Application of Adaptive ε-IZOA-Based Optimization Algorithm in the Optimal Scheduling of Reservoir Clusters
Abstract
:1. Introduction
2. Optimization Scheduling Model for Flood Control in Multiple Reservoirs
2.1. Objective Function
2.2. Constraint Formulation
- (1)
- Water balance constraints
- (2)
- Maximum safe river discharge constraints
- (3)
- Gate downflow constraints
- (4)
- Starting water level
- (5)
- End-of-period water level constraints
- (6)
- Water level constraints
- (7)
- Non-negativity constraints: the aforementioned variables are constrained to take on non-negative values.
3. Improving the Zebra Algorithm
3.1. Zebra Optimisation Algorithm
3.1.1. Stages of Foraging Behavior
3.1.2. Stages of the Predator’s Defense Strategy
3.2. Improved Zebra Algorithm
3.2.1. Bernoulli Chaos Mapping Initialization Population
3.2.2. Adaptive Weighting Factor Strategy
3.2.3. Fusion Gold Sine Strategy Update Location
3.2.4. Adaptive ε-Constraint Method
- (1)
- To address the problem of low population diversity, an improved individual comparison criterion is utilized to increase the diversity of the population so that a globally optimal solution is found in the entire search space, ensuring convergence. The criterion formula is as follows:
- (2)
- Use the ε constraint method to deal with the constraints and adaptively adjust the level parameter ε according to the degree of superiority of the group constraint violation, making full use of the effective information of the better infeasible individuals, and effectively improving the efficiency of the search for the feasible domain [31]. ε is formulated as follows:
3.3. Steps of the ε-IZOA Algorithm
- Initialize Population Parameters: Set parameters involve the T, N, search space boundary constraints, decision variable dimensionality, and truncation evolution iteration count Te.
- Generate Initial Population: Initialize the population via Bernoulli chaotic mapping (Equation (12)), compute the initial fitness values, and identify the positions of zebra populations with the current optimal and inferior fitness values.
- Foraging Behavior Phase: Update zebra positions using the adaptive weighting factor strategy (Equations (14) and (15)).
- Predator Defense Phase: Update zebra positions based on the golden sine strategy (Equation (16)).
- Generate New Population: Modify the spatial configurations of newly generated zebra populations and then evaluate their evolutionary fitness metrics.
- Selection: Perform individual comparison and selection according to Equation (17).
- Termination Check: If satisfied, the result will be output; otherwise, the population position will be updated.
- Output Results: Record the best fitness score and its matching individual from the results.
3.4. Experimental Testing of ε-IZOA Simulation
4. Example Analyses
4.1. Overview of the Study Area
4.2. Regional Flood Analysis
5. Results and Discussion
5.1. Analyzing the Scheduling Results
5.2. Analysis of Algorithm Results
5.3. Conclusions
- (1)
- The ε-IZOA algorithm, incorporating an adaptive weight factor based on Bernoulli chaotic mapping and the golden sinusoidal strategy, effectively addresses the traditional ZOA’s issues of performance instability due to parameter dependence, surges in computational complexity in high-dimensional spaces, susceptibility to local optima, and slow convergence, thereby significantly enhancing its adaptability in complex scenarios.
- (2)
- This paper makes use of the ε-IZOA algorithm for the first time in the optimal scheduling problem of reservoir group flood control. Comparing the ε-ZOA, ε-PSO, ε-DE, and ε-WOA algorithms, the results show that the ε-IZOA algorithm has a fast convergence speed and a higher probability of finding the optimal solution, and it is able to solve well the traditional mathematical planning methods for solving the problem of a more complex case of the dimensional disaster problem, showing the better performance of the algorithm.
- (3)
- The comparison results show that the ε-IZOA algorithm has better performance than the ε-ZOA, ε-PSO, ε-DE, and ε-WOA algorithms; the peak shaving rates of the five reservoirs are 60.47%, 55.42%, 24.39%, 64.87%, and 11.88%, which are obviously higher than the other two algorithms at the same time, which reflects the feasibility and validity of the ε-IZOA algorithm in solving the optimal scheduling problem of the flood control of the reservoir groups, and it provides an effective method for the optimal scheduling of the flood control of the reservoir groups.
5.4. Research Limitations and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.; Guo, W.; Wang, S.; Chen, H.; Guo, X.; Li, S. Application of Multi-Strategy Based Improved DBO Algorithm in Optimal Scheduling of Reservoir Groups. Water Resour. Manag. 2024, 38, 1883–1901. [Google Scholar] [CrossRef]
- Chen, C.; Feng, S.; Liu, S.; Zheng, H.; Zhang, H.; Wang, J. A stochastic linear programming model for maximizing generation and firm output at a reliability in long-term hydropower reservoir operation. J. Hydrol. 2023, 618, 129185. [Google Scholar] [CrossRef]
- Raju, B.C.K.; Gowda, C.C.; Karthika, B.S. Optimization of Reservoir Operation using Linear Programming. Int. J. Recent Technol. Eng. 2020, 8, 1028–1032. [Google Scholar] [CrossRef]
- Aminabadi, M.J.; Séguin, S.; Fofana, I. Hybrid Genetic Algorithms and Heuristics for Nonlinear Short-Term Hydropower Optimization: A Comparative Analysis. Procedia Comput. Sci. 2024, 246, 282–291. [Google Scholar] [CrossRef]
- Chai, F.; Peng, F.; Zhang, H.; Zang, W. Stable Improved Dynamic Programming Method: An Efficient and Accurate Method for Optimization of Reservoir Flood Control Operation. Water Resour. Manag. 2023, 37, 5635–5654. [Google Scholar] [CrossRef]
- Lee, E.; Ji, J.; Lee, S.; Yoon, J.; Yi, S.; Yi, J. Development of an Optimal Water Allocation Model for Reservoir System Operation. Water 2023, 15, 3555. [Google Scholar] [CrossRef]
- Dolter, B.; Fellows, G.K.; Rivers, N. The cost effectiveness of new reservoir hydroelectricity: British Columbia’s Site C project. Energy Policy 2022, 169, 113161. [Google Scholar] [CrossRef]
- Kang, C.; Chen, C.; Wang, J. An Efficient Linearization Method for Long-Term Operation of Cascaded Hydropower Reservoirs. Water Resour. Manag. 2018, 32, 3391–3404. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y.; Lu, J.; Xu, Y.; Hua, X.; Wang, T. Research on optimal power generation operation of cascade reservoirs in Lower Jinsha River during impoundment period. Express Water Resour. Hydropower Inf. 2022, 43, 41–47. [Google Scholar] [CrossRef]
- Tharwat, A.; Schenck, W. A conceptual and practical comparison of PSO-style optimization algorithms. Expert Syst. Appl. 2021, 167, 114430. [Google Scholar] [CrossRef]
- Wahyuni, S.; Sisinggih, D.; Elhuda, I.; Souma, K.; Dasylva, I.Z. Optimization of reservoir release operation using genetic algorithm method. Results Eng. 2024, 23, 102610. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mo, L.; Yang, Y.; Tao, Y. Optimal Scheduling of Cascade Reservoirs Based on an Integrated Multistrategy Particle Swarm Algorithm. Water 2023, 15, 2593. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Pu, Y.; Lei, H.; Zheng, X. Unit Operation Combination and Flow Distribution Scheme of Water Pump Station System Based on Genetic Algorithm. Appl. Sci. 2023, 13, 11869. [Google Scholar] [CrossRef]
- Wu, X.; Shen, X.; Wei, C.; Xie, X.; Li, J. Algorithm for Multiobjective Reservoir Ecological Dispatching. Water Resour. Manag. 2024, 38, 2229–2249. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Bao, R.; Zhu, S.; Mo, L.; Yang, Y. Application of Black-Winged Differential-Variant Whale Optimization Algorithm in the Optimization Scheduling of Cascade Hydropower Stations. Sustainability 2025, 17, 1018. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Liao, F.; Wei, Z.; Hu, M. Multi-population artificial bee colony algorithm for many-objective cascade reservoir scheduling. Concurr. Comput. Pract. Exp. 2024, 36, e8221. [Google Scholar] [CrossRef]
- Wang, W.; Tian, W.; Chau, K.; Zang, H.; Ma, M.; Feng, Z.; Xu, D. Multi-Reservoir Flood Control Operation Using Improved Bald Eagle Search Algorithm with ε Constraint Method. Water 2023, 15, 692. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Z.; Yue, P.; Lai, Z.; Wang, Y. Research on Optimal Operation of Cascade Reservoirs under Complex Water-Level Flow Output Constraints. Water 2024, 16, 2963. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M.; Trojovský, P. Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access 2022, 10, 49445–49473. [Google Scholar] [CrossRef]
- Wang, L.; Cui, S.; Li, Y.; Huang, H.; Manandhar, B.; Nitivattananon, V.; Fang, X.; Huang, W. A review of the flood management: From flood control to flood resilience. Heliyon 2022, 8, e11763. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xu, Q.; Yang, S.; Liao, L. Reservoir flood control operation based on chaotic particle swarm optimization algorithm. Appl. Math. Model. 2014, 38, 4480–4492. [Google Scholar] [CrossRef]
- Gambhir, G.; Mandal, J.K. Shared memory implementation and performance analysis of LSB steganography based on chaotic tent map. Innov. Syst. Softw. Eng. 2021, 17, 333–342. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 2021, 220, 106924. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, Y.; Ji, M.; Gu, J. Chaotic Sparrow Search Algorithm and Application Based on Spiral Slime Mould Algorithm. Comput. Eng. Appl. 2023, 59, 124–133. [Google Scholar] [CrossRef]
- Ding, R.; Gao, J.l.; Zhang, Q. Bald Eagle Search Algorithm Combining Adaptive Inertial Weight and Cauchy Variation. J. Chin. Comput. Syst. 2023, 44, 910–915. [Google Scholar] [CrossRef]
- Tanyildizi, E.; Demir, G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm. Adv. Electr. Comput. Eng. 2017, 17, 71–78. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Song, H. An improved algorithm optimization algorithm based on RungeKutta and golden sine strategy. Expert Syst. Appl. 2024, 247, 123262. [Google Scholar] [CrossRef]
- Liu, C.; He, Q. Golden sine chimp optimization algorithm integrating multiple strategies. Acta Autom. Sin. 2023, 49, 2360–2373. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, X.; Liu, R. ε-Differential Evolution Algorithm for Constrained Optimization Problems. J. Softw. 2012, 23, 2374–2387. [Google Scholar] [CrossRef]
- Wang, W.; Tian, W.; Xu, L.; Liu, C.; Xu, D. Mε-OIDE algorithm for solving constrained optimization problems and its application in flood control operation of reservoir group. J. Hydraul. Eng. 2023, 54, 148–158. [Google Scholar] [CrossRef]
Function Name (Theoretical Optimal Value) | ε-IZOA | ε-ZOA | ε-PSO | ε-DE | ε-WOA | |
---|---|---|---|---|---|---|
(−15.0000) | Mean | −1.50E+01 | −1.26E+01 | −1.49E+01 | −9.00E+00 | 1.55E+02 |
SD | 0.00E+00 | 1.85E+00 | 2.47E−02 | 0.00E+00 | 6.82E−04 | |
(−0.8036) | Mean | −8.03E−01 | −7.27E−01 | −7.87E−01 | −6.17E−01 | 2.32E−01 |
SD | 2.88E−03 | 4.44E−02 | 9.16E−03 | 2.30E−02 | 7.62E−05 | |
(−1.0000) | Mean | −1.00E+00 | −1.00E+00 | −1.00E+00 | −1.00E+05 | 0.77E+00 |
SD | 9.87E−06 | 8.83E−05 | 4.90E−02 | 0.00E+00 | 1.79E+04 | |
(−30,665.5386) | Mean | −3.07E+04 | −3.07E+04 | −3.07E+04 | −3.19E+04 | −2.85E+04 |
SD | 1.82E−11 | 1.82E−11 | 1.82E−11 | 2.07E+02 | 2.35E+01 | |
(5126.4967) | Mean | 5.13E+03 | 5.04E+03 | 4.20E+03 | 3.70E+03 | 5.60E+03 |
SD | 1.54E−01 | 4.07E+02 | 1.24E+03 | 0.00E+00 | 2.38E−01 | |
(−6961.8139) | Mean | −6.96E+03 | −6.96E+03 | −6.96E+03 | −7.96E+03 | −6.37E+03 |
SD | 1.80E−05 | 1.08E−02 | 2.10E−04 | 9.13E+00 | 3.52E−04 | |
(24.3062) | Mean | 2.43E+01 | 2.49E+01 | 2.58E+01 | 2.66E+01 | 3.12E+01 |
SD | 2.95E−02 | 7.10E−01 | 2.63E+00 | 8.14E−02 | 2.67E−03 | |
(−0.0958) | Mean | −9.58E−02 | −9.58E−02 | −9.45E−02 | −1.63E−01 | 0.67E−01 |
SD | 5.68E−13 | 1.80E−05 | 2.62E−02 | 9.50E−01 | 1.56E+05 | |
(680.6300) | Mean | 6.81E+02 | 6.81E+02 | 6.81E+02 | 3.71E+02 | 6.12E+02 |
SD | 5.68E−13 | 1.80E−05 | 2.62E−02 | 1.16E+02 | 2.38E−05 | |
(7049.2480) | Mean | 7.05E+03 | 7.05E+03 | 7.05E+03 | 6.10E+03 | 7.34E+03 |
SD | 4.55E−12 | 4.55E−12 | 2.82E+02 | 0.00E+00 | 7.10E−02 | |
(0.7499) | Mean | 7.50E−01 | 7.50E−01 | 7.50E−01 | 3.94E−03 | 7.05E−02 |
SD | 0.00E+00 | 1.57E−03 | 7.89E−03 | 4.41E−03 | 6.81E−03 | |
(−1.0000) | Mean | −1.00E+00 | −1.00E+00 | −1.00E+00 | −9.99E−01 | −5.04E−01 |
SD | 0.00E+00 | 0.00E+00 | 0.00E+00 | 8.54E−10 | 3.51E−01 | |
(0.0593) | Mean | 5.29E−02 | 1.05E−01 | 5.99E−01 | 3.92E−06 | 0.79E−02 |
SD | 3.20E−04 | 1.31E−01 | 2.08E−01 | 2.06E−15 | 9.84E−04 | |
(−47.7649) | Mean | −4.77E+01 | −4.78E+01 | 1.72E+02 | −1.57E+03 | −4.40E+01 |
SD | −4.77E+01 | 1.72E+02 | 4.20E+02 | 5.78E+01 | 2.96E−08 | |
(961.7150) | Mean | 9.62E+02 | 9.62E+02 | 9.62E+02 | 6.13E+02 | 8.11E+02 |
SD | 1.80E−11 | 1.80E−08 | 2.09E+01 | 1.64E+01 | 2.86E+03 | |
(−1.9652) | Mean | −1.91E+00 | −1.91E+00 | −1.90E+00 | 5.75E+01 | −1.68E+00 |
SD | 0.00E+00 | 3.96E−05 | 1.95E−03 | 5.91E−01 | 3.73E−01 | |
(8853.5339) | Mean | 8.87E+03 | 8.45E+03 | 8.95E+03 | −1.05E+04 | 9.55E+04 |
SD | 3.21E+01 | 4.03E+02 | 8.58E+02 | 7.22E+01 | 1.97E−02 | |
(−0.8660) | Mean | −8.66E−01 | −8.66E−01 | −8.54E−01 | −1.50E+02 | 0.59E−01 |
SD | 5.30E−06 | 5.44E−04 | 8.35E−02 | 0.00E+00 | 1.34E−01 | |
(32.6556) | Mean | 3.27E+01 | 3.56E+01 | 3.45E+01 | 2.95E+02 | 3.27E+01 |
SD | 6.64E−03 | 3.33E+00 | 1.32E+00 | 5.45E−01 | 0.04E+01 | |
(193.7245) | Mean | 1.94E+02 | 2.52E+02 | 3.24E+02 | 8.90E+02 | 5.34E+02 |
SD | 0.00E+00 | 1.88E+02 | 1.67E+02 | 0.00E+00 | 2.44E−01 | |
(−400.0551) | Mean | −4.00E+02 | −5.43E+02 | −2.84E+02 | 1.00E−02 | −4.53E+02 |
SD | 0.00E+00 | 4.37E+02 | 5.06E+02 | 3.53E−18 | 0.64E−04 | |
(−5.5080) | Mean | −5.51E+00 | −5.51E+00 | −5.51E+00 | −5.50E+00 | −5.50E+00 |
SD | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
Reservoir | Gu Xian | Lu Hun | San Men Xia | Xiao Lang Di | He Kou Cun |
---|---|---|---|---|---|
Flood Season Limitation Level (m) | 527.3 | 143.00 | 133.00 | 216.00 | 238 |
Flood Control High Water Level (m) | 548 | 143.50 | 133.00 | 224.50 | 285.43 |
Flood Control Storage Capacity (108 m3) | 4.82 | 8.59 | 3.37 | 29.30 | 2.3 |
Reach Name | Flood Propagation Time | Number of Segments | K | Δt | X |
---|---|---|---|---|---|
San men xia~Xiao lang di | 8 | 2 | 3.875 | 4 | 0.2 |
Xiao lang di~Hua yuan kou | 12 | 3 | 4.567 | 4 | 0.3 |
Hu hun~Lon gmen town | 6 | 3 | 1.823 | 2 | 0.4 |
Lon gmen town~Huang zhuang | 2 | 1 | 2.25 | 2 | 0.3 |
Huang zhuang~An tan | 2 | 1 | 2.182 | 2 | 0.3 |
Gu xian~Chang shui | 2 | 1 | 2 | 2 | 0.5 |
Chang shui~Yi yang | 6 | 3 | 2 | 2 | 0.35 |
Yi yang~Baima Temple | 6 | 3 | 1.54 | 2 | 0.3 |
Baima Temple~Xin zhai | 2 | 1 | 2.61 | 2 | 0.35 |
An tan xin zhai~Hei shi guan | 2 | 1 | 3.22 | 2 | 0.3 |
Hei shi guan~Hua yuan kou | 8 | 2 | 4.61 | 4 | 0.4 |
Wu long kou~Liu zhuang | 6 | 3 | 2.545 | 2 | 0.3 |
Liu zhuang~Wu zhi | 2 | 1 | 2.5 | 2 | 0.3 |
Wu zhi~Hua yuan kou | 4 | 1 | 4.53 | 4 | 0.3 |
Reservoir | Initial Operating Level | Final Water Level | Maximum Inflow | Maximum Outflow | Peak Clipping Rate |
---|---|---|---|---|---|
(m) | (m) | (m3/s) | (m3/s) | ||
Gu xian | 527.3 | 527.3 | 10,120 | 4000 | 60.47% |
Lu hun | 317.15 | 317 | 4900 | 2184.11 | 55.42% |
San men xia | 307 | 307 | 12,638 | 9555.92 | 24.39% |
Xiao lang di | 230 | 255.22 | 29,214.11 | 10,260.09 | 64.87% |
He kou cun | 238 | 238 | 2336 | 2058.5 | 11.88% |
Algorithm | Peak Discharge (m3/s) | Peak Clipping Rate |
---|---|---|
Without Reservoir Regulation | 39,854.43 | / |
ε-IZOA | 18,745.02 | 52.97% |
ε-ZOA | 19,768.11 | 50.40% |
ε-PSO | 21,117.40 | 47.01% |
ε-DE | 19,979.03 | 49.87% |
ε-WOA | 19,335.60 | 51.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chu, N.; Kang, A. Application of Adaptive ε-IZOA-Based Optimization Algorithm in the Optimal Scheduling of Reservoir Clusters. Water 2025, 17, 1274. https://doi.org/10.3390/w17091274
Chen H, Chu N, Kang A. Application of Adaptive ε-IZOA-Based Optimization Algorithm in the Optimal Scheduling of Reservoir Clusters. Water. 2025; 17(9):1274. https://doi.org/10.3390/w17091274
Chicago/Turabian StyleChen, Haitao, Nishi Chu, and Aiqing Kang. 2025. "Application of Adaptive ε-IZOA-Based Optimization Algorithm in the Optimal Scheduling of Reservoir Clusters" Water 17, no. 9: 1274. https://doi.org/10.3390/w17091274
APA StyleChen, H., Chu, N., & Kang, A. (2025). Application of Adaptive ε-IZOA-Based Optimization Algorithm in the Optimal Scheduling of Reservoir Clusters. Water, 17(9), 1274. https://doi.org/10.3390/w17091274