Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview
Abstract
:1. Background
2. Measured VFR Effect
Type | Authorship | Journal | Year | Domain | Soil Texture | Process | Unique Findings* |
---|---|---|---|---|---|---|---|
Measuring | Goss and Madliger [26] | Water Resources Research | 2007 | field | Sandy clay | drying | No clear DSL was formed; traditional soil-water retention functions are not applicable for very dry soils |
Liu et al. [28] | Arid Land Geography | 2006 | field | Dune sand | drying | VFR effect increases with thickness (δ) of DSL; when δ > 5 cm, evaporation is independent of climate and soil moisture in EZ. | |
Wang et al. [36] | Arid Zone Research | 2006 | field | Dune sand | drying | DSLs (θ = 0.42 to 0.54%) of δ = 10 to 18 cm were formed; EZs were at bottom boundaries of the DSLs. | |
Yamanaka and Yonetani [53] | Journal of Hydrology | 1999 | field | sandy | drying | DSLs (θ < 1%) of δ = 2 to 9 cm were formed; VFR effect increases with δ and should be considered in . | |
Daamen and Simmonds [84] | Water Resources Research | 1996 | Field | sandy | drying | A very thin (< 3 mm) DSL had a VFR effect of 25%. | |
Kobayashi et al. [83] | Journal of Agricultural Meteorology | 1989 | column | Dune sand | drying | DSLs (θ ≤ 0.7%) of δ = 1.5 cm were formed; VFR effect linearly increases with δ. | |
Modeling | Sakai et al. [68] | Water Resources Research | 2011 | columns | sand, silt, silty clay | drying | VFR effect is larger for coarse- than fine-textured soil; DSLs can exist for all soils. |
Novak [22] | Agricultural and Forest Meteorology | 2010 | field | loam | drying | DSL and EZ varied diurnally; both condensation and evaporation occurred within DSL. | |
Sakai et al. [67] | Soil Science Society of America Journal | 2009 | column | Dune sand | wetting | Traditional water retention functions are invalid for dry soils; both condensation and evaporation occurred within DSL. | |
Yamanaka et al. [63] | Hydrological Processes | 1998 | columns | sand, loam, clay | drying | Very thin EZs were formed beneath DSLs of δ = 2.0 cm; both condensation and evaporation occurred within DSL. |
3. Modeled VFR Effect
4. Further Research Needs
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Daamen, C.C.; Simmonds, L.P.; Wallace, J.S.; Laryea, K.B.; Sivakumar, M.V.K. Use of microlysimeters to measure evaporation from sandy soils. Agric. For. Meteorol. 1993, 65, 159–173. [Google Scholar] [CrossRef]
- Henwood, W. The world’s temperate grasslands: A beleaguered biome. Parks 1998, 8, 1–2. [Google Scholar]
- Wang, X.; Melesse, A.M.; Yang, W. Influences of potential evapotranspiration estimation methods on SWAT’s hydrologic simulation in a northwestern Minnesota watershed. Transa. ASABE 2006, 49, 1755–1771. [Google Scholar] [CrossRef]
- Zhao, H.; Yi, X.; Zhou, R.; Zhao, X.; Zhang, T.; Drake, S. Wind erosion and sand accumulation effects on soil properties in Horqin Sandy Farmland, Inner Mongolia. Catena 2006, 65, 71–79. [Google Scholar] [CrossRef]
- Zhai, C.; Ma, J.; Li, Y. Soil evaporation of aeolian sandy soil in Gurbantunggut Desert. Arid Land Geogr. 2007, 30.006, 805–811. [Google Scholar]
- Wang, X.; Shang, S.; Yang, W.; Clary, C.R.; Yang, D. Simulation of land use-soil interactive effects on water and sediment yields at watershed scale. Ecol. Eng. 2010, 36, 328–344. [Google Scholar] [CrossRef]
- Duan, L.; Liu, T.; Wang, X.; Wang, G.; Ma, L.; Luo, Y. Spatio-temporal variations in soil moisture and physicochemical properties of a typical semiarid sand-meadow-desert landscape as influenced by land use. Hydrol. Earth Syst. Sci. 2011, 15, 1865–1877. [Google Scholar] [CrossRef]
- Wang, Z. Strategic considerations for the protection of grassland ecosystems in China. Grassl. China 2005, 27, 1–2. (In Chinese) [Google Scholar]
- He, S.; Qiu, L.; Jiang, D.; Lamusa, A.; Liu, Z.; Luo, Y. Sandfixing effects of Caragana microphylla shrub in Horqin Sandy. Front. For. China 2008, 3, 31–35. (in Chinese). [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Hasi, E.; Li, J. Desertification in China: An assessment. Earth Sci. Rev. 2008, 88, 188–206. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, X.; Zhang, T.; Wu, W. (Eds.) Desertification Processes and Its Restoration Mechanisms in the Horqin Sand Land; China Ocean Press: Beijing, China, 2004.
- Zuo, X.; Zhao, X.; Zhang, T.; Guo, Y.; Wang, S.; Drake, S. Spatial pattern and heterogeneity of soil properties in sand dune under grazing and restoration in Horqin Sandy Land, Northern China. Soil Tillage Res. 2008, 99, 202–212. [Google Scholar] [CrossRef]
- Christensen, L.; Shauna, B.; Coughenour, M.B. Integrated assessment of the dynamics, stability and resilience of the Inner Mongolian grazing ecosystems. Nomadic Peoples 2005, 9, 131–145. [Google Scholar] [CrossRef]
- Rooyen, A.F.V. Combating desertification in the southern Kalahari: Connecting science with community action in South Africa. J. Arid Environ. 1998, 39, 285–297. [Google Scholar] [CrossRef]
- Dey, S.; Tripathi, S.N.; Singh, R.P.; Holben, B.N. Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J. Geophys. Res. Atmos. 2004, 109, D20211. [Google Scholar] [CrossRef]
- Portnov, B.A.; Safrielb, U.N. Combating desertification in the Negev: Dryland agriculture vs. dryland urbanization. J. Arid Environ. 2004, 56, 6590–6680. [Google Scholar] [CrossRef]
- Takemi, T. Explicit simulations of convective-scale transport of mineral dust in severe convective weather. J. Meteorol. Soc. Jpn. 2005, 83, 187–203. [Google Scholar] [CrossRef]
- GEF (Global Environment Facility); IFAD (International Fund for Agricultural Development). Land Degradation and Desertification. Available online: http://www.ifad.org/events/wssd/gef/GEF_eng.pdf (accessed on 8 February 2012).
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Schwartz, M.L.; Notini, J. Desertification and Migration: Mexico and the United States. A Research Report to U.S. Commission on Immigration Reform 1994; Natural Heritage Institute: San Francisco, CA, USA, 1994. [Google Scholar]
- Philip, J.R.; de Vries, D.A. Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 1957, 38, 222–232. [Google Scholar] [CrossRef]
- Novak, M.D. Dynamics of the near-surface evaporation zone and corresponding effects on the surface energy balance of a drying bare soil. Agric. For. Meteorol. 2010, 150, 1358–1365. [Google Scholar] [CrossRef]
- Shahraeeni, E.; Lehmann, P.; Or, D. Coupling of evaporative fluxes from drying porous surfaces with air boundary layer—Characteristics of evaporation from discrete pores. Water Resour. Res. 2012, 48, 9525. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.; Yu, R. Field measurement of the water retention curves and simple estimation of the parameters for soils in the central region of Horqin sandy land. In Proceedings of the 2006 Western Pacific Geophysics Meeting, Beijing, China, 24–27 July 2006.
- Wang, Z.; Wang, L.; Liu, L.; Zheng, Q. Preliminary study on soil moisture content in dried layer of sand dunes in the Mu Us Sandland. Arid Zone Res. 2006, 23, 89–92. (In Chinese) [Google Scholar]
- Goss, K.U.; Madliger, M. Estimation of water transport based on in situ measurements of relative humidity and temperature in a dry Tanzanian soil. Water Resour. Res. 2007, 43, W05433. [Google Scholar] [CrossRef]
- Ahn, S.; Im, S.; Doerr, S. Effect of thickness of a water repellent soil layer on soil evaporation rate. In Proceedings of the EGU General Assembly 2012, Vienna, Austria, 22–27 April 2012.
- Liu, X.; Zhang, T.; Zhao, H.; He, Y.; Yun, J.; Li, Y. Influence of dry land bed thickness on soil moisture evaporation in mobile dune. Arid Land Geogr. 2006, 29, 523–526. [Google Scholar]
- Penman, H.L. Evaporation: An introductory survey. Neth. J. Agric. Sci. 1956, 4, 7–29. [Google Scholar]
- Monteith, J.L. Evaporation and environment. In State and Movement of Water in Living Organisms: Proceedings of the 19th Symposia Society of Experimental Biology; Cambridge University Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops—An energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Granger, R.J. A complementary relationship approach for evaporation from nonsaturated surfaces. J. Hydrol. 1989, 111, 31–38. [Google Scholar] [CrossRef]
- Granger, R.J.; Gray, D.M. Evaporation from natural nonsaturated surfaces. J. Hydrol. 1989, 111, 21–29. [Google Scholar] [CrossRef]
- Liu, B.C.; Liu, W.; Peng, S.W. Study of heat and moisture transfer in soil with a dry surface layer. Int. J. Heat Mass Transf. 2005, 48, 4579–4589. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Wang, X.; Melesse, A.M. Effects of STATSGO and SSURGO as inputs on SWAT model’s snowmelt simulation. J. Am. Water Resour. Assoc. 2006, 42, 1217–1236. [Google Scholar] [CrossRef]
- NCAR (National Center for Atmospheric Research). Technical Description of Version 4.0 of the Community Land Model (CLM). Available online: http://www.cesm.ucar.edu/models/ccsm4.0/clm/CLM4_Tech_Note.pdf (accessed on 2 April 2013).
- Swenson, S.C.; Lawrence, D.M. Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. J. Geophys. Res.: Atmos. 2014, 119, 10299–10312. [Google Scholar] [CrossRef]
- Wallace, J.S.; Gash, J.H.C.; Sivakumar Icrisat, M.V.K. Preliminary measurements of net radiation and evaporation over bare soil and fallow bushland in the Sahel. Int. J. Climatol. 1990, 10, 203–210. [Google Scholar] [CrossRef]
- Qiu, G.; Yano, T.; Momii, K. An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface. J. Hydrol. 1998, 210, 93–105. [Google Scholar] [CrossRef]
- Fuchs, M.; Tanner, C.B. Evaporation from drying soil. J. Appl. Meteorol. 1967, 6, 852–857. [Google Scholar] [CrossRef]
- Van de Griend, A.A.; Owe, M. Bare soil surface-resistance to evaporation by vapor diffusion under semiarid conditions. Water Resour. Res. 1994, 30, 181–188. [Google Scholar] [CrossRef]
- Durar, A.A.; Steiner, J.L.; Evett, S.R.; Skidmore, E.L. Measured and simulated surface soil drying. Agron. J. 1995, 87, 235–244. [Google Scholar] [CrossRef]
- Viterbo, P. A Review of Parameterization Schemes for Land Surface Processes. 2002. Available online: http://www.ecmwf.int/newsevents/training/lecture_notes/.../Land_surf.pdf (accessed on 3 April 2013).
- Ács, F. A comparative analysis of transpiration and bare soil evaporation. Bound. Layer Meteorol. 2003, 109, 139–162. [Google Scholar] [CrossRef]
- Aluwihare, S.; Watanabe, K. Measurement of evaporation from bare soil and a new approach to surface resistance. J. Environ. Eng. 2003, 129, 1157–1169. [Google Scholar] [CrossRef]
- Mutziger, A.J.; Burt, C.M.; Howes, D.J.; Allen, R.G. Comparison of measured and FAO-56 modeled evaporation from bare soil. J. Irrig. Drain. Eng. 2005, 131, 59–72. [Google Scholar] [CrossRef]
- Konukcu, F. Modification of the Penman method for computing bare soil evaporation. Hydrol. Process. 2007, 21, 3627–3634. [Google Scholar] [CrossRef]
- Bittelli, M.; Ventura, F.; Campbell, G.S.; Snyder, R.L.; Gallegati, F.; Pisa, P.R. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. J. Hydrol. 2008, 362, 191–205. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef]
- Philip, J.R. Evaporation, and moisture and heat fields in the soil. J. Meteorol. 1958, 14, 354–366. [Google Scholar] [CrossRef]
- Gardner, H.R.; Hanks, R.J. Evaluation of the evaporation zone in soil by measurement of heat flux. Proc. Soil Sci. Soc. Am. 1966, 30, 425–428. [Google Scholar] [CrossRef]
- Yamanaka, T.; Yonetani, T. Dynamics of the evaporation zone in dry sandy soils. J. Hydrol. 1999, 217, 135–148. [Google Scholar] [CrossRef]
- Heitman, J.L.; Horton, R.; Sauer, T.J.; DeSutter, T.M. Sensible heat observations reveal soil-water evaporation dynamics. J. Hydrometeorol. 2008, 9, 165–171. [Google Scholar] [CrossRef]
- Heitman, J.L.; Xiao, X.; Horton, R.; Sauer, T.J. Sensible heat measurements indicating depth and magnitude of subsurface soil water evaporation. Water Resour. Res. 2008, 44, W00D05. [Google Scholar] [CrossRef]
- Kobaysahi, T.; He, W.; Nagai, H. Mechanisms of evaporation from soil with a dry surface. Hydrol. Process. 1998, 12, 2185–2191. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land-Atmosphere Interaction. J. Hydrometeorol. 2007, 8, 860–880. [Google Scholar] [CrossRef]
- Van Bavel, C.H.M.; Hillel, D.I. A simulation study of soil heat and moisture dynamics as affected by a dry mulch. In Proceedings of 1975 Summer Computer Simulation Conference, San Francisco, CA, USA, July 19–24 1975; Simulation Councils Inc.: La Jilla, CA, USA, 1975; pp. 815–821. [Google Scholar]
- Van Bavel, C.H.M.; Hillel, D.I. Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water and heat. Agric. Meteorol. 1976, 17, 453–476. [Google Scholar] [CrossRef]
- Mahfouf, J.F.; Noilhan, J. Comparative study of various formulations of evaporation from bare soil using in situ data. J. Appl. Meteorol. 1991, 30, 1354–1365. [Google Scholar] [CrossRef]
- Kondo, J.; Saigusa, N.; Sato, T. A model and experimental study of evaporation from bare-soil surfaces. J. Appl. Meteorol. 1992, 31, 304–312. [Google Scholar] [CrossRef]
- Bristow, K.L.; Horton, R. Modeling the impact of partial surface mulch on soil heat and water flow. Theor. Appl. Climatol. 1996, 54, 85–98. [Google Scholar] [CrossRef]
- Yamanaka, T.; Takeda, A.; Shimada, J. Evaporation beneath the soil surface: Some observational evidence and numerical experiments. Hydrol. Process. 1998, 12, 2193–2203. [Google Scholar] [CrossRef]
- Mori, Y.; Hopmans, J.W.; Mortensen, A.P.; Kluitenberg, G.J. Multi-functional heat pulse probe for the simultaneous measurement of soil water content, solute concentration, and heat transport parameters. Vadose Zone J. 2003, 2, 561–570. [Google Scholar] [CrossRef]
- Saito, H.; Šimůnek, J.; Mohanty, B. Numerical analyses of coupled water, vapor and heat transport in the vadose zone. Vadose Zone J. 2006, 5, 784–800. [Google Scholar] [CrossRef]
- Saito, H.; Šimůnek, J.; Hopmans, J.W.; Tuli, A. Numerical evaluation of alternative heat pulse probe designs and analysis. Water Resour. Res. 2007, 43, W07408. [Google Scholar] [CrossRef]
- Sakai, M.; Toride, N.; Šimůnek, J. Water and vapor movement with condensation and evaporation in a sandy column. Soil Sci. Soc. Am. J. 2009, 73, 707–717. [Google Scholar] [CrossRef]
- Sakai, M.; Jones, S.B.; Tuller, M. Numerical evaluation of subsurface soil water evaporation derived from sensible heat balance. Water Resour. Res. 2011, 47, W02547. [Google Scholar] [CrossRef]
- Xiao, X.; Horton, R.; Sauer, T.J.; Heitman, J.L.; Ren, T. Cumulative soil water evaporation as a function of depth and time. Vadose Zone J. 2011, 10, 1016–1022. [Google Scholar] [CrossRef]
- Xiao, Z.; Lu, S.; Heitmanc, J.; Hortond, R.; Ren, T. Measuring subsurface soil-water evaporation with an improved heat-pulse probe. Soil Sci. Soc. Am. J. 2012, 76, 876–879. [Google Scholar] [CrossRef]
- Liu, G.; Wen, M.; Chang, X.; Ren, T.; Horton, R. A self-calibrated dual probe heat pulse sensor for in situ calibrating the probe spacing. Soil Sci. Soc. Am. J. 2013, 77, 417–421. [Google Scholar] [CrossRef]
- Bristow, K.L.; Campbell, G.S.; Calissendorff, K. Test of a heat-pulse probe for measuring changes in soil water content. Soil Sci. Am. J. 1993, 57, 930–934. [Google Scholar] [CrossRef]
- Bristow, K.L.; Kluitenberg, G.J.; Goding, C.J.; Fitzgerald, T.S. A small multi-needle probe for measuring soil thermal properties, water content and electrical conductivity. Comput. Electron. Agric. 2001, 31, 265–280. [Google Scholar] [CrossRef]
- Liu, X. Evaluation of the heat-pulse technique for measuring soil water content with thermo-TDR sensor. Procedia Environ. Sci. 2011, 11, 1234–1239. [Google Scholar] [CrossRef]
- Kamai, T. Development of Heat Pulse Sensors to Measure Vadose Zone Thermal Properties, Water Content, and Water Flux Density. Ph.D. Thesis, University of California-Davis, Davis, CA, USA, March 2013. [Google Scholar]
- Zeng, Y.; Su, Z.; Wan, L.; Yang, Z.; Zhang, T.; Tian, H.; Shi, X.; Wang, X.; Cao, W. Diurnal pattern of the drying front in desert and its application for determining the effective infiltration. Hydrol. Earth Syst. Sci. 2009, 13, 703–714. [Google Scholar] [CrossRef]
- Zeng, Y.; Wan, L.; Su, Z.; Saito, H.; Huang, K.; Wang, X. Diurnal soil water dynamics in the shallow vadose zone (field site of China University of Geosciences, China). Environ. Geol. 2009, 58, 11–23. [Google Scholar] [CrossRef]
- Zeng, Y.; Su, Z.; Wan, L.; Wen, J. Numerical analysis of air-water-heat flow in unsaturated soil: Is it necessary to consider airflow in land surface models. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Zeng, Y.; Su, Z.; Wan, L.; Wen, J. A simulation analysis of the advective effect on evaporation using a two-phase heat mass flow model. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Zeng, Y.; Su, Z. Reply to comment by Binayak P. Mohanty and Zhenlei Yang on “A simulation analysis of the advective effect on evaporation using a two-phase heat and mass flow model”. Water Resour. Res. 2013, 49, 7836–7840. [Google Scholar] [CrossRef]
- Fayer, M.J.; Simmons, C.S. Modified soil-water retention functions for all matric suctions. Water Resour. Res. 1995, 31, 1233–1238. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Kobayashi, T.; Matsuda, A.; Kamichika, M. A simple method for estimating the rate of evaporation from a dry sand surface. J. Agric. Meteorol. 1989, 44, 269–274. [Google Scholar] [CrossRef]
- Daamen, C.C.; Simmonds, L.P. Measurement of evaporation from bare soil and its estimation using surface resistance. Water Resour. Res. 1996, 32, 1393–1402. [Google Scholar] [CrossRef]
- Sun, H.; Liu, C.; Zhang, X. Effect of the different length micro-lysimeters on the evaporation. J. Northwest Sci. Technol. Univ. Agric. For. Nat. Sci. Ed. 2003, 31, 167–170. [Google Scholar]
- Smits, K.M.; Ngo, V.V.; Cihan, A.; Sakaki, T.; IIIangasekare, T.H. An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions. Water Resour. Res. 2012, 48, W12526. [Google Scholar] [CrossRef]
- Nassar, I.N.; Globus, A.M.; Horton, R. Simultaneous soil heat and water transfer. Soil Sci. 1992, 154, 465–472. [Google Scholar] [CrossRef]
- Ames, W.F. Numerical Methods for Partial Differential Equations, 3rd ed.; Academic Press: San Diego, NM, USA, 1992; ISBN 978-0120567614. [Google Scholar]
- Cass, A.; Campbell, G.S.; Jones, T.L. Enhancement of thermal water vapor diffusion in soil. Soil Sci. Soc. Am. J. 1984, 48, 25–32. [Google Scholar] [CrossRef]
- Campbell, G.S. Soil Physics with Basic: Transport Models for Soil-Plant System; Elsevier: New York, NY, USA, 1985. [Google Scholar]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.Th. Modeling nonequilibrium flow and transport with HYDRUS. Vadose Zone J. 2008, 7, 782–797. [Google Scholar] [CrossRef]
- Chung, S.O.; Horton, R. Soil heat and water flow with a partial surface mulch. Water Resour. Res. 1987, 23, 2175–2186. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic properties of porous media. In Hydrology Paper 3; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Campbell, G.S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 1974, 117, 311–314. [Google Scholar] [CrossRef]
- Lambot, S.; Hupet, F.; Javaux, M.; Vanclooster, M. Laboratory evaluation of a hydrodynamic inverse modeling method based on water content data. Water Resour. Res. 2004, 40, W03506. [Google Scholar] [CrossRef]
- Burdine, N.T. Relative permeability calculations from pore-size data. Trans. Am. Inst. Min. Eng. 1953, 198, 71–77. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Sauer, T.J.; Horton, R. Soil heat capacity and heat storage measurements in energy balance studies. J. Agron. 2007, 99, 311–319. [Google Scholar] [CrossRef]
- Farouki, O.T. Thermal properties of soils. In CRREL Monograph 81-1; United States Army Corps of Engineers Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1981. [Google Scholar]
- Tarnawski, V.R.; Leong, W.H. Thermal conductivity of soils at very low moisture content and moderate temperatures. Transp. Porous Media 2000, 41, 137–147. [Google Scholar] [CrossRef]
- Ghuman, B.S.; Jalota, S.K. Heat capacity of soil. Encycl. Soil Sci. 2006, 1, 811–813. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation from land surfaces: Progress in analysis and prediction since 1948. In Proceedings of National Conference on Advances in Evapotranspiration, Chicago, IL, USA, 16–17 December 1985; pp. 4–12.
- Brisson, N.; Itier, B.; L’Hotel, J.C.; Lorendeau, J.Y. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models. Ecol. Model. 1998, 107, 159–169. [Google Scholar] [CrossRef]
- Zhou, M.C.; Ishidaira, H.; Hapuarachchi, H.P.; Magome, J.; Kiem, A.S.; Takeuchi, K. Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. J. Hydrol. 2006, 327, 151–173. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences 2009, 6, 2001–2013. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Assouline, S. On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions. Water Resour. Res. 2005, 41, W07019. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X. Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview. Water 2015, 7, 4552-4574. https://doi.org/10.3390/w7084552
Wang X. Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview. Water. 2015; 7(8):4552-4574. https://doi.org/10.3390/w7084552
Chicago/Turabian StyleWang, Xixi. 2015. "Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview" Water 7, no. 8: 4552-4574. https://doi.org/10.3390/w7084552
APA StyleWang, X. (2015). Vapor Flow Resistance of Dry Soil Layer to Soil Water Evaporation in Arid Environment: An Overview. Water, 7(8), 4552-4574. https://doi.org/10.3390/w7084552