Assessment of Acute Toxicity of Acid Mine Drainage via Toxicity Identification Evaluation (TIE) Using Daphnia magna and Chlorella vulgaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acid Mine Drainage Acquisition
2.2. Toxicity Identification Evaluation (TIE)
2.3. Toxicity Assays with Daphnia magna
2.4. Chlorella vulgaris Toxicity
2.5. Analytical Methods
2.6. Statistical Analyses
3. Results and Discussion
3.1. Physicochemical and Ecotoxicological Characterization of AMD
3.2. Phase I: Characterization of TIE Fractions
3.3. Phase II: Reduction of AMD Toxicity to Bioindicators
3.3.1. Daphnia magna
3.3.2. Chlorella vulgaris
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bwapwa, J.K.; Jaiyeola, A.T.; Chetty, R. Bioremediation of acid mine drainage using algae strains: A review. S. Afr. J. Chem. 2017, 24, 62–70. [Google Scholar] [CrossRef]
- Ruiz-Sanchez, A.; Tapia, J.C.; Lapidus, G.T. Evaluation of acid mine drainage (AMD) from tailings and their valorization by copper recovery. Miner. Eng. 2023, 191, 107979. [Google Scholar] [CrossRef]
- Pat-Espadas, A.M.; Loredo, R.; Amabilis-Sosa, L.E.; Gómez, G.; Vidal, G. Review on constructed wetlands for acid mine drainage treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, C.; Su, P.; Tang, Y.; Huang, Z.; Ma, T. A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Saf. Environ. Prot. 2023, 170, 1240–1260. [Google Scholar] [CrossRef]
- Chen, D.; Wang, G.; Chen, C.; Feng, Z.; Jiang, Y.; Yu, H.; Li, M.; Chao, Y.; Tang, Y.; Wang, S.; et al. The interplay between microalgae and toxic metalloids: Mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. J. Hazard. Mater. 2023, 454, 131498. [Google Scholar] [CrossRef]
- Nwaila, G.T.; Ghorbani, Y.; Zhang, S.E.; Tolmay, L.C.K.; Rose, D.H.; Nwaila, P.C.; Bourdeau, J.E.; Frimmel, H.E. Valorisation of mine waste—Part II: Resource evaluation for consolidated and mineralized mine waste using the Central African Copperbelt as an example. J. Environ. Manag. 2021, 299, 113553. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Kurniawan, S.B.; Iwuozor, K.O.; Aniagor, C.O.; Ajala, O.J.; Oba, S.N.; Iwuchukwu, F.U.; Ahmadi, S.; Igwegbe, C.A. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Saf. Environ. Prot. 2022, 157, 37–58. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; He, Y.; Li, H. Aquatic toxicity of heavy metal-containing wastewater effluent treated using vertical flow constructed wetlands. Sci. Total Environ. 2020, 727, 138616. [Google Scholar] [CrossRef]
- Villamar, C.; Silva, J.; Bay-Schmit, E.; Vidal, G. Toxicity identification evaluation of anaerobically treated wine slurry: A comparison between Daphnia magna and Raphanus sativus. J. Environ. Sci. Health Part. B-Pestic. Contam. Agric. Wastes 2014, 49, 880–888. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures, 2nd ed.; EPA-600-6-91-003; Office of Research and Development: Duluth, MN, USA, 1991. [Google Scholar]
- Chamorro, S.; Barata, C.; Piña, B.; Casado, M.; Schwarz, A.; Sáez, K.; Vidal, G. Toxicological analysis of acid mine drainage by water quality and land use bioassays. Mine Water Environ. 2018, 37, 88–97. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Bownik, A.; Dudka, J.; Kowal, K.; Slaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci. Total Environ. 2021, 763, 143038. [Google Scholar] [CrossRef]
- Peng, W.; Liu, Y.; Lin, M.; Liu, Y.; Zhu, C.; Sun, L.; Gui, H. Toxicity of coal fly ash and coal gangue leachate to Daphnia magna: Focusing on typical heavy metals. J. Clean. Prod. 2022, 330, 129946. [Google Scholar] [CrossRef]
- Santos-Rasera, J.R.; Neto, A.S.; Rosim-Monteiro, R.T.; van Gestel, C.A.M.; Pereira de Carvalho, H.W. Toxicity, bioaccumulation and biotransformation of Cu oxide nanoparticles in Daphnia magna. Environ. Sci.-Nano 2019, 6, 2897. [Google Scholar] [CrossRef]
- García-Valero, A.; Martínez-Martínez, S.; Faz, A.; Rivera, J.; Acosta, J.A. Environmentally sustainable acid mine drainage remediation: Use of natural alkaline material. J. Water Process Eng. 2020, 33, 101064. [Google Scholar] [CrossRef]
- Su, Y.; Cheng, Z.; Hou, Y.; Lin, S.; Gao, L.; Wang, Z.; Bao, R.; Peng, L. Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquat. Toxicol. 2022, 244, 106097. [Google Scholar] [CrossRef]
- Hanachi, P.; Khoshnamvand, M.; Walker, T.R.; Hamidian, A.H. Nano-sized polystyrene plastics toxicity to microalgae Chlorella vulgaris: Toxicity mitigation using humic acid. Aquat. Toxicol. 2022, 245, 106123. [Google Scholar] [CrossRef]
- Expósito, N.; Carafa, R.; Kumar, V.; Sierra, J.; Schuhmacher, M.; Papiol, G.G. Performance of Chlorella vulgaris exposed to heavy metal mixtures: Linking measured endpoints and mechanisms. Int. J. Environ. Res. Public Health 2021, 18, 1037. [Google Scholar] [CrossRef]
- Brar, K.K.; Etteieb, S.; Magdouli, S.; Calugaru, L.; Brar, S.K. Novel approach for the management of acid mine drainage (AMD) for the recovery of heavy metals along with lipid production by Chlorella vulgaris. J. Environ. Manag. 2022, 308, 114507. [Google Scholar] [CrossRef]
- Villamar, C.; Cañuta, T.; Belmonte, M.; Vidal, G. Characterization of swine wastewater by toxicity identification evaluation methodology (TIE). Water Air Soil. Pollut. 2012, 223, 363–369. [Google Scholar] [CrossRef]
- NCh2083:1999; Acute Toxicity Bioassays by Determining Inhibition of Mobility of Daphnia magna or Daphnia pulex (Crustacea, Cladocera). National Institute of Standardization: Santiago, Chile, 1999. Available online: https://ecommerce.inn.cl/nch2083199941614 (accessed on 30 March 2025).
- Xavier, C.; Chamorro, S.; Vidal, G. Chronic effects of Kraft mill effluents and endocrine active chemical on Daphnia magna. Bull. Environ. Contam. Toxicol. 2005, 75, 670–676. [Google Scholar] [CrossRef]
- Guevara, M.; Arredondo-Vega, B.; Palacios, Y.; Saéz, K.; Gómez, P. Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients. J. Appl. Phycol. 2016, 28, 2651–2660. [Google Scholar] [CrossRef]
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- NCh-ISO 17025:2005; Testing and Calibration Laboratory Analysis and Implementation. National Institute of Normalization of Chile: Santiago, Chile, 2005. Available online: https://www.inn.cl/nch-iso-170252005-laboratorio-de-ensayo-y-calibracion-analisis-e-implementacion (accessed on 30 March 2025).
- Pino, L.; Beltran, E.; Schwarz, A.; Ruiz, M.C.; Borquez, R. Optimization of nanofiltration for treatment of acid mine drainage and copper recovery by solvent extraction. Hydrometallurgy 2020, 195, 105361. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Vecino, X.; Cortina, J.L. Arsenic impact on the valorisation schemes of acidic mine waters of the Iberian Pyrite belt: Integration of selective precipitation and spiral-wound nanofiltration processes. J. Hazard. Mater. 2021, 403, 123886. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.S.; Kharel, G. Acid mine drainage from coal mining in the United States—An overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.H.; Ren, N.Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Echotechol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Radić, S.; Vujčić, V.; Cvetković, Ž.; Cvjetko, P.; Oreščanin, V. The efficiency of combined CaO/electrochemical treatment in removal of acid mine drainage induced toxicity and genotoxicity. Sci. Total Environ. 2014, 466–467, 84–89. [Google Scholar] [CrossRef]
- Sivula, L.; Vehniainen, E.R.; Karjalainen, A.K.; Kukkonen, J.V.K. Toxicity of biomining effluents to Daphnia magna: Acute toxicity and transcriptomic biomarkers. Chemosphere 2018, 210, 304–311. [Google Scholar] [CrossRef]
- Ryskie, S.; Bélanger, E.; Neculita, C.M.; Couture, P.; Rosa, E. Influence of ozone microbubble enhanced oxidation on mine effluent mixes and Daphnia magna toxicity. Chemosphere 2023, 329, 138559. [Google Scholar] [CrossRef]
- Kim, D.; Chae, Y.; Kim, M.; An, Y.J. Effects of EDTA and boron toxicity to the green algae Chlamydomonas reinhardtii, Chlorella sorokiniana, and Chlorella vulgaris. J. Water Process Eng. 2023, 53, 103823. [Google Scholar] [CrossRef]
- Dixit, F.; Barbeau, B.; Mostafavi, S.G.; Mohseni, M. PFOA and PFOS removal by ion exchange for water reuse and drinking applications: Role of organic matter characteristics. Environ. Sci.-Water Res. Technol. 2019, 5, 1782–1795. [Google Scholar] [CrossRef]
- Petronijevic, N.; Radovanovic, D.; Stulovic, M.; Sokic, M.; Jovanovic, G.; Kamberovic, Z.; Stankovic, S.; Stopic, S.; Onjia, A. Analysis of the mechanism of acid mine drainage neutralization using fly ash as an alternative material: A case study of the extremely acidic lake Robule in Eastern Serbia. Water 2022, 14, 3244. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, Y.; Chen, Y.; Liu, X.; Wang, J. Toxicological effects of microplastics and heavy metals on the Daphnia magna. Sci. Total Environ. 2020, 746, 141254. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, A.; Yamamuro, M.; Tatarazako, N. Acute toxicity of 50 metals to Daphnia magna. J. Appl. Toxicol. 2014, 35, 824–830. [Google Scholar] [CrossRef]
- Freitas, A.P.P.; Schneider, I.A.H.; Schwartzbold, A. Biosorption of heavy metals by algal communities in water streams affected by acid mine drainage in the coal-mining region of Santa Catarina state, Brazil. Miner. Eng. 2011, 24, 1215–1218. [Google Scholar] [CrossRef]
Metal/Parameter | Unit | Average ± SD * |
---|---|---|
pH | - | 3.9 ± 0.0 |
EC * | mS/cm | 3.67 ± 0.00 |
CODT * | mg/L | 183.05 ± 12.16 |
CODS * | mg/L | 150.97 ± 0.32 |
SO42− | mg/L | 2900.0 ± 0.0 |
Cu | mg/L | 418.9 ± 0.01 |
Mn | mg/L | 108.80 ± 0.01 |
Al | mg/L | 85.09 ± 0.01 |
Zn | mg/L | 43.96 ± 0.01 |
Fe | mg/L | 0.21 ± 0.01 |
48 h—LC50 * | % | 0.00016 |
24 h—RFU * | % | 101.61 |
48 h—RFU | % | 75.04 |
72 h—RFU | % | 64.88 |
Fraction | * CODT | * CODS | SO42− | * EC (mS/cm) |
---|---|---|---|---|
(Average ± SD *) (mg/L) | ||||
Filtration pH 3 | 180.98 ± 3.11 | 142.62 ± 20.05 | 2925.0 ± 106.1 | 4.5 |
Filtration pH 11 | 97.55 ± 10.57 | 83.77 ± 3.58 | 2560.0 ± 247.5 | 5.4 |
Aeration pH 3 | 154.13 ± 2.89 | 148.39 ± 18.06 | 3275.0 ± 35.3 | 4.9 |
Aeration pH 11 | 153.29 ± 7.29 | 73.23 ± 22.87 | 2650.0 ± 141.4 | 6.1 |
EDTA * | 324.94 ± 14.33 | 287.29 ± 14.36 | 2625.0 ± 35.3 | 4.9 |
Cation resin | 180.22 ± 14.32 | 142.12 ± 63.63 | 302.5 ± 106.1 | 18.3 |
Anion resin | 148.53 ± 8.97 | 122.49 ± 14.56 | < 5 ± 0.0 | 3.6 |
Activated carbon | 174.95 ± 14.01 | 153.29 ± 15.31 | 2700.0 ± 0.0 | 3.9 |
Fraction | Al2+ | Cu2+ | Fe3+ | Mn2+ | Zn2+ |
---|---|---|---|---|---|
(mg/L) | |||||
Cation resin | 13.63 | 39.8 | 0.270 | 11.50 | 20.0 |
Anion resin | 0.79 | 0.02 | <0.001 | 0.01 | <0.0002 |
Activated carbon | 65.20 | 362.7 | 0.090 | 108.00 | 41.1 |
EDTA * | 0.17 | 95.9 | <0.001 | 96.30 | 31.5 |
Fraction | LC50 * (%v/v) * | TU * |
---|---|---|
AMD * | 0.0016 | 62,500 |
Filtration pH 3 | 0.0096 | 10,416 |
Filtration pH 11 | NT * | NT |
Aeration pH 3 | 0.0020 | 50,000 |
Aeration pH 11 | 0.0076 | 13,157 |
EDTA * | 0.0040 | 25,000 |
Cation resin | 0.0073 | 13,698 |
Anion resin | 0.4300 | 232 |
Activated carbon | 0.0037 | 27,027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgos, C.; Chamorro, S.; Monsalves, N.; Gómez, G.; Vidal, G. Assessment of Acute Toxicity of Acid Mine Drainage via Toxicity Identification Evaluation (TIE) Using Daphnia magna and Chlorella vulgaris. Water 2025, 17, 1313. https://doi.org/10.3390/w17091313
Burgos C, Chamorro S, Monsalves N, Gómez G, Vidal G. Assessment of Acute Toxicity of Acid Mine Drainage via Toxicity Identification Evaluation (TIE) Using Daphnia magna and Chlorella vulgaris. Water. 2025; 17(9):1313. https://doi.org/10.3390/w17091313
Chicago/Turabian StyleBurgos, Carol, Soledad Chamorro, Naomi Monsalves, Gloria Gómez, and Gladys Vidal. 2025. "Assessment of Acute Toxicity of Acid Mine Drainage via Toxicity Identification Evaluation (TIE) Using Daphnia magna and Chlorella vulgaris" Water 17, no. 9: 1313. https://doi.org/10.3390/w17091313
APA StyleBurgos, C., Chamorro, S., Monsalves, N., Gómez, G., & Vidal, G. (2025). Assessment of Acute Toxicity of Acid Mine Drainage via Toxicity Identification Evaluation (TIE) Using Daphnia magna and Chlorella vulgaris. Water, 17(9), 1313. https://doi.org/10.3390/w17091313