Performance of Denitrifying Phosphate Removal via Nitrite from Slaughterhouse Wastewater Treatment at Low Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory-Scale Intermittently Aerated Sequencing Batch Reactor (IASBR) Configuration
2.2. Slaughterhouse Wastewater
2.3. Analytical Procedures
3. Results and Discussion
3.1. Overall Performance of IASBRs
3.2. P Removal via Enhanced Biological Phosphorus Removal (EBPR)
3.3. P Removal via Denitrifying Phosphate Removal (DPR) over NO2−
3.4. Mechanism of DPR via Nitrite
3.4.1. PAOs, DPAOs, and DPAOs-Nitrite Activity
3.4.2. Effects of Aeration Rate and Dissolved Oxygen (DO) on DPR via Nitrite
3.4.3. Poly-β-Hydroxybutyrate (PHB) Consumed for DPR
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chae, S.; Chung, J.; Heo, Y.; Kang, S.; Lee, S.; Shin, H. Full-scale implementation of a vertical membrane bioreactor for simultaneous removal of organic matter and nutrients from municipal wastewater. Water 2015, 7, 1164–1172. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, J.; Ren, Z.; He, W.; Xing, M.; Wu, M.; Chen, S. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production. Bioresour. Technol. 2011, 102, 5674–5684. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Meng, Y.; Fan, T.; Du, Y.; Tang, J.; Fan, S. Phosphorus removal and N2O production in anaerobic/anoxic denitrifying phosphorus removal process: Long-term impact of influent phosphorus concentration. Bioresour. Technol. 2015, 179, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Li, L.; Yang, Y.; Wang, X.; Peng, Y. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater. Enzyme Microb. Technol. 2011, 48, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.Y.; Ong, S.L.; Ng, W.J.; Lu, F.; Fan, X.J. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Water Res. 2003, 37, 3463–3471. [Google Scholar] [CrossRef]
- Camejo, P.Y.; Owen, B.R.; Martirano, J.; Ma, J.; Kapoor, V.; Santodomingo, J.; McMahon, K.D.; Noguera, D.R. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors. Water Res. 2016, 102, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Rincón, F.J.; Lopez-Vazquez, C.M.; Welles, L.; van Loosdrecht, M.C.M.; Brdjanovic, D. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. Water Res. 2017, 120, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, Y.; Hua, Y. Denitrifying dephosphatation over nitrite: Effect of nitrite concentration, organic carbon, and pH. Bioresour. Technol. 2010, 101, 3870–3875. [Google Scholar] [CrossRef] [PubMed]
- Katsou, E.; Malamis, S.; Frison, N.; Fatone, F. Coupling the treatment of low strength anaerobic effluent with fermented biowaste for nutrient removal via nitrite. J. Environ. Manag. 2015, 149, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, T.; Zheng, N.; Zhang, J.; Ngo, H.H.; Guo, W.; Liang, S. Influence of organic shock loads on the production of N2O in denitrifying phosphorus removal process. Bioresour. Technol. 2013, 141, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Wang, X.; Li, B.; Bai, X.; Peng, Y. Nitritation and denitrifying phosphorus removal via nitrite pathway from domestic wastewater in a continuous MUCT process. Bioresour. Technol. 2013, 143, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Kang, X.; Yuan, Y. Performance of denitrifying phosphorus removal of Acinetobacteria strain at low temperature. Int. Biodeterior. Biodegrad. 2014, 95, 135–138. [Google Scholar] [CrossRef]
- Philips, S.; Laanbroek, H.J.; Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 2002, 1, 115–141. [Google Scholar] [CrossRef]
- Pan, M.; Hu, Z.; Liu, R.; Zhan, X. Effects of loading rate and aeration on nitrogen removal and N2O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 °C. Bioprocess Biosyst. Eng. 2015, 38, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chen, T.; Hu, Z.; Zhan, X. Assessment of nitrogen and phosphorus removal in an intermittently aeration sequencing batch reactor (IASBR) and a sequencing batch reactor (SBR). Water Sci. Technol. 2013, 68, 400–405. [Google Scholar] [CrossRef] [PubMed]
- American Pubilc Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; American Pubilc Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Rodgers, M.; Wu, G. Production of polyhydroxbutyrate by activated sludge performing enhanced biological phosphorus removal. Bioresour. Technol. 2010, 101, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Henry, L.; Liu, R.; Huang, X.; Zhan, X. Nitrogen removal from slaughterhouse wastewater through partial nitrification followed by denitrification in intermittently aerated sequencing batch reactors at 11 °C. Environ. Technol. 2013, 35, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Jeon, C.K.; Lee, D.S.; Park, J.M. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: Characteristics of carbon metabolism. Water Environ. Res. 2001, 73, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Obaja, D.; Mace, S.; Costa, J.; Sans, C.; Mata-Alvarez, J. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresour. Technol. 2003, 87, 103–111. [Google Scholar] [CrossRef]
- Tsuneda, S.; Ohno, T.; Soejima, K.; Hirata, A. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem. Eng. J. 2006, 27, 191–196. [Google Scholar] [CrossRef]
- Hu, Z.; Wentzel, M.C.; Ekama, G.A. Anoxic growth of phosphate-accumulating organic (PAOs) in biological nutrient removal activated sludge systems. Water Res. 2002, 36, 4927–4937. [Google Scholar] [CrossRef]
- Zhang, W.; Hou, F.; Peng, Y.; Liu, Q.; Wang, S. Optimizing aeration rate in an external nitrification-denitrifying phosphorus removal (ENDPR) system for domestic wastewater treatment. Chem. Eng. J. 2014, 245, 342–347. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Zhao, J.; Dai, X.; Li, B.; Peng, Y. A novel stoichiomentries methodology to quantify functional microorganisms in simultaneous (partial) nitrification-endogenous denitrification and phosphorus removal (SNEDPR). Water Res. 2016, 95, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, G.; Zhu, L. Enhanced denitrifying phosphorous removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source. Bioresour. Tecnol. 2011, 102, 10340–10345. [Google Scholar] [CrossRef] [PubMed]
- Kapagiannidis, A.G.; Zafiriadis, I.; Aivasidis, A. Comparison between aerobic and anoxic metabolism of denitrifying-EBPR sludge: Effect of biomass poly-hydroxyalkanoates content. New Biotechnol. 2013, 30, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Meinhold, J.; Filipe, C.D.M.; Daigger, G.T.; Isaacs, S. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Water Sci. Technol. 1999, 39, 31–42. [Google Scholar]
Probe | Sequence | Specificity | % Formamide |
---|---|---|---|
EUB338 | GCTGCCTCCCGTAGGAGT | General bacteria | 20 |
PAO651 | CCCTCTGCCAAACTCCAG | Rhodocyclus-related PAOs | 35 |
Aeration Rate | SS (mg/L) | COD (mg/L) | TN (mg/L) | TP (mg/L) | |
---|---|---|---|---|---|
Stage 1 (0.61 gCOD/(L·d)) | 0.4 L/min | 21.3 ± 4.1 a | 133.8 ± 3.3 (97.8%) b | 45.6 ± 5.1 (92.1%) | 1.2 ± 0.1 (96.7%) |
0.6 L/min | 27.2 ± 5.5 | 115.2 ± 1.6 (98.1%) | 23.3 ± 0.7 (96%) | 1.3 ± 0.1 (96.4%) | |
0.8 L/min | 21.9 ± 4.5 | 110.3 ± 1.6 (98.3%) | 27 ± 2.1 (94.6%) | 13 ± 0.7 (64.3%) | |
Stage 2 (0.82 gCOD/(L·d)) | 0.6 L/min | 34.4 ± 6.3 | 148.0 ± 1.8 (97.3%) | 44.2 ± 5.8 (91.6%) | 1.0 ± 0.1 (97.9%) |
0.8 L/min | 47.6 ± 5.5 | 134.7 ± 1.5 (97.5%) | 12.1 ± 0.8 (97.7%) | 1.0 ± 0.1 (97.9%) | |
1.2 L/min | 32.5 ± 4.6 | 122.2 ± 1.6(97.8%) | 26.4 ± 0.5 (94.9%) | 1.2 ± 0.8 (97.4%) | |
Stage 3 (1.02 gCOD/(L·d)) | 0.8 L/min | 266 ± 25.7 | 158.0 ± 5.1 (97.0%) | 161.4 ± 4.5 (68.2%) | 22.4 ± 2.6 (55.9%) |
1.0 L/min | 10.3 ± 1.1 | 143.9 ± 0.8 (97.2%) | 88.4 ± 3.1 (82.6%) | 1.3 ± 0.1 (97.4%) | |
1.2 L/min | 37.7 ± 8.6 | 124.5 ± 1.0 (97.6%) | 31.8 ± 0.6 (93.7%) | 1.9 ± 0.1 (96.3%) |
Stage | 1 | 2 | 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Aeration rate (L air/min) | 0.4 | 0.6 | 0.8 | 0.6 | 0.8 | 1.2 | 0.8 | 1.0 | 1.2 |
PAOs population (% of total bacteria) | 9.2 ± 0.42 | 8.89 ± 0.52 | 2.43 ± 0.32 | 14.21 ± 1.14 | 13.24 ± 1.09 | 10.6 ± 1.22 | 2.22 ± 0.28 | 24.7 ± 1.39 | 15.38 ± 2.19 |
P released amount in non-aerobic period (mg) | 257.84 | 113.48 | - | 276.13 | 141.85 | - | - | 423.31 | 181.19 |
P uptake amount in aerobic period (mg) | 284.58 | 108.31 | - | 291.48 | 150.05 | - | - | 444.86 | 170.01 |
The ratios of P uptake in aerobic period/P releasing in non-aerobic period | 1.10 | 0.95 | - | 1.06 | 1.06 | - | - | 1.05 | 0.94 |
P removal amount via DPR (mg) | 20.41 | 34.05 | - | 26.97 | 22.60 | - | - | 36.70 | 59.41 |
The amount of TON reduced via DPR (mg) | 21.11 | 49.28 | - | 28.53 | 28.94 | - | - | 40.23 | 72.03 |
The amount of NO2−-N reduced via DPR (mg) | 14.96 | 33.45 | - | 21.44 | 19.23 | - | - | 39.55 | 48.56 |
The amount of NO3−-N reduced via DPR (mg) | 6.15 | 15.93 | 7.09 | 9.71 | 0.68 | 23.47 | |||
The ratio of TON denitrified/ P removed in via DPR | 1.03 | 1.30 | - | 1.06 | 1.28 | - | - | 1.10 | 1.21 |
The ratio of DPR via nitrite/DPR via nitrate (μ) | 2.43 | 2.11 | - | 3.02 | 1.98 | - | - | 58.17 | 2.07 |
9% | 36.72% | - | 10.17% | 11.37% | - | - | 10.18% | 28.95% | |
DPAOs population (%) | 0.83 | 3.26 | - | 1.45 | 1.51 | - | - | 2.51 | 4.45 |
Population of DPAOs via nitrite (%) | 0.59 | 2.12 | - | 1.09 | 1.00 | - | - | 2.56 | 3.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Huang, X.; Wu, G.; Hu, Y.; Yang, Y.; Zhan, X. Performance of Denitrifying Phosphate Removal via Nitrite from Slaughterhouse Wastewater Treatment at Low Temperature. Water 2017, 9, 818. https://doi.org/10.3390/w9110818
Pan M, Huang X, Wu G, Hu Y, Yang Y, Zhan X. Performance of Denitrifying Phosphate Removal via Nitrite from Slaughterhouse Wastewater Treatment at Low Temperature. Water. 2017; 9(11):818. https://doi.org/10.3390/w9110818
Chicago/Turabian StylePan, Min, Xiaoming Huang, Guangxue Wu, Yuansheng Hu, Yan Yang, and Xinmin Zhan. 2017. "Performance of Denitrifying Phosphate Removal via Nitrite from Slaughterhouse Wastewater Treatment at Low Temperature" Water 9, no. 11: 818. https://doi.org/10.3390/w9110818
APA StylePan, M., Huang, X., Wu, G., Hu, Y., Yang, Y., & Zhan, X. (2017). Performance of Denitrifying Phosphate Removal via Nitrite from Slaughterhouse Wastewater Treatment at Low Temperature. Water, 9(11), 818. https://doi.org/10.3390/w9110818