Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region: The Danube River Basin
2.2. River Discharge Simulation with the Eco-Hydrological Model SWIM
2.3. Climate Scenario Projections for Different Levels of Global Warming
2.4. Eco-Hydrological Indicators of River Flow Alterations
3. Results
3.1. Climate Change Impacts on Long-Term Annual Average Discharge
3.2. Climate Change Impacts on the Seasonal Regime
3.3. Climate Change Impacts on Timing of Annual Peak Flow
3.4. Climate Change Impacts on Long-Term Statistical Low Flows
3.5. Climate Change Impacts on Long-Term Statistical High Flows
4. Discussion
4.1. Ecological Implications of Projected Alterations in the Environmental River Flow Regime
4.2. Comparison of the Results to Other Available Studies
4.3. Potential Sources of Uncertainty in the Eco-Hydrological Impact Modeling Chain
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Eisele, M.; Steinbrich, A.; Hildebrand, A.; Leidundgut, C. The significance of hydrological criteria for the assessment of the ecological quality in river basins. Phys. Chem. Earth 2003, 28, 529–536. [Google Scholar] [CrossRef]
- Acreman, M.C.; Ferguson, A.J.D. Environmental flows and the Euopean Water Framework Directive. Freshw. Biol. 2009, 55, 32–48. [Google Scholar] [CrossRef]
- European Commission. Ecological Flows in the Implementation of the Water Framework Directive; Technical Report—2015-086; Environment: Brussels, Belgium, 2015; p. 108. [Google Scholar]
- Settele, J.; Scholes, R.; Betts, R.; Bunn, S.; Leadley, P.; Nepstad, D.; Overpeck, J.T.; Taboada, M.A. Terrestrial and inland water systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 271–359. [Google Scholar]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Laizé, C.L.R.; Acreman, M.C.; Schneider, C.; Dunbar, M.J.; Houghton-Carr, H.A.; Flörke, M.; Hannah, D.M. Projected flow alteration and ecological risk for pan-European rivers. River Res. Appl. 2014, 30, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.; Zimmermann, J.K.H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Döll, P.; Zhang, J. Impact of climate change on freshwater ecosystems: A global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci. 2010, 14, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Arthington, A.H.; Naiman, R.J.; McClain, M.E.; Nilsson, C. Preserving the biodiversity and ecological services of rivers: New challenges and research opportunities. Freshw. Biol. 2010, 55, 1–16. [Google Scholar] [CrossRef]
- Bragg, O.M.; Black, A.R.; Duck, R.W.; Rowan, J.S. Approaching the physical-biological interface in rivers: A review of methods for ecological evaluation of flow regimes. Prog. Phys. Geogr. 2005, 29, 506–531. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, D.J.; Brain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A paradigm for river conservation and restoration. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Braun, D.P.; Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. Rivers Res. Manag. 1998, 14, 329–340. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Arthington, A.H.; Bunn, S.E.; Poff, N.L.; Naiman, R.J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 2006, 16, 1311–1318. [Google Scholar] [CrossRef]
- Acreman, M.C.; Dunbar, M.J. Methods for defining environmental river flow requirements—A review. Hydrol. Earth Syst. Sci. 2004, 8, 861–876. [Google Scholar] [CrossRef]
- Tharme, R.E. A Global Perspective on Environmental Flow Assessment: Emerging Trends in the Development and Application of Environmental Flow Methodologies for Rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Swanson, S. Indicators of Hydrological Alteration; Resource Notes No. 58; BLM National Science and Technology Center: Denver, CO, USA, 2002. [Google Scholar]
- Suen, J.P. Potential impacts to freshwater ecosystems caused by flow regime alteration under climate change conditions in Taiwan. J. Hydrobiol. 2010, 649, 115–128. [Google Scholar] [CrossRef]
- Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hey, L.E.; Georgakakos, A. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems. River Res. Appl. 2005, 8, 849–864. [Google Scholar] [CrossRef]
- Clausen, B.; Biggs, B.J.F. Flow variables for ecological studies in temperate streams: Groupings based on covariance. J. Hydrol. 2000, 237, 184–197. [Google Scholar] [CrossRef]
- Lobanova, A.; Stagl, J.; Vetter, T.; Hattermann, F. Discharge Alterations of the Mures River, Romania under Ensembles of Future Climate Projections and Sequential Threats to Aquatic Ecosystem by the End of the Century. Water 2015, 7, 2753–2770. [Google Scholar] [CrossRef]
- Piniewski, M.; Laizé, C.L.R.; Acreman, M.C.; Okruszko, T.; Schneider, C. Effect of climate change on environmental flow indicators in the Narew basin, Poland. J. Environ. Qual. 2014, 43, 155–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KLIWA—Senckenberg Gesellschaft für Naturforschung. Anforderungen an ein Gewässer-Ökologisches Klimamonitoring. Technical Report. 2014. Available online: http://fliessgewaesserbiologie.kliwa.de/downloads/KLIWA_Abschlussbericht_Feb2014.pdf (accessed on 10 August 2015).
- Schneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörle, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef] [Green Version]
- De Girolamo, A.M.; Barca, E.; Pappagallo, G.; Lo Porto, A. Simulating ecologically relevant hydrological indicators in a temporary river system. Agric. Water Manag. 2016. [Google Scholar] [CrossRef]
- Thompson, J.R.; Laizé, C.L.R.; Green, A.J.; Acreman, M.C.; Kingston, D.G. Climate change uncertainty in environmental flows for the Mekong River. Hydrol. Sci. J. 2014, 59, 935–954. [Google Scholar] [CrossRef] [Green Version]
- Papadaki, C.; Soulis, K.; Muñoz-Mas, R.; Martinez-Capel, F.; Zogaris, S.; Ntoanidis, L.; Dimitriou, E. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Sci. Total Environ. 2016, 540, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, R.R.; Peters, D.L.; Schnorbus, M.A. Evaluating the ability of a hydrologic model to replicate hydro-ecologically relevant indicators. Hydrol. Process. 2014, 28, 4294–4310. [Google Scholar] [CrossRef]
- Krysanova, V.; Hattermann, F.F.; Huang, S.H.; Hesse, C.; Vetter, T.; Liersch, S.; Koch, H.; Kundzewicz, Z.W. Modelling climate and land-use change impacts with SWIM: Lessons learnt from multiple applications. Hydrol. Sci. J. 2015, 60, 606–635. [Google Scholar] [CrossRef]
- International Commission for the Protection of the Danube River (ICPDR). The Danube River Basin District. Part A—Basin-Wide Overview. 2005. ICPRD Document IC/084. Available online: https://www.icpdr.org/main/sites/default/files/nodes/documents/Danube_basin_analysis_2004.pdf (accessed on 12 August 2015).
- International Commission for the Protection of the Danube River (ICPDR). Plants & Animals. Available online: http://www.icpdr.org/main/issues/plants-animals (accessed on 12 August 2015).
- Sommerwerk, N.; Hein, T.; Schneider-Jacoby, M.; Baumgartner, C.; Ostojic, A.; Siber, R.; Bloesch, J.; Paunovic, M.; Tockner, K. The Danube River Basin. In Rivers of Europe; Tockner, K., Robinson, C.T., Uehlinger, U., Eds.; Academic Press, Elsevier: Oxford, UK, 2009; pp. 59–112. [Google Scholar]
- Bloesch, J.; Sieber, U. The morphological destruction and subsequent restoration programmes of large rivers in Europe. Arch. Hydrobiol. Suppl. 2003, 147, 363–385. [Google Scholar]
- Schiller, H.; Miklós, D.; Sass, J. The Danube River and its Basin Physical Characteristics, Water Regime and Water Balance. In Hydrological Processes of the Danube River Basin; Brilly, M., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 25–78. [Google Scholar]
- International Commission for the Protection of the Danube River (ICPDR). The Danube River Basin District Management Plan. 2015. Available online: http://www.icpdr.org/main/management-plans-danube-river-basin-published (accessed on 12 August 2015).
- Stagl, J.; Hattermann, F.F. Impacts of climate change on the hydrological regime of the Danube River and its tributaries using an ensemble of climate scenarios. Water 2015, 7, 6139–6172. [Google Scholar] [CrossRef]
- Weedon, G.P.; Gomes, S.; Viterbo, P.; Shuttleworth, W.J.; Blyth, E.; Österle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 2011, 12, 823–848. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef]
- Warszawski, L.; Frieler, K.; Huber, V.; Piontek, F.; Serdeczny, O.; Schewe, J. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proc. Natl. Acad. Sci. USA 2013, 111, 3228–3232. [Google Scholar] [CrossRef] [PubMed]
- Smakhtin, V.Y. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Piniewski, M.; Okruszko, T.; Acreman, M.C. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland. Hydrol. Sci. J. 2014, 59. [Google Scholar] [CrossRef]
- Clausen, B.; Biggs, B.J.F. Relationships between benthic biota and hydrological indices in New Zealand streams. Freshw. Biol. 1997, 38, 327–342. [Google Scholar] [CrossRef]
- KLIWA—Senckenberg Gesellschaft für Naturforschung. Einfluss des Klimawandels auf die Fließgewässerqualität—Literaturauswertung und erste Vulnerabilitätseinschätzung. Technical Report 2010. Available online: http://www.kliwa.de/download/Literaturstudie_Gewaesserqualitaet.pdf (accessed on 10 August 2015).
- Gustard, A.; Demuth, S. (Eds.) Manual on Low-flow Estimation and Prediction; Operational Hydrology Report No. 50, WMO-No. 1029; World Meteorological Organization: Geneva, Switzerland, 2008.
- Lusk, S.; Hartvich, P.; Halačka, K.; Lusková, V.; Holub, M. Impact of extreme floods on fishes in rivers and their floodplains. Ecohydrol. Hydrobiol. 2004, 4, 173–181. [Google Scholar]
- Cattanéo, F.; Carrel, G.; Lamouroux, N.; Breil, P. Relationship between hydrology and cyprinid reproductive success in the Lower Rhône at Montélimar, France. Arch. Hydrobiol. 2001, 151, 427–450. [Google Scholar]
- Górski, K.; De Leeuw, J.J.; Winter, H.V.; Vekhov, D.A.; Minin, A.E.; Buijse, A.B.; Nagelkerke, L.A.J. Fish recruitment in a large, temperate floodplain: The importance of annual flooding, temperature and habitat complexity. Freshw. Biol. 2011, 56, 2210–2225. [Google Scholar] [CrossRef]
- Garssen, A.G.; Baattrup-Pedersen, A.; Voesenek, L.A.C.J.; Verhoeven, J.T.A.; Soons, M.B. Riparian plant community responses to increased flooding: A meta-analysis. Glob. Chang. Biol. 2015, 21, 2881–2890. [Google Scholar] [CrossRef] [PubMed]
- Kingsford, R.T. Conservation management of rivers and wetlands under climate change—A synthesis. Mar. Freshw. Res. 2011, 62, 217–222. [Google Scholar] [CrossRef]
- Arthington, A.H. Environmental Flows: Saving Rivers in the Third Millennium; Freshwater Ecology Series 2012; University of California Press: Berkely, CA, USA; Los Angeles, CA, USA; London, UK, 2012. [Google Scholar]
- Dewson, Z.S.; James, A.B.W.; Death, R.G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. N. Am. Benthol. Soc. 2007, 26, 401–415. [Google Scholar] [CrossRef]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Graham, L.P.; Andréasson, J.; Carlsson, B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—A case study on the Lule River basin. Clim. Chang. 2007, 81, 293–307. [Google Scholar] [CrossRef]
- Vetter, T.; Huang, S.; Aich, V.; Yang, T.; Wang, X.; Krysanova, V.; Hattermann, F. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst. Dyn. Discus. 2014, 5, 849–900. [Google Scholar] [CrossRef]
- Bronstert, A.; Kolokotronis, V.; Schwandt, D.; Straub, H. Comparison and evaluation of regional climate scenarios for hydrological impact analysis: General scheme and application example. Int. J. Climatol. 2007, 27, 1579–1594. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; Climate Data and Monitoring, WCDPM-No. 72, WMO-TD No. 1500, Technical Report; WMO: Geneva, Switzerland, 2009. [Google Scholar]
- Chen, J.; Brissette, F.P.; Poulin, A.; Leconte, R. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res. 2011, 47, W12509. [Google Scholar] [CrossRef]
- Cisneros, J.B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Freshwater resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 229–269. [Google Scholar]
- Jacob, D.; Bärring, L.; Christensen, O.B.; Christensen, J.H.; de Castro, M.; Deque, M.; Giorgi, F.; Hagemann, S.; Hirschi, M.; Jones, R.; et al. An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Clim. Chang. 2007, 81, 31–52. [Google Scholar] [CrossRef]
- Rheinheimer, D.E.; Viers, J.H. Combined effects of reservoir operations and climate warming on the flow regime of hydropower bypass reaches of California’s Sierra Nevada. River Res. Appl. 2015, 31, 269–279. [Google Scholar] [CrossRef]
- Acreman, M.; Arthington, A.H.; Colloff, M.J.; Couch, C.; Crossman, N.D.; Dyer, F.; Overton, I.; Pollino, C.A.; Stewardson, M.J.; Young, W. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 2014, 12, 466–473. [Google Scholar] [CrossRef]
Danube Basin | River | Station | Calibr. NSE | Valid. NSE | Valid. NSEm |
---|---|---|---|---|---|
Upper | Inn | Passau Ingling | 0.71 | 0.64 | 0.75 |
Upper | Morava | Moravsky Jan | 0.74 | 0.72 | 0.79 |
Upper | Danube | Bratislava | 0.75 | 0.62 | 0.78 |
Middle | Tisza | Szeged | 0.59 | 0.54 | 0.61 |
Middle | Sava | Sremska Mitrovica | 0.81 | 0.77 | 0.83 |
Middle | Velika Morava | Lubicevsky Most | 0.73 | 0.66 | 0.80 |
Middle | Danube | Bazias | 0.77 | 0.74 | 0.84 |
Lower | Siret | Lungoci | 0.60 | 0.51 | 0.66 |
Lower | Danube | Ceatal Izmail | 0.81 | 0.76 | 0.81 |
Indicator | Definition | Examples of Ecosystem Influences/Ecological Relevance | Literature | |
---|---|---|---|---|
∆Qyear | Long-term average annual river flows | Changes in mean annual flow [%] | Number of endemic fish species, groundwater-dependent floodplain vegetation, flow velocity, bed sediment size/stability | [7,8,10,11,24] |
∆QDJF | River flows per season (winter, spring, summer, autumn) | Changes in seasonal mean flow for winter (DJF), spring (MMA), summer (JJA) and autumn (SON) | Habitat availability for aquatic organisms, soil moisture availability for plants, availability of water for terrestrial animals | [11,24] |
∆QMMA | ||||
∆QJJA | ||||
∆QOSN | ||||
∆DOYpeak | Timing of the annual maximum flow, changes in seasonality | Changes [days] in day of the year (DOY) of annual maximum flow (multi-annual mean) | Spawning cues for migratory fish, evolution of life history strategies, behavioral mechanisms | [7,8,12,43] |
∆Q90 | Low flows | Changes in Q90 [%] | Index for minimum flow levels for ecosystems, soil moisture stress in plants, habitat conditions like temperature and oxygen concentration, connectivity, compatibility with life cycles, wastewater dilution, anaerobic stress in plants | [8,11,21,44] |
∆Q2 | High flows | Changes in Q2 [%] | Compatibility with life cycles of organisms, e.g., disruption of spawning, assemblage structure, food availability for detritivorous macroinvertebrates, access to special habitats during reproduction or to avoid predation | [7,11,24] |
∆Qyear | Inn | Morava | Danube | Tisza | Sava | V. Morava | Danube | Siret | Danube | |
---|---|---|---|---|---|---|---|---|---|---|
Passau | MoravskyJan | Bratislava | Szeged | Sremska M. | Lubicev. M. | Iron Gate | Lungoci | Before Delta | ||
2p6 2031–2060 | ∆% | 0 | −26 | −6 | −14 | −10 | −10 | −24 | −19 | −12 |
4p5 2031–2060 | ∆% | −2 | −28 | −8 | −22 | −15 | −14 | −29 | −24 | −16 |
8p5 2031–2060 | ∆% | −2 | −32 | −9 | −26 | −15 | −16 | −37 | −26 | −18 |
2p6 2071–2100 | ∆% | 6 | −19 | 0 | −12 | −4 | −5 | −19 | −12 | −7 |
4p5 2071–2100 | ∆% | −3 | −30 | −10 | −23 | −17 | −16 | −33 | −31 | −19 |
8p5 2071–2100 | ∆% | −10 | −38 | −18 | −42 | −34 | −30 | −56 | −52 | −33 |
∆Q DJF | ||||||||||
2p6 2031–2060 | ∆% | 20 | −6 | 10 | −6 | 15 | 0 | −14 | −23 | −5 |
4p5 2031–2060 | ∆% | 19 | −12 | 6 | −14 | 11 | −6 | −14 | −26 | −10 |
8p5 2031–2060 | ∆% | 24 | −12 | 10 | −13 | 15 | −4 | −22 | −26 | −8 |
2p6 2071–2100 | ∆% | 24 | 0 | 14 | −1 | 20 | 4 | 0 | −19 | 0 |
4p5 2071–2100 | ∆% | 26 | −10 | 10 | −12 | 15 | −4 | −20 | −36 | −11 |
8p5 2071–2100 | ∆% | 31 | −19 | 6 | −34 | 1 | −18 | −44 | −56 | −25 |
∆Q JJA | ||||||||||
2p6 2031–2060 | ∆% | −7 | −26 | −9 | −8 | −19 | −11 | −21 | −7 | −13 |
4p5 2031–2060 | ∆% | −11 | −31 | −13 | −20 | −26 | −17 | −28 | −16 | −19 |
8p5 2031–2060 | ∆% | −13 | −35 | −16 | −26 | −30 | −21 | −37 | −20 | −23 |
2p6 2071–2100 | ∆% | −1 | −20 | −3 | −8 | −12 | −6 | −18 | 1 | −9 |
4p5 2071–2100 | ∆% | −17 | −30 | −17 | −20 | −30 | −20 | −32 | −23 | −22 |
8p5 2071–2100 | ∆% | −28 | −42 | −27 | −39 | −50 | −34 | −55 | −44 | −37 |
∆Q MMA | ||||||||||
2p6 2031–2060 | ∆% | −1 | −36 | −12 | −22 | −16 | −14 | −31 | −20 | −13 |
4p5 2031–2060 | ∆% | 0 | −36 | −12 | −26 | −20 | −16 | −36 | −24 | −15 |
8p5 2031–2060 | ∆% | −5 | −39 | −16 | −30 | −22 | −19 | −42 | −26 | −18 |
2p6 2071–2100 | ∆% | 4 | −29 | −6 | −20 | −11 | −8 | −28 | −14 | −8 |
4p5 2071–2100 | ∆% | −3 | −39 | −15 | −26 | −22 | −18 | −37 | −27 | −16 |
8p5 2071-2100 | ∆% | −7 | −47 | −21 | −44 | −40 | −31 | −60 | −51 | −31 |
∆Q SON | ||||||||||
2p6 2031–2060 | ∆% | −3 | −29 | −9 | −19 | −20 | −15 | −23 | −24 | −16 |
4p5 2031–2060 | ∆% | −5 | −31 | −11 | −33 | −26 | −20 | −29 | −29 | −22 |
8p5 2031–2060 | ∆% | −2 | −34 | −9 | −37 | −23 | −21 | −38 | −33 | −25 |
2p6 2071–2100 | ∆% | 4 | −19 | 0 | −19 | −14 | −8 | −17 | −15 | −9 |
4p5 2071–2100 | ∆% | −5 | −28 | −12 | −37 | −30 | −24 | −36 | −45 | −26 |
8p5 2071–2100 | ∆% | −18 | −39 | −25 | −58 | −49 | −40 | −58 | −64 | −43 |
∆Q90 | ||||||||||
2p6 2031–2060 | ∆% | 12 | −23 | −1 | −20 | −25 | −14 | −20 | −32 | −17 |
4p5 2031–2060 | ∆% | 11 | −25 | −6 | −34 | −32 | −19 | −32 | −43 | −22 |
8p5 2031–2060 | ∆% | 14 | −28 | 0 | −31 | −32 | −16 | −35 | −8 | −20 |
2p6 2071–2100 | ∆% | 18 | −16 | 6 | −14 | −18 | −6 | −11 | −16 | −9 |
4p5 2071–2100 | ∆% | 9 | −30 | −9 | −38 | −38 | −25 | −34 | −53 | −28 |
8p5 2071-2100 | ∆% | −4 | −38 | −23 | −58 | −62 | −41 | −56 | −73 | −45 |
∆Q2 | ||||||||||
2p6 2031–2060 | ∆% | −6 | −32 | −11 | −15 | −9 | −10 | −24 | −10 | −11 |
4p5 2031–2060 | ∆% | −5 | −33 | −12 | −19 | −14 | −14 | −29 | −16 | −15 |
8p5 2031–2060 | ∆% | −10 | −32 | −12 | −25 | −13 | −15 | −35 | −16 | −16 |
2p6 2071–2100 | ∆% | 1 | −27 | −6 | −18 | −7 | −9 | −21 | −12 | −9 |
4p5 2071–2100 | ∆% | −9 | −34 | −12 | −23 | −12 | −14 | −32 | −19 | −15 |
8p5 2071–2100 | ∆% | −14 | −43 | −19 | −34 | −24 | −25 | −51 | −34 | −27 |
∆DOYpeak | Inn | Morava | Danube | Tisza | Sava | V. Morava | Danube | Siret | Danube | |
---|---|---|---|---|---|---|---|---|---|---|
Passau | MoravskyJan | Bratislava | Szeged | Sremska M. | Lubicev. M. | Iron Gate | Lungoci | Before Delta | ||
2p6 2031–2060 | ∆days | −1 | −10 | 4 | −19 | −12 | 8 | −23 | −2 | −15 |
4p5 2031–2060 | ∆days | 5 | −18 | 6 | −11 | −11 | 24 | −14 | −4 | −15 |
8p5 2031–2060 | ∆days | −3 | −20 | 4 | −22 | −20 | 13 | −19 | −5 | −19 |
2p6 2071–2100 | ∆days | −2 | −7 | 11 | −15 | −17 | 11 | −11 | 9 | −21 |
4p5 2071–2100 | ∆days | −12 | −21 | 16 | −24 | 33 | 10 | −26 | −9 | −28 |
8p5 2071–2100 | ∆days | −25 | −20 | 7 | −22 | 29 | 26 | −34 | −11 | −30 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stagl, J.C.; Hattermann, F.F. Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries. Water 2016, 8, 566. https://doi.org/10.3390/w8120566
Stagl JC, Hattermann FF. Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries. Water. 2016; 8(12):566. https://doi.org/10.3390/w8120566
Chicago/Turabian StyleStagl, Judith C., and Fred F. Hattermann. 2016. "Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries" Water 8, no. 12: 566. https://doi.org/10.3390/w8120566
APA StyleStagl, J. C., & Hattermann, F. F. (2016). Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries. Water, 8(12), 566. https://doi.org/10.3390/w8120566