure | Aquifer Win (Theis Solution) | Sen Procedure | Cooper–Jacob and Kalman Filter Procedure (VDME = 0.01 m2) | Theis and Kalman Filter-Based Proposed Procedure (VDME = 0.015 m2) |
---|---|---|---|---|---|---|
342–418 | 401 | 480.67 | 342–420 | 505.76 | 430.92 | |
0.00017 | 0.00017 | 0.00011 | 0.00016–0.0002 | 0.000088 | 0.00016 |
Parameter | Theis Procedure | Cooper–Jacob Procedure | Aquifer Win (Theis Solution) | Cooper–Jacob and Kalman Filter Procedure (VDME = 0.01 m2) | Theis and Kalman Filter-Based Proposed Procedure (VDME = 0.004 m2) |
---|---|---|---|---|---|
1110 | 1144 | 1138.17 | 1180.43 | 1140.57 | |
0.00021 | 0.00019 | 0.00019 | 0.00017 | 0.00019 |
Time After Pumping Started (min) | Drawdown (m) | Time After Pumping Started (min) | Drawdown (m) |
---|---|---|---|
1 | 0.242 | 24 | 0.753 |
1.5 | 0.283 | 30 | 0.768 |
2 | 0.260 | 40 | 0.824 |
2.5 | 0.341 | 50 | 0.816 |
3 | 0.389 | 60 | 0.886 |
4 | 0.396 | 80 | 0.976 |
5 | 0.463 | 100 | 0.938 |
6 | 0.489 | 120 | 0.943 |
8 | 0.534 | 150 | 0.989 |
10 | 0.567 | 180 | 1.081 |
12 | 0.616 | 210 | 1.171 |
14 | 0.666 | 240 | 1.157 |
18 | 0.644 |
Pumping Test Data | RMSE (m) | NRMSE (%) |
---|---|---|
Oude Korendijk | 0.0126 | 1.9335 |
Todd and Mays | 0.0026 | 0.3825 |
Todd and Mays with Gaussian noise | 0.0068 | 0.9970 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas-Recendez, M.I.; Júnez-Ferreira, H.E.; González-Trinidad, J.; Júnez-Ferreira, C.A.; Silva-Ávalos, R.U.; Muñoz de la Torre, E. Eliminating Noise of Pumping Test Data Using the Theis Solution Implemented in the Kalman Filter. Water 2025, 17, 1271. https://doi.org/10.3390/w17091271
Rivas-Recendez MI, Júnez-Ferreira HE, González-Trinidad J, Júnez-Ferreira CA, Silva-Ávalos RU, Muñoz de la Torre E. Eliminating Noise of Pumping Test Data Using the Theis Solution Implemented in the Kalman Filter. Water. 2025; 17(9):1271. https://doi.org/10.3390/w17091271
Chicago/Turabian StyleRivas-Recendez, Maria Ines, Hugo Enrique Júnez-Ferreira, Julián González-Trinidad, Carlos Alberto Júnez-Ferreira, Raúl Ulices Silva-Ávalos, and Eric Muñoz de la Torre. 2025. "Eliminating Noise of Pumping Test Data Using the Theis Solution Implemented in the Kalman Filter" Water 17, no. 9: 1271. https://doi.org/10.3390/w17091271
APA StyleRivas-Recendez, M. I., Júnez-Ferreira, H. E., González-Trinidad, J., Júnez-Ferreira, C. A., Silva-Ávalos, R. U., & Muñoz de la Torre, E. (2025). Eliminating Noise of Pumping Test Data Using the Theis Solution Implemented in the Kalman Filter. Water, 17(9), 1271. https://doi.org/10.3390/w17091271