Upscaling Stem to Community-Level Transpiration for Two Sand-Fixing Plants: Salix gordejevii and Caragana microphylla
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey Plots of Shrub Communities
2.3. Measurement of Sap Flow Rate and Environmental Factors
2.4. Leaf Area Measurement and Processing
2.5. Upscaling Transpiration Estimates
2.6. Validation of Upscaling Functions
3. Results and Analysis
3.1. The Measured Stem-Level Transpiration
3.2. The Measured Leaf Area
3.3. The Upscaled Community-Level Transpiration
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cheng, L.L.; Yin, C.B.; Lu, Q.; Wu, B.; Que, X.E. Economic analysis of desertification cause and irrational human activities. Chin. J. Agric. Resour. Reg. Plan. 2016, 37, 123–129. [Google Scholar]
- Zhao, H.L. Vegetation Adaptation Strategy and Sustainable Mechanism under Desertification; China Ocean University Press: Beijing, China, 2004. [Google Scholar]
- Zhang, P.; Hasi, E.; Yang, Y.; Wu, X. Responses of nebkhas morphology to the mode and richness of sand supply. J. Desert Res. 2015, 35, 1453–1460. [Google Scholar]
- Yuan, G.F.; Zhang, P.; Luo, Y. Some questions on modeling the desert plants transpiration process in China. J. Desert Res. 2012, 32, 47–53. [Google Scholar]
- Yue, G.Y.; Zhao, H.L.; Zhang, T.H.; Zhao, X.Y.; Zhao, W.; Niu, L.; Liu, X.P. Estimation of transpiration in communities dominated by shrub Caragana microphylla. Chin. J. Plant. Ecol. 2009, 33, 508–515. [Google Scholar]
- Zhang, Y.C.; Sun, H.Y.; Shen, Y.J.; Qi, Y.Q. Application of hydrogen and oxygen stable isotopes technique in the water depletion of ecosystems. Sci. Geogr. Sin. 2012, 32, 289–293. [Google Scholar]
- Sugiura, H.; Sakamoto, D.; Sugiura, T.; Asakura, T.; Moriguchi, T. Evaluation of the use of the Granier sap flow method in Japanese pear by comparison with transpiration by the weighing method. Acta Hortic. 2009, 846, 121–126. [Google Scholar] [CrossRef]
- Young, M.H.; Wierenga, P.J.; Mancino, C.F. Monitoring near-surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry. Soil Sci. Soc. Am. J. 1997, 61, 1138–1146. [Google Scholar] [CrossRef]
- Snyder, R.L.; Geng, S.; Orang, M.; Sarreshteh, S. Calculation and simulation of evapotranspiration of applied water. J. Integr. Agric. 2012, 11, 489–501. [Google Scholar] [CrossRef]
- Yanusa, I.A.M.; Nuberg, I.K.; Fuentes, S.; Lu, P.; Eamus, D. A simple field validation of daily transpiration derived from sapflow using a porometer and minimal meteorological data. Plant Soil 2008, 305, 15–24. [Google Scholar] [CrossRef]
- Song, L.L.; Yin, Y.H.; Wu, S.H. Advancements of the metrics of evapotranspiration. Adv. Earth Sci. 2012, 31, 1186–1195. [Google Scholar]
- Jin, H.X.; Liu, Z.J.; Wang, J.H.; Xu, X.Y.; Tang, J.N.; Zhang, D.M. Measurement of shrub’s water consumption with stemheat balance (SHB) in the desert and arid area. Prot. For. Sci. Technol. 2004, 6, 9–13. [Google Scholar]
- Wang, X.P.; Wang, Z.N.; Berndtsson, R.; Zhang, Y.F.; Pan, Y.X. Desert shrub stemflow and its significance in soil moisture replenishment. Hydrol. Earth Syst. Sci. 2011, 15, 561–567. [Google Scholar] [CrossRef]
- Garcia, E.P.; Alonso, B.N.; Alegre, J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol. 2010, 389, 363–372. [Google Scholar] [CrossRef]
- Li, S.J.; Cha, T.S.; Qin, S.G.; Qian, D.; Jia, X. Temporal patterns and environmental controls of sap flow in Artemisia ordosica. Chin. J. Ecol. 2014, 33, 112–118. [Google Scholar]
- Razzaghi, F.; Ahmadi, S.H.; Adolf, V.I.; Jacobsen, S.E.; Andersen, M.N. Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J. Agron. Crop Sci. 2011, 197, 348–360. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Xia, J.B.; Wang, R.R.; Li, T.; Zhao, Y.Y.; Liu, J.T. Effects of soil moisture on characteristics of sap flow of Securinega suffruticosa. J. Desert Res. 2013, 33, 1385–1389. [Google Scholar]
- Ham, J.M.; Heilmann, J.L.; Lascano, R.J. Determination of soil water evaporation and transpiration from energy balance and flow measurements. Agric. For. Meteorol. 1990, 52, 287–301. [Google Scholar] [CrossRef]
- Hatton, T.J.; Wu, H.I. A scaling theory to extrapolate individual tree water use to stand water use. Hydrol. Process. 1995, 9, 527–540. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Y.H.; Yu, P.T.; Liu, H.L.; Xu, L.H.; Shi, Z.J.; Mo, F. Variation of sap flow among individual trees and scaling up for estimation of transpiration of Larix principis rupprechtii stand. Sci. Silvae Sin. 2008, 44, 34–40. [Google Scholar]
- Jaskierniak, D.; Benyon, R.; Kuczera, G.; Robinson, A. A new method for measuring stand sapwood area in forests. Ecohydrology 2015, 8, 504–517. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Liang, F.C.; Chang, S.L.; Shi, Q.D.; Li, X.; Lu, J.J. Scaling up for transpiration of Pinaceae schrenkiana stands based on 8 hm2 permanent plots in Tianshan Mountains. Acta Ecol. Sin. 2011, 31, 3330–3339. [Google Scholar]
- Niu, L.; Yue, G.Y.; Zhao, H.L.; Zhang, T.H.; Zhao, X.Y.; Liu, X.P.; Zhao, W. Evaluating transpiration from Pinus sylvestris var. mongolica and Caragana microphylla using sap flow method. J. Beijing For. Univ. 2008, 30, 1–8. [Google Scholar]
- Köstner, B.; Granier, B.; Cermák, J. Sapflow measurements in forest stands: Methods and uncertainties. Ann. For. Sci. 1998, 55, 13–27. [Google Scholar] [CrossRef]
- Allen, S.J.; Grime, V.L. Measurements of transpiration from savannah shrubs using sap flow gauges. Agric. For. Meteorol. 1995, 75, 23–41. [Google Scholar] [CrossRef]
- Tabari, H.; Kisi, O.; Ezani, A.; Talaee, P.H. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J. Hydrol. 2012, 444, 78–89. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements: FAO Irrigation and Drainage Paper 56; FAO of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Hao, H.M.; Lu, R.; Liu, Y.; Fang, N.F.; Wu, G.L.; Shi, G.L. Effects of shrub patch size succession on plant diversity and soil water content in the water-wind erosion crisscross region on the Loess Plateau. Catena 2016, 144, 177–183. [Google Scholar] [CrossRef]
- Yue, G.Y.; Zhang, T.H.; Zhao, H.L.; Niu, L.; Liu, X.P.; Huang, G. Characteristics of sap flow and transpiration of Salix gordejevii and Caragana microphylla in Horqin Sandy Land, northeast China. Acta Ecol. Sin. 2006, 26, 3205–3213. [Google Scholar]
- Tong, C.; Gong, J.Z.; Marrs, R.; Zhang, L.; Wang, W.Q. Pattern of transpiration of four shrub species and water consumption from shrub stands in an eco-reclamation catchment in northwest China. Arid Land Res. Manag. 2008, 22, 242–254. [Google Scholar] [CrossRef]
- Tomo’omi, K.; Hisami, N.; Tetsuya, M.; Shigeru, O.; Katsuyoshi, K.; Kimio, K.; Yasuhiro, U.; Shinya, K.; Kyoichi, O. Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa. For. Ecol. Manag. 2005, 206, 191–195. [Google Scholar]
- Huang, L.; Zhang, Z.; Li, X. The extrapolation of the leaf area-based transpiration of two xerophytic shrubs in a revegetated desert area in the Tengger Desert, China. Hydrol. Res. 2015, 46, 389–399. [Google Scholar] [CrossRef]
- Cermak, J.; Kucera, J.; Nadezhdina, N. Sap flow measurements with some thermodynamic methods, flow integration with trees and scaling up from sample trees to entire forest stands. Trees 2004, 18, 529–546. [Google Scholar] [CrossRef]
- Lott, J.E.; Khan, A.A.H.; Black, C.R.; Ong, C.K. Water use in a Grevillea robusta-maize overstorey agroforestry system in semi-arid Kenya. For. Ecol. Manag. 2003, 180, 45–59. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.D.; Fu, B.J.; Lv, Y.H. Landscape pattern and eco-hydrological process. Adv. Earth Sci. 2009, 24, 1238–1246. [Google Scholar]
- Bai, L. Research and Analysis of Water Requirement in Growth Period of the Wild Salix gordejevii in the Hunshandake Desert Based on Dual Source Model. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2014. [Google Scholar]
- Glenn, E.P.; Morino, K.; Didan, K.; Jordan, F.; Carroll, K.C.; Nagler, P.L.; Hultine, K.; Sheader, L.; Waugh, J. Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing. Ecohydrology 2008, 1, 316–329. [Google Scholar] [CrossRef]
- Ford, C.R.; McGuire, M.A.; Mitchell, R.J.; Teskey, R.O. Assessing variation in the radial profile of the sap flow density in Pinus species and its effects on daily water use. Tree Physiol. 2004, 24, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Glenn, E.P.; Nagler, P.L.; Morino, K.; Hultine, K.R. Phreatophytes under stress: Transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment. Plant Soil 2013, 371, 655–672. [Google Scholar] [CrossRef]
- Scott, R.L.; Huxman, T.E.; Cable, W.L.; Emmerich, W.E. Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahua desert shrubland. Hydrol. Process. 2006, 20, 3227–3243. [Google Scholar] [CrossRef]
- Zeppel, M. Convergence of tree water use and hydraulic architecture in water water-limited regions: A review and synthesis. Ecohydrology 2013, 6, 889–900. [Google Scholar] [CrossRef]
- Doody, T.M.; Colloff, M.J.; Davies, M.; Koul, V.; Benyon, R.G.; Nagler, P.L. Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray–Darling Basin, Australia—Implications for the management of environmental flows. Ecohydrology 2015, 8, 1471–1487. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, L.; Lv, Y.; Yan, X.; Liu, T.; Wang, X. Upscaling Stem to Community-Level Transpiration for Two Sand-Fixing Plants: Salix gordejevii and Caragana microphylla. Water 2017, 9, 361. https://doi.org/10.3390/w9050361
Duan L, Lv Y, Yan X, Liu T, Wang X. Upscaling Stem to Community-Level Transpiration for Two Sand-Fixing Plants: Salix gordejevii and Caragana microphylla. Water. 2017; 9(5):361. https://doi.org/10.3390/w9050361
Chicago/Turabian StyleDuan, Limin, Yang Lv, Xue Yan, Tingxi Liu, and Xixi Wang. 2017. "Upscaling Stem to Community-Level Transpiration for Two Sand-Fixing Plants: Salix gordejevii and Caragana microphylla" Water 9, no. 5: 361. https://doi.org/10.3390/w9050361
APA StyleDuan, L., Lv, Y., Yan, X., Liu, T., & Wang, X. (2017). Upscaling Stem to Community-Level Transpiration for Two Sand-Fixing Plants: Salix gordejevii and Caragana microphylla. Water, 9(5), 361. https://doi.org/10.3390/w9050361