Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand
Abstract
:1. Introduction
2. Methodology
2.1. Site Description
2.2. SWAT Model
2.3. Model Application
Landuse | Definition | Area (ha) | Percentage (%) |
---|---|---|---|
CRIR | Irrigated cropland and pasture | 6,181,831 | 51.66 |
FODB | Deciduous broadleaf forest | 1,947,509 | 16.27 |
FOEB | Evergreen broadleaf forest | 1,503,653 | 12.57 |
SAVA | Savanna | 1,038,567 | 8.68 |
FOMI | Mixed forest | 495,301 | 4.14 |
CRWO | Cropland/woodland mosaic | 294,706 | 2.46 |
SHRB | Shrubland | 270,081 | 2.26 |
WATB | Water bodies | 113,731 | 0.95 |
CRDY | Dryland cropland and pasture | 79,365 | 0.66 |
URMD | Urban residential medium density | 37,820 | 0.32 |
GRAS | Grassland | 3060 | 0.03 |
CRGR | Cropland/grassland mosaic | 381 | 0 |
BSVG | Barren or sparsely vegetated | 249 | 0 |
Watershed | 11,966,254 | 100 |
2.4. Sensitivity Analysis
Name | Definition | Range | Process |
---|---|---|---|
Cn2 | Soil Conversion Service (SCS) runoff curve number for moisture condition 2 | 35–98 | Runoff |
Alpha_Bf | Baseflow alpha factor (days) | 0.00–1.00 | Groundwater |
Rchrg_Dp | Deep aquifer percolation fraction | 0.00–1.00 | Groundwater |
Esco | Soil evaporation compensation factor | 0.00–1.00 | Evaporation |
Revapmn | Threshold depth of water in the shallow aquifer for percolation to the deep aquifer (mmH2O) | 0–500 | Groundwater |
Ch_K2 | Effective hydraulic conductivity in main channel alluvium (mm/h) | −0.01–150 | Channel |
Gwqmn | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0–5000 | Soil |
Sol_Awc | Available water capacity of the soil layer (mm/mm soil) | 0–100 | Soil |
Sol_Z | Maximum canopy index Soil depth | 0–3000 | Soil |
Gw_Revap | Groundwater “revap” coefficient | 0.02–0.2 | Groundwater |
Surlag | Surface runoff lag coefficient | 0.00–10.00 | Runoff |
Blai | Leaf area index for crop | 0.00–1.00 | Crop |
Slope | Average slope steepness (m/m) | 0.0001–0.6 | Geomorphology |
Canmx | Maximum canopy index | 0.00–10.00 | Runoff |
Epco | Threshold depth of water in the shallow aquifer to percolation to the deep aquifer (mmH2O) | 0.00–1.00 | Evaporation |
2.5. Performance Assessment
Performance Rating | NSE |
---|---|
Very good | 0.75 < NSE ≤ 1.00 |
Good | 0.65 < NSE ≤ 0.75 |
Satisfactory | 0.50 < NSE ≤ 0.65 |
Unsatisfactory | NSE ≤ 0.50 |
2.6. Climate Change Scenarios
Scenario | CO2 Concentration (ppm) | Precipitation Change (%) | Temperature (°C) | |
---|---|---|---|---|
Baseline | 330 | 0 | 0 | |
1 | CO2 × 2 = 660 | 0 | 0 | |
2 | CO2 × 2 = 660 | +20 | 0 | |
3 | CO2 × 2 = 660 | 0 | +6 | |
4 | 330 | +10 | 0 | |
5 | 330 | +20 | 0 | |
6 | 330 | −10 | 0 | |
7 | 330 | −20 | 0 | |
8 | 330 | 0 | +1 | |
9 | 330 | 0 | +3 | |
10 | 330 | 0 | +6 | |
A1B | 330 | +1.0644 | Max | +2.0621 |
Min | +2.4954 | |||
A2 | 330 | +1.0338 | Max | +1.8729 |
Min | +2.2905 | |||
B1 | 330 | +1.0054 | Max | +0.7926 |
Min | +0.6106 |
3. Results and Discussion
3.1. Model Evaluation
Rank | Name | Definition | Sensitivity | Process |
---|---|---|---|---|
1 | Cn2 | SCS runoff curve number for moisture condition 2 | 1.49 | Runoff |
2 | Alpha_Bf | Baseflow alpha factor (days) | 1.42 | Groundwater |
3 | Rchrg_Dp | Deep aquifer percolation fraction | 0.66 | Groundwater |
4 | Esco | Soil evaporation compensation factor | 0.48 | Evaporation |
5 | Revapmn | Threshold depth of water in the shallow aquifer for percolation to the deep aquifer (mm H2O) | 0.22 | Groundwater |
6 | Ch_K2 | Effective hydraulic conductivity in main channel alluvium (mm/h) | 0.20 | Channel |
7 | Gwqmn | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0.18 | Soil |
8 | Sol_Awc | Available water capacity of the soil layer (mm/mm soil) | 0.14 | Soil |
9 | Sol_Z | Maximum canopy index Soil depth | 0.078 | Soil |
10 | Gw_Revap | Groundwater “revap” coefficient | 0.06 | Groundwater |
11 | Surlag | Surface runoff lag coefficient | 0.05 | Runoff |
Statistical Index | Calibration | Validation |
---|---|---|
R2 | 0.81 | 0.89 |
NSE | 0.54 | 0.66 |
RMSE (m3/s) | 2.5466 × 103 | 3.0224 × 103 |
3.2. Climate Sensitivity Scenario
3.2.1. CO2 Concentration
Terms | Ref | Climate Sensitivity Scenario | SRES | |||||||||||
Stream-Flow | CO2 (%) | Precipitation (%) | Air Temperature (%) | GCM (%) | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | B1 | A1B | A2 | ||
Chai Nat Station | 562.8 | 16.4 | 48 | −5.3 | 15.6 | 30 | −15.8 | −32.8 | −3.1 | −9.3 | −19.2 | 24.7 | 41.9 | 49.8 |
Max % change of the basin | 671.8 | 52.3 | 128.9 | 1.2 | 35.9 | 70 | −7 | −14.5 | 8.2 | 8.2 | −1.3 | 107.8 | 136.5 | 146.4 |
Min % change of the basin | 1.3 | 1.6 | 15.1 | −14.3 | 5.9 | 11.6 | −37.3 | −71.4 | −8.2 | −23.8 | −53 | −17.5 | −1.1 | 4.1 |
Average % change of the basin | 68.5 | 18.4 | 52.6 | −6.2 | 16.6 | 32.2 | −16.7 | −34.5 | −3.5 | −10.6 | −21.4 | 19.7 | 37.7 | 47 |
3.2.2. Precipitation
3.2.3. Air Temperature
3.2.4. Climate Change Effects of SRES
4. Conclusions
- The SWAT model showed a satisfactory performance in terms of calibration and validation, with R2 and NSE values greater than 0.5.
- Precipitation scenarios yielded streamflow variations that corresponded to the change of rainfall intensity and amount of rainfall, while scenarios with increased air temperature yielded a decrease in water level leading to a water shortage. However, the three greenhouse gas emission scenarios from 2051–2059 had streamflow variations that increased from the baseline (2003–2011).
- Scenarios 1 to 3 were related to an increase in CO2 concentration scenarios, which reduced stomatal conductance and increased the leaf area index. The results showed an increase in streamflow levels; however, a negative change in streamflow was also observed when the air temperature increased.
- Variations under three SRES indicate low streamflow values compared to those of the southern Chao Phraya Watershed. Hence, flood measures should be performed in the main streamline of Chao Phraya River and the southern area of the basin. As such, further water resource management will be needed in the northeastern area of the Chao Phraya river basin in the future.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Graiprab, P.; Pongput, K.; Tangtham, N.; Gassman, P.W. Hydrologic evaluation and effect of climate change on the at Samat watershed, northeastern region, Thailand. Int. Agric. Eng. J. 2010, 19, 12–22. [Google Scholar]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; DÖLl, P.; Jimenez, B.; Miller, K.; Oki, T.; ŞEn, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Tebaldi, C.; Smith, R.L.; Nychka, D.; Mearns, L.O. Quantifying uncertainty in projections of regional climate change: A bayesian approach to the analysis of multimodel ensembles. J. Clim. 2005, 18, 1524–1540. [Google Scholar] [CrossRef]
- Allen, M.R.; Stott, P.A.; Mitchell, J.F.B.; Schnur, R.; Delworth, T.L. Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 2000, 407, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Sharif, H. Modeling the projected changes of river flow in central Vietnam under different climate change scenarios. Water 2015, 7, 3579–3598. [Google Scholar] [CrossRef]
- Kay, A.L.; Jones, R.G.; Reynard, N.S. Rcm rainfall for UK flood frequency estimation. II. Climate change results. J. Hydrol. 2006, 318, 163–172. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, J.E.; Zhang, M.J.; Li, X.H.; Zhang, S.L.; Jia, L.Z. Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model. CATENA 2015, 127, 80–91. [Google Scholar] [CrossRef]
- Routschek, A.; Schmidt, J.; Kreienkamp, F. Impact of climate change on soil erosion—A high-resolution projection on catchment scale until 2100 in Saxony/Germany. CATENA 2014, 121, 99–109. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Yu, X. Distinguishing human and climate influences on streamflow changes in luan river basin in China. CATENA 2015, in press. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Ran, L.; Su, T. Climatic and anthropogenic impacts on runoff changes in the songhua river basin over the last 56 years (1955–2010), Northeastern China. CATENA 2015, 127, 258–269. [Google Scholar] [CrossRef]
- Knox, J.C. Large increases in flood magnitude in response to modest changes in climate. Nature 1993, 361, 430–432. [Google Scholar] [CrossRef]
- Clarvis, M.H.; Fatichi, S.; Allan, A.; Fuhrer, J.; Stoffel, M.; Romerio, F.; Gaudard, L.; Burlando, P.; Beniston, M.; Xoplaki, E.; et al. Governing and managing water resources under changing hydro-climatic contexts: The case of the upper Rhone basin. Environ. Sci. Policy 2014, 43, 56–67. [Google Scholar] [CrossRef]
- Costanza, R.; Bohensky, E.; Butler, J.R.A.; Bohnet, I.; Delisle, A.; Fabricius, K.; Gooch, M.; Kubiszewski, I.; Lukacs, G.; Pert, P.; et al. A scenario analysis of climate change and ecosystem services for the Great Barrier Reef. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D., Eds.; Academic Press: Waltham, MA, USA, 2011; pp. 305–326. [Google Scholar]
- López-Moreno, J.I.; Zabalza, J.; Vicente-Serrano, S.M.; Revuelto, J.; Gilaberte, M.; Azorin-Molina, C.; Morán-Tejeda, E.; García-Ruiz, J.M.; Tague, C. Impact of climate and land use change on water availability and reservoir management: Scenarios in the Upper Aragón river, Spanish Pyrenees. Sci. Total Environ. 2014, 493, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Pingale, S.M.; Jat, M.K.; Khare, D. Integrated urban water management modelling under climate change scenarios. Resour. Conserv. Recycl. 2014, 83, 176–189. [Google Scholar] [CrossRef]
- Nam, W.H.; Choi, J.Y.; Hong, E.M. Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea. Agric. Water Manag. 2015, 152, 173–187. [Google Scholar] [CrossRef]
- United Nations/World Water Assessment Programme. United Nations World Water Development Report: Water for People, Water for Life, 1st ed.; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France; Berghahn Books: Brooklyn, NY, USA, 2003. [Google Scholar]
- Asian Development Bank. The Economics of Climate Change in Southeast Asia: A Regional Review; Asian Development Bank: Metro Manila, Philippines, 2009. [Google Scholar]
- Chaturongkasumrit, Y.; Techaruvichit, P.; Takahashi, H.; Kimura, B.; Keeratipibul, S. Microbiological evaluation of water during the 2011 flood crisis in Thailand. Sci. Total Environ. 2013, 463–464, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Vachiramon, V.; Busaracome, P.; Chongtrakool, P.; Puavilai, S. Skin diseases during floods in Thailand. J. Med. Assoc. Thail. 2008, 91, 479–484. [Google Scholar]
- Assanangkornchai, S.; Tangboonngam, S.; Edwards, S.G. The flooding of Hat Yai: Predictors of adverse emotional responses to a natural disaster. Stress Health 2004, 20, 81–89. [Google Scholar] [CrossRef]
- Nara, P.; Mao, G.G.; Yen, T.B. Climate change impacts on agricultural products in Thailand: A case study of thai rice at the Chao Phraya River basin. APCBEE Procedia 2014, 8, 136–140. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Lim, H.; Tantasarin, C.; Jachowski, N.R.; Wasson, R. Floods, false hope, and the future. Hydrol. Process. 2012, 26, 1748–1750. [Google Scholar] [CrossRef]
- Komori, D.; Nakamura, S.; Kiguchi, M.; Nishijima, A.; Yamazaki, D.; Suzuki, S.; Kawasaki, A.; Oki, K.; Oki, T. Characteristics of the 2011 Chao Phraya River flood in central Thailand. Hydrol. Res. Lett. 2012, 6, 41–46. [Google Scholar] [CrossRef]
- Raungratanaamporn, I.S.; Pakdeeburee, P.; Kamiko, A.; Denpaiboon, C. Government-communities collaboration in disaster management activity: Investigation in the current flood disaster management policy in Thailand. Procedia Environ. Sci. 2014, 20, 658–667. [Google Scholar] [CrossRef]
- Thaipadungpanit, J.; Wuthiekanun, V.; Chantratita, N.; Yimsamran, S.; Amornchai, P.; Boonsilp, S.; Maneeboonyang, W.; Tharnpoophasiam, P.; Saiprom, N.; Mahakunkijcharoen, Y.; et al. Leptospira species in floodwater during the 2011 floods in the Bangkok Metropolitan Region, Thailand. Am. J. Trop. Med. Hyg. 2013, 89, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Ngaosuwankul, N.; Thippornchai, N.; Yamashita, A.; Vargas, R.E.M.; Tunyong, W.; Mahakunkijchareon, Y.; Ikuta, K.; Singhasivanon, P.; Okabayashi, T.; Leaungwutiwong, P. Detection and characterization of enteric viruses in flood water from the 2011 Thai flood. Jpn. J. Infect. Dis. 2013, 66, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Thepent, V. Agricultural Engineering and Technology for Food Security and Sustainable Agriculture in Thailand; Department of Agriculture Thailand: Bangkok Thailand, 2005. [Google Scholar]
- Molle, F.; Sutthi, C.; Keawkulaya, J.; Korpraditskul, R. Water management in raised bed systems: A case study from the Chao Phraya Delta, Thailand. Agric. Water Manag. 1999, 39, 1–17. [Google Scholar] [CrossRef]
- Teamsuwan, V.; Satoh, M. Comparative analysis of management of three water users’ organizations: Successful cases in the Chao Phraya Delta, Thailand. Paddy Water Environ. 2009, 7, 227–237. [Google Scholar] [CrossRef]
- Bossa, A.; Diekkrüger, B.; Agbossou, E. Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water 2014, 6, 3152–3181. [Google Scholar] [CrossRef]
- Malanson, G.P.; Verdery, A.M.; Walsh, S.J.; Sawangdee, Y.; Heumann, B.W.; McDaniel, P.M.; Frizzelle, B.G.; Williams, N.E.; Yao, X.; Entwisle, B.; et al. Changing crops in response to climate: Virtual nang rong, Thailand in an agent based simulation. Appl. Geogr. 2014, 53, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Molle, F. Scales and power in river basin management: The Chao Phraya River in Thailand. Geogr. J. 2007, 173, 358–373. [Google Scholar] [CrossRef]
- World Water Assessment Programme. Water for People, Water for Life: A Joint Report by the Twenty-Three un Agencies Concerned with Freshwater; UNESCO Pub.: Paris, France, 2003. [Google Scholar]
- Bachelet, D.; Brown, D.; Böhm, M.; Russell, P. Climate change in Thailand and its potential impact on rice yield. Clim. Chang. 1992, 21, 347–366. [Google Scholar] [CrossRef]
- Arias, R.; Rodríguez-Blanco, M.; Taboada-Castro, M.; Nunes, J.; Keizer, J.; Taboada-Castro, M. Water resources response to changes in temperature, rainfall and CO2 concentration: A first approach in NW Spain. Water 2014, 6, 3049–3067. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Gallant, A.L. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid james river basin of the midwestern USA. Sci. Total Environ. 2012, 430, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Varanou, E.; Gkouvatsou, E.; Baltas, E.; Mimikou, M. Quantity and quality integrated catchment modeling under climate change with use of soil and water assessment tool model. J. Hydrol. Eng. 2002, 7, 228–244. [Google Scholar] [CrossRef]
- Stone, M.C.; Hotchkiss, R.H.; Hubbard, C.M.; Fontaine, T.A.; Mearns, L.O.; Arnold, J.G. Impacts of Climate Change on Missouri River Basin Water Yield; Wiley Online Library: Hoboken, NJ, USA, 2001. [Google Scholar]
- Zhang, X.; Srinivasan, R.; Hao, E. Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Trans. ASABE 2007, 50, 901–910. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 2009, 374, 16–29. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Hanratty, M.P.; Stefan, H.G. Simulating climate change effects in a minnesota agricultural watershed. J. Environ. Qual. 1998, 27, 1524–1532. [Google Scholar] [CrossRef]
- Gosain, A.; Rao, S.; Basuray, D. Climate change impact assessment on hydrology of Indian River basins. Curr. Sci. 2006, 90, 346–353. [Google Scholar]
- Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in Western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [Google Scholar] [CrossRef]
- Jha, M.; Pan, Z.; Takle, E.S.; Gu, R. Impacts of climate change on streamflow in the upper Mississippi River basin: A regional climate model perspective. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Wang, S.; Kang, S.; Zhang, L.; Li, F. Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of Northwest China. Hydrol. Process. 2008, 22, 2502–2510. [Google Scholar] [CrossRef]
- Fontaine, T.A.; Klassen, J.F.; Cruickshank, T.S.; Hotchkiss, R.H. Hydrological response to climate change in the black hills of south dakota, USA. Hydrol. Sci. J. 2001, 46, 27–40. [Google Scholar] [CrossRef]
- SRTM 90m Digital Elevation Data. Available online: http://srtm.csi.cgiar.org/ (accessed on 2 September 2015).
- Global Land Cover Characterization. Available online: http://edc2.usgs.gov/glcc/glcc.php (accessed on 2 September 2015).
- Leon, L.F. Step by step geo-processing and set-up of the required watershed data for MWSWAT (mapwindow SWAT). Available online: http://www.waterbase.org/docs/Geo_Process.pdf (accessed on 1 December 2015).
- Qiang, C.; Si, G.; Dayong, Q.; Zuhao, Z. Analysis of SWAT 2005 parameter sensitivity with LH-OAT method. HKIE Trans. 2010, 17, 1–7. [Google Scholar]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Feng, G.; Sharratt, B. Sensitivity analysis of soil and PM10 loss in Weps using the LHS-OAT method. Trans. ASAE 2005, 48, 1409–1420. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Minea, I. The impact of climate changes on rivers discharge in Eastern Romania. Theor. Appl. Clim. 2014, 1–11. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Tsanis, I.K.; Koutroulis, A.G. Application of the HBV hydrological model in a flash flood case in Slovenia. Nat. Hazards Earth Syst. Sci. 2010, 10, 2713–2725. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Mishra, A.; Kar, S. Modeling hydrologic processes and NPS pollution in a small watershed in subhumid subtropics using SWAT. J. Hydrol. Eng. 2011, 17, 445–454. [Google Scholar] [CrossRef]
- Gitau, M.W.; Chaubey, I. Regionalization of SWAT model parameters for use in ungauged watersheds. Water 2010, 2, 849–871. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrlogical modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Setegn, S.G.; Melesse, A.M.; Haiduk, A.; Webber, D.; Wang, X.; McClain, M.E. Modeling hydrological variability of fresh water resources in the Rio Cobre watershed, Jamaica. CATENA 2014, 120, 81–90. [Google Scholar] [CrossRef]
- Chu, T.W.; Shirmohammadi, A.; Montas, H.; Sadeghi, A. Evaluation of the SWAT model's sediment and nutrient components in the Piedmont physiographic region of Maryland. Trans. Am. Soc. Agric. Eng. 2004, 47, 1523–1538. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H. The Regional Impacts of Climate Change: An Assessment of Vulnerability; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Dix, M.; Gordon, H. Csiro mk3.5 Climate System Model Output: Tasmanian Partnership for Advanced Computing; Centre for Australian Weather and Climate Research: Victoria, Australia, 2012. [Google Scholar]
- Watterson, I.; O’Farrell, S. Climate change simulated by full and mixed-layer ocean versions of CSIRO Mk3.5 and Mk3.0: Large-scale sensitivity. Asia Pac. J. Atmos. Sci. 2013, 49, 375–387. [Google Scholar] [CrossRef]
- Gordon, H.; O’Farrell, S.; Collier, M.; Dix, M.; Rotstayn, L.; Kowalczyk, E.; Hirst, T.; Watterson, I. The CSIRO Mk3.5 Climate Model; CAWCR Technical Report No. 21; Centre for Australian Weather and Climate Research: Victoria, Australia, 2010. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers: Emission Scenarios; IPCC: Geneva, Switzerland, 2000. [Google Scholar]
- Girod, B.; Wiek, A.; Mieg, H.; Hulme, M. The evolution of the IPCC’s emissions scenarios. Environ. Sci. Policy 2009, 12, 103–118. [Google Scholar] [CrossRef]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Ribalaygua, J.; Pino, M.R.; Pórtoles, J.; Roldán, E.; Gaitán, E.; Chinarro, D.; Torres, L. Climate change scenarios for temperature and precipitation in Aragón (Spain). Sci. Total Environ. 2013, 463–464, 1015–1030. [Google Scholar] [CrossRef] [PubMed]
- Gaffin, S.R.; Rosenzweig, C.; Xing, X.; Yetman, G. Downscaling and geo-spatial gridding of socio-economic projections from the ipcc special report on emissions scenarios (SRES). Glob. Environ. Chang. 2004, 14, 105–123. [Google Scholar] [CrossRef]
- Arnell, N.W.; Livermore, M.J.L.; Kovats, S.; Levy, P.E.; Nicholls, R.; Parry, M.L.; Gaffin, S.R. Climate and socio-economic scenarios for global-scale climate change impacts assessments: Characterising the SRES storylines. Glob. Environ. Chang. 2004, 14, 3–20. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Leconte, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.G. Comparison of two different approaches of sensitivity analysis. Phys. Chem. Earth A B C 2002, 27, 645–654. [Google Scholar] [CrossRef]
- Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Morison, J.I.L. Intercellular CO2 concentration and stomatal response to CO2. In Stomatal Function; Zeiger, E., Farquhar, G.D., Cowan, O.R., Eds.; Stanford University Press: Redwood City, CA, USA, 1987; pp. 229–252. [Google Scholar]
- Li, F.; Kang, S.; Zhang, J. Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agric. Water Manag. 2004, 67, 221–233. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Kimball, B.A.; Quarles, D.R.; Long, S.P.; Ort, D.R. Decreases in stomatal conductance of soybean under open-air elevation of CO2 are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol. 2007, 143, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Wigley, T.; Jones, P. Influences of precipitation changes and direct CO2 effects on streamflow. Nature 1985, 314, 149–152. [Google Scholar] [CrossRef]
- Eckhardt, K.; Ulbrich, U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol. 2003, 284, 244–252. [Google Scholar] [CrossRef]
- Kiely, G. Climate change in ireland from precipitation and streamflow observations. Adv. Water Resour. 1999, 23, 141–151. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. A step increase in streamflow in the conterminous United States. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Kure, S.; Tebakari, T. Hydrological impact of regional climate change in the Chao Phraya River basin, Thailand. Hydrol. Res. Lett. 2012, 6, 53–58. [Google Scholar] [CrossRef]
- Ogata, T.; Saavedra Valeriano, O.C.; Yoshimura, C.; Liengcharernsit, W.; Hirabayashi, Y. Past and future hydrological simulations of Chao Phraya River basin. J. Jpn. Soc. Civil Eng. Ser. B1 Hydraul. Eng. 2012, 68, 97–102. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R. Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Am. Meteorol. Soc. 2001, 82, 219–246. [Google Scholar] [CrossRef]
- Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin. Nat. Hazards Earth Syst. Sci. Discuss. 2014, 2, 7027–7059. [Google Scholar] [CrossRef]
- Lee, D.; Oh, B.; Kim, H.; Lee, S.; Chung, G. Comparison of the hydro-climatological characteristics for the extra-ordinary flood induced by tropical cyclone in the selected river basins. Trop.Cyclone Res. Rev. 2013, 2, 45–54. [Google Scholar]
- Tamagno, B. Recent floods in Southeast Asia. Geodate 2012, 25, 2. [Google Scholar] [CrossRef]
- Christensen, N.; Wood, A.; Voisin, N.; Lettenmaier, D.; Palmer, R. The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim. Chang. 2004, 62, 337–363. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Chang. 1999, 9, 31–49. [Google Scholar] [CrossRef]
- Chinvanno, S. Information for Sustainable Development in Light of Climate Change in Mekong River basin; Southeast Asia START Regional Centre: Bangkok, Thailand, 2004. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligaray, M.; Kim, H.; Sthiannopkao, S.; Lee, S.; Cho, K.H.; Kim, J.H. Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand. Water 2015, 7, 6892-6909. https://doi.org/10.3390/w7126665
Ligaray M, Kim H, Sthiannopkao S, Lee S, Cho KH, Kim JH. Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand. Water. 2015; 7(12):6892-6909. https://doi.org/10.3390/w7126665
Chicago/Turabian StyleLigaray, Mayzonee, Hanna Kim, Suthipong Sthiannopkao, Seungwon Lee, Kyung Hwa Cho, and Joon Ha Kim. 2015. "Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand" Water 7, no. 12: 6892-6909. https://doi.org/10.3390/w7126665
APA StyleLigaray, M., Kim, H., Sthiannopkao, S., Lee, S., Cho, K. H., & Kim, J. H. (2015). Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand. Water, 7(12), 6892-6909. https://doi.org/10.3390/w7126665