Sharing Benefits in Transboundary Rivers: An Experimental Case Study of Central Asian Water-Energy-Agriculture Nexus
Abstract
:1. Introduction
2. Material and Methods
2.1. Case Study Basin
2.2. The Modeling Framework
2.3. Data Used in the Model
Country | Crop | Yield (tons/ha) | Cost ($US/ha) | Water Requirements (m3/ha per year) | Total Land Area in Production within Amu Darya Basin (million ha) |
---|---|---|---|---|---|
Tajikistan | cotton | 1.8 | 444 | 12 | 0.5 |
wheat | 1.5 | 168 | 8 | ||
vegetable | 12 | 500 | 12 | ||
Afghanistan | cotton | 1.8 | 444 | 12 | – |
wheat | 1.6 | 165 | 8 | 0.4 | |
potato | 12 | 503 | 12 | – | |
Uzbekistan | cotton | 2.3 | 390 | 14 | – |
wheat | 1.5 | 283 | 6 | 2.3 | |
vegetable | 11 | 702 | 11 | – | |
Turkmenistan | cotton | 2.2 | 392 | 14 | – |
wheat | 1.5 | 283 | 6 | 1.1 | |
vegetable | 11 | 702 | 11 | – |
2.4. Scenarios Examined
Country | Scenario | Agricultural Benefits | Energy Benefits | Total benefits | |
---|---|---|---|---|---|
$US | % Change from the Baseline | ||||
Tajikistan | Baseline without Rogun Dam | 2268 | – | 2268 | 100 |
Upstream Energy Priority | 2210 | 3679 | 5889 | 160 | |
Uzbekistan Priority | 1676 | 3981 | 5657 | 149 | |
Turkmenistan Priority | 1703 | 3970 | 5673 | 150 | |
Downstream Priority | 1310 | 3488 | 4798 | 112 | |
Optimal-No Priority | 3084 | 3485 | 6568 | 190 | |
Afghanistan | Baseline without Rogun Dam | 192 | – | 192 | 100 |
Upstream Energy Priority | 339 | – | 339 | 76 | |
Uzbekistan Priority | 188 | – | 188 | −2 | |
Turkmenistan Priority | 192 | – | 192 | 0 | |
Downstream Priority | 184 | – | 184 | −4 | |
Optimal-No Priority | 462 | – | 462 | 140 | |
Uzbekistan | Baseline without Rogun Dam | 26,588 | – | 26,588 | 100 |
Upstream Energy Priority | 29,579 | – | 29,579 | 11 | |
Uzbekistan Priority | 37,895 | – | 37,895 | 43 | |
Turkmenistan Priority | 9097 | – | 9097 | −66 | |
Downstream Priority | 35,668 | – | 35,668 | 34 | |
Optimal-No Priority | 30,155 | – | 30,155 | 13 | |
Turkmenistan | Baseline without Rogun Dam | 2063 | – | 2063 | 100 |
Upstream Energy Priority | 6446 | – | 6446 | 212 | |
Uzbekistan Priority | 1856 | – | 1856 | −10 | |
Turkmenistan Priority | 29,425 | – | 29,425 | 1326 | |
Downstream Priority | 4864 | – | 4864 | 136 | |
Optimal-No Priority | 8701 | – | 8701 | 322 | |
Total over countries | Baseline without Rogun Dam | 31,110 | 0 | 31,110 | 100 |
Upstream Energy Priority | 38,575 | 3679 | 42,254 | 36 | |
Uzbekistan Priority | 41,616 | 3981 | 45,597 | 47 | |
Turkmenistan Priority | 40,417 | 3970 | 44,387 | 43 | |
Downstream Priority | 42,027 | 3488 | 45,515 | 46 | |
Optimal-No Priority | 42,402 | 3485 | 45,887 | 47 |
2.4.1. Upstream Energy Priority (Tajikistan)
2.4.2. Uzbekistan Priority
2.4.3. Turkmenistan Priority
2.4.4. Downstream Agriculture Priority (Uzbekistan and Turkmenistan)
2.4.5. No Priority (optimising basin-wide benefits)
3. Results
3.1. Economic Benefits from Different Modeled Scenarios
3.1.1. Tajikistan
3.1.2. Uzbekistan
3.1.3. Turkmenistan
3.1.4. Afghanistan
3.2. Opportunities for Benefit-Sharing Based on Total Economic Benefits
Scenario/Country | Tajikistan | Uzbekistan | Turkmenistan | Afghanistan |
---|---|---|---|---|
Upstream Energy Priority | ||||
Uzbekistan Priority | ||||
Turkmenistan Priority | ||||
Downstream Agricultural Priority | ||||
No Priority-Optimal | * |
3.2.1. Upstream Energy Priority
3.2.2. Downstream Agricultural Priority
Month | Downstream Priority | Upstream Energy Priority | Difference between Scenarios |
---|---|---|---|
January | 0 | 1134 | −1134 |
February | 0 | 945 | −945 |
March | 2670 | 1421 | 1250 |
April | 1831 | 888 | 943 |
May | 2536 | 962 | 1573 |
June | 2070 | 945 | 1125 |
July | 1120 | 976 | 144 |
August | 1195 | 977 | 217 |
September | 9 | 887 | −878 |
October | 54 | 920 | −866 |
November | 68 | 1030 | −961 |
December | 50 | 1071 | −1021 |
3.2.3. No Priority (Optimising Basin-Wide Benefits)
Month | No Priority | Upstream Energy Priority | Difference between Scenarios |
---|---|---|---|
January | 0 | 1134 | −1134 |
February | 0 | 945 | −945 |
March | 2747 | 1421 | 1326 |
April | 1900 | 888 | 1012 |
May | 2611 | 962 | 1649 |
June | 2043 | 945 | 1097 |
July | 1031 | 976 | 55 |
August | 1067 | 977 | 89 |
September | 15 | 887 | −872 |
October | 60 | 920 | −861 |
November | 72 | 1030 | −958 |
December | 51 | 1071 | −1020 |
4. Discussion
4.1. Methodological Implications: Beyond the Economic Benefits
4.2. Reflections on Benefit-Sharing
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
A.1. Sets
i | Flows | /inflow, river, divert, use, return, release/ |
u | Stocks | /reservoir/ |
t | Months | /January–December/ |
y | Years | /1–10/ |
j | crop | /cotton, wheat, vegetables/ |
k | crop season | /first, second/ |
n | water supply scenario | /base, dry/ |
p | Policy | /Baseline, Energy, UZ, TK, Downstream, OPTIM/ |
s | Region countries | /Afghanistan, Tajikistan, Turkmenistan, Uzbekistan/ |
A.2. Data
Bu (divert, use) | defines consumptive use as a percent of diversion |
Br (divert, return) | defines surface return flow as a percent of diversion |
BLv (rel, u) | links reservoir releases to downstream flows |
source (inflow ,y, t, n, p) | annual basin inflows at headwaters in scenario (cubic km per month) |
yield_p (use, j, k) | crop yield (tons per hectare) |
cost_p (use, j, k) | crop cost of production (USD per ton) |
price_elast (j) | price elasticity of demand |
P_p (j) | observed crop price (USD per ton) |
Bu_p (i, j, t) | crop water demand per hectare (divert + use + return) per month |
Capacity (res, p) | reservoir maximum capacity by stages |
Z0 (res) | initial reservoir level at stock node |
h0_p (res, y, t, n, p) | dam’s maximum height in stages |
ID_ru (return, use) | identity matrix connects return nodes to use nodes |
ID_du (divert, use) | identify matrix connects divert nodes to use nodes |
Landrhs_p (use) | Irrigated land area by countries (million hectares) |
hydro_price (res, t) | price of hydropower (constant USD per kWh) |
A.3. Variables (Unknowns)
A.3.1. Positive Variables
Z (res, y, t, n, p) | reservoir water stocks |
reservoirs_h_v (res, y, t, n, p) | reservoirs height in each month |
supply_v (inflow, y, t, n, p) | supplies |
hectares_v (use, j, k, y, t, n, p) | area under each crop in each country in time |
land_v (use, y, t, n, p) | land in production |
production_v (use, y, t, n, p) | crop produced in each country |
T_production_v (j, k, y, t, n, p) | crop produced |
energy_prod_v (res, y, t, n, p) | energy production |
energy_ben_v (res, y, t, n, p) | energy production benefits in Rogun in each month |
A.3.2. Free variables
X (i, y, t, n, p) | water flows (inflow, river, divert, use, return, release) |
Con_surp_v (j, y, t, n, p) | consumer surplus |
ag_ben_v (use, y, t, n, p) | net income over crops by node and period |
tot_agben_v (use, n, p) | net agricultural benefits by country |
con_surpl_v (j, y, t, n, p) | consumer surplus |
Totben_v (n, p) | total benefits |
A.4. Equations
A.4.1. Hydrology
A.4.1.1. Headwater Runoff
A.4.1.2. River Flow
sum (riverp, Bv (riverp, river) × X (riverp, y, t, n, p)) +
sum (divert, Bv (divert, river) × X (divert, y, t, n, p)) +
sum (return, Bv (return, river) × X (return, y, t, n, p)) +
sum (rel, Bv (rel, river) × X (rel, y, t, n, p))
A.4.1.3. Water Diverted
× hectares_v (use, j, k, y, t, n, p)
A.4.1.4. Gross Surface Returns to River
× hectares_v (use, j, k, y, t, n, p)
A.4.1.5. Water Consumed
A.4.1.6. Reservoir Storage
A.5. Land Use
A.6. Economics
sum(k, T_production_v (j, k, y, t, n, p));
A.7. Discounted Net Present Value
Energy_ben_v (res, y, t, n, p)/(1 + ru)t
Appendix B
Country | Scenario | Cotton | Wheat | Vegetables | Total Land | |||
---|---|---|---|---|---|---|---|---|
Planted in March | Planted in May | Planted in March | Planted in May | Planted in March | Planted in May | |||
Tajikistan | Baseline-No dam | 0.00 | 0.00 | 0.22 | 0.00 | 0.03 | 0.06 | 0.30 |
Upstream Energy Priority | 0.00 | 0.00 | 0.18 | 0.00 | 0.07 | 0.02 | 0.27 | |
Uzbekistan Priority | 0.00 | 0.00 | 0.22 | 0.00 | 0.03 | 0.03 | 0.28 | |
Turkmenistan Priority | 0.00 | 0.00 | 0.22 | 0.00 | 0.03 | 0.03 | 0.28 | |
Downstream Priority | 0.00 | 0.00 | 0.22 | 0.00 | 0.03 | 0.02 | 0.26 | |
No Priority-Optimal | 0.00 | 0.00 | 0.53 | 0.00 | 0.09 | 0.01 | 0.64 | |
Afghanistan | Baseline-No dam | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.08 |
Upstream Energy Priority | 0.00 | 0.00 | 0.12 | 0.00 | 0.01 | 0.00 | 0.13 | |
Uzbekistan Priority | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.08 | |
Turkmenistan Priority | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.08 | |
Downstream Priority | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.08 | |
No Priority-Optimal | 0.00 | 0.00 | 0.22 | 0.01 | 0.01 | 0.00 | 0.23 | |
Uzbekistan | Baseline-No dam | 0.04 | 0.74 | 1.08 | 0.02 | 0.00 | 0.00 | 1.88 |
Upstream Energy Priority | 0.50 | 0.33 | 0.62 | 0.45 | 0.00 | 0.00 | 1.90 | |
Uzbekistan Priority | 0.99 | 0.11 | 0.08 | 1.33 | 0.05 | 0.00 | 2.57 | |
Turkmenistan Priority | 0.04 | 0.19 | 1.08 | 0.02 | 0.00 | 0.00 | 1.33 | |
Downstream Priority | 0.95 | 0.11 | 0.17 | 1.40 | 0.00 | 0.01 | 2.62 | |
No Priority-Optimal | 0.80 | 0.08 | 0.31 | 1.29 | 0.00 | 0.00 | 2.49 | |
Turkmenistan | Baseline-No dam | 0.32 | 0.00 | 0.31 | 0.15 | 0.00 | 0.00 | 0.78 |
Upstream Energy Priority | 0.45 | 0.01 | 0.17 | 0.31 | 0.00 | 0.00 | 0.94 | |
Uzbekistan Priority | 0.01 | 0.00 | 0.31 | 0.45 | 0.00 | 0.00 | 0.77 | |
Turkmenistan Priority | 0.90 | 0.00 | 0.01 | 0.76 | 0.04 | 0.00 | 1.71 | |
Downstream Priority | 0.04 | 0.00 | 0.39 | 0.35 | 0.06 | 0.00 | 0.84 | |
No Priority-Optimal | 0.45 | 0.02 | 0.08 | 0.40 | 0.00 | 0.00 | 0.95 |
References
- Sadoff, W.C.; Grey, D. Cooperation on International Rivers: A Continuum for Securing and Sharing Benefits. Water Int. 2005, 30, 420–427. [Google Scholar] [CrossRef]
- Sadoff, C.W.; Grey, D. Beyond the river: The benefits of cooperation on international rivers. Water Policy 2002, 4, 389–403. [Google Scholar] [CrossRef]
- Klaphake, A. Kooperation an Internationalen Flüssen aus Ökonomischer Perspektive: Das Konzept des Benefit Sharing; Deutsches Institut für Entwicklungspolitik: Bonn, Germany, 2005; Available online: http://www.die-gdi.de/uploads/media/6-2005.pdf (accessed on 28 August 2015).
- Phillips, D.J.H.; Daoudy, M.; Öjendal, J.; Turton, A.R.; McCaffrey, S. Trans-boundary Water Cooperation as a Tool for Conflict Prevention and for Broader Benefit-Sharing; Expert Group on Development Issues, Department for International Development Cooperation; Ministry of Foreign Affairs: Stockholm, Sweden, 2006; Available online: http://www.eldis.org/go/home&id=22735&type=Document#.Vd_-DdKl_mM (accessed on 28 August 2015).
- Qaddumi, H. Practical Approaches to Transboundary Water Benefit Sharing; Overseas Development Institute: London, UK, 2008. [Google Scholar]
- Lee, S. Benefit sharing in the Mekong River basin. Water Int. 2014, 40, 139–152. [Google Scholar] [CrossRef]
- Bekchanov, M.; Bhaduri, A.; Ringler, C. Is Rogun a Silver Bullet for Water Scarcity in Central Asia? Center for International Development and Environmental Research: Giessen, Germany, 2013; Available online: http://ageconsearch.umn.edu/bitstream/159075/2/Bekchanovetal2013aRogunimpactfinal.pdf (accessed on 31 May 2014).
- Jalilov, S.; Amer, S.; Ward, F. Reducing conflict in development and allocation of transboundary Rivers. Eurasian Geogr. Econ. 2013, 54, 78–109. [Google Scholar]
- Jalilov, S.; Amer, S.; Ward, F. Water, food, and energy security: An elusive search for balance in central Asia. Water Resour. Manag. 2013, 27, 3959–3979. [Google Scholar] [CrossRef]
- Kim, Y.; Indeo, F. The new great game in central Asia post 2014: The US “New Silk Road” strategy and Sino-Russian rivalry. Commun. Post Commun. Stud. 2013, 46, 275–286. [Google Scholar] [CrossRef]
- Arbour, L. Next year’s wars. Foreign Policy. 22 February 2011. Available online: foreignpolicy.com/2011/12/27/next-years-wars-2/ (accessed on 28 August 2015).
- Wegerich, K. Coping with disintegration of a River-Basin management system: Multidimensional issues in central Asia. Water Policy 2004, 6, 335–344. [Google Scholar]
- Spoor, M.; Krutov, A. The power of water in a divided central Asia. Perspect. Glob. Dev. Technol. 2003, 2, 593–614. [Google Scholar] [CrossRef]
- Wegerich, K. Hydro-hegemony in the Amu Darya Basin. Water Policy 2008, 10, 71–88. [Google Scholar] [CrossRef]
- Central Intelligence Agency (CIA). The World Factbook. Uzbekistan. Available online: https://www.cia.gov/library/publications/resources/the-world-factbook/geos/uz.html (accessed on 28 August 2015).
- Glantz, M. Water, climate, and development issues in the Amu Darya Basin. Migr. Adapt. Strateg. Glob. Chang. 2005, 1, 23–50. [Google Scholar] [CrossRef]
- Schlüter, M.; Herrfahrdt-Pähle, E. Exploring resilience and transformability of a river basin in the face of socioeconomic and ecological crisis: An example from the Amu Darya River Basin, central Asia. Ecol. Soc. 2011, 16, 32–45. [Google Scholar]
- Schlüter, M.; Savitsky, A.; McKinney, D.; Lieth, H. Optimizing long-term water allocation in the Amu Darya River delta: A water management model for ecological impact assessment. Environ. Model. Softw. 2005, 20, 529–545. [Google Scholar] [CrossRef]
- CA Water Info. Scientific-Information Center of the Interstate Commission for Water Coordination in Central Asia. 2015. Available online: http://www.cawater-info.net/index_e.htm (accessed on 28 August 2010).
- Schmidt, R. Onwards and Upwards. Water Power Magazine. 2008. Available online: http://www.waterpowermagazine.com/features/featureonwards-and-upwards/ (accessed on 28 August 2015).
- Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R. GAMS Language Guide; GAMS Development Corporation: Washington, DC, USA, 2006. [Google Scholar]
- UNECE. Our Waters: Joining Hands across Borders. First Assessment of Transboundary Rivers, Lakes and Groundwaters. 2007. Available online: www.unece.org/env/water/blanks/assessment/assessmentweb_full.pdf (accessed on 28 August 2015).
- World Bank. Irrigation in Central Asia. Social, Economic and Environmental Considerations. 2003. Available online: http://siteresources.worldbank.org/ECAEXT/Resources/publications/Irrigation-in-Central-Asia/Irrigation_in_Central_Asia-Full_Document-English.pdf (accessed on 28 August 2015).
- The Rogunskaya Hydro Power Station, Performance Characteristics. Dushanbe. Tajikistan Open Joint Stock Holding Company “Barki Tojik”. 2009. Available online: http://www.tjus.org/Copy%20of%20Rogynskaya%20GES%20_English%20version1.pdf (accessed on 25 September 2012).
- FACT SHEET. TALCO Energy Audit: Improved Efficiency Could Help Solve Winter Electricity Shortages. December 2012; in Financial Assessment of Barki Tojik, World Bank, October 2013. Available online: http://www.worldbank.org/content/dam/Worldbank/document/tj-talco-energy-audit-fact-sheet.pdf (accessed on 28 August 2015).
- Soliev, I.; Wegerich, K.; Kazbekov, J. The Cost of Benefit Sharing, the Case of the Ferghana Valley in the Syr Darya Basin. Water 2015, 7, 2728–2752. [Google Scholar] [CrossRef]
- The International Bank for Reconstruction and Development; The World Bank. Tajikistan’s Winter Energy Crisis: Electricity Supply and Demand Alternatives. November 2012. Available online: http://siteresources.worldbank.org/ECAEXT/Resources/TAJ_winter_energy_27112012_Eng.pdf (accessed on 30 May 2014).
- Ozment, S.; DiFrancesco, K.; Gartner, T. The Role of Natural Infrastructure in the Water, Energy and Food Nexus, Nexus Dialogue Synthesis Papers; IUCN: Gland, Switzerland, 2015; Available online: http://www.iwa-network.org/downloads/1438744856-Natural%20Infrastrucure%20in%20the%20Nexus_Final%20Dialogue%20Synthesis%20Paper%202015.pdf (accessed on 28 August 2015).
- Sadoff, C.; Greiber, T.; Smith, M.; Bergkamp, G. Share-Managing Water across Boundaries; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- United Nations Treaty Collection. Chapter XXVII Environment, 5. Convention on the Protection and Use of Transboundary Watercourses and International Lakes; United Nations Office of Legal Affairs: New York, NY, USA, 2015; Available online: https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-5&chapter=27&lang=en (accessed on 27 August 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalilov, S.-M.; Varis, O.; Keskinen, M. Sharing Benefits in Transboundary Rivers: An Experimental Case Study of Central Asian Water-Energy-Agriculture Nexus. Water 2015, 7, 4778-4805. https://doi.org/10.3390/w7094778
Jalilov S-M, Varis O, Keskinen M. Sharing Benefits in Transboundary Rivers: An Experimental Case Study of Central Asian Water-Energy-Agriculture Nexus. Water. 2015; 7(9):4778-4805. https://doi.org/10.3390/w7094778
Chicago/Turabian StyleJalilov, Shokhrukh-Mirzo, Olli Varis, and Marko Keskinen. 2015. "Sharing Benefits in Transboundary Rivers: An Experimental Case Study of Central Asian Water-Energy-Agriculture Nexus" Water 7, no. 9: 4778-4805. https://doi.org/10.3390/w7094778
APA StyleJalilov, S. -M., Varis, O., & Keskinen, M. (2015). Sharing Benefits in Transboundary Rivers: An Experimental Case Study of Central Asian Water-Energy-Agriculture Nexus. Water, 7(9), 4778-4805. https://doi.org/10.3390/w7094778