The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Test Design
2.3. Analytical Methods
2.3.1. Data Processing
2.3.2. Evaluation Indicators
3. Results and Analysis
3.1. The Process of the Soil Freezing Depth Curve
3.2. Soil Temperature Variation
3.3. Variation in Soil Moisture Content
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, Y.; Liu, J.S.; Wang, G.P. Study on the effect of freezing and thawing action to soil physical and chemical characteristics. Geogr. Geo-Inf. Sci. 2007, 23, 91–96. [Google Scholar]
- Larsen, K.S.; Jonasson, S.; Michelsen, A. Repeated freeze–thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl. Soil Ecol. 2002, 21, 187–195. [Google Scholar] [CrossRef]
- Potter, C. Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska. Ecol. Model. 2004, 175, 1–24. [Google Scholar] [CrossRef]
- Wu, Z.F.; Jin, Y.H.; Liu, J.P. Response of vegetation distribution to global climate Change in Northeast China. Sci. Geogr. Sin. 2003, 23, 564–570. [Google Scholar]
- Zhang, X.L.; Zhou, Z.M.; Liu, J.L. Melting of seasonal snow cover and its influence on soil temperature conditions of shallow layer. Trans. CSAE 2010, 26, 91–95. [Google Scholar]
- Tian, H.; Wei, C.; Wei, H. Freezing and thawing characteristics of frozen soils: Bound water content and hysteresis phenomenon. Cold Reg. Sci. Technol. 2014, 103, 4–81. [Google Scholar] [CrossRef]
- Li, R.P.; Shi, H.B.; Takco, A. Study on water-heat-salt transfer in soil freezing-thawing based on simultaneous heat and water model. J. Hydraul. Eng. 2009, 40, 403–412. [Google Scholar]
- Hui, B.; Ping, H.; Ying, Z. Cyclic freeze–thaw as a mechanism for water and salt migration in soil. Environ. Earth Sci. 2015, 74, 675–681. [Google Scholar]
- Li, R.P.; Shi, H.B.; Takeo, A. Characteristics of air temperature and water-salt transfer during freezing and thawing period. Trans. CSAE 2007, 23, 70–74. [Google Scholar]
- Korolyuk, T.V. Specific features of the dynamics of salts in salt-affected soils subjected to long-term seasonal freezing in the south Transbaikal region. Eurasian Soil Sci. 2014, 47, 339–352. [Google Scholar] [CrossRef]
- Urakawa, R.; Shibata, H.; Kuroiwa, M. Effects of freeze–thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago. Soil Biol. Biochem. 2014, 74, 82–94. [Google Scholar] [CrossRef]
- He, H.; Dyck, M.F.; Si, B.C. Soil Freezing-Thawing Characteristics and Snowmelt Infiltration in Cryalfs of Alberta, Canada. Geoderma Reg. 2015, 5, 393–405. [Google Scholar] [CrossRef]
- Zollinger, B.; Alewell, C.; Kneisel, C. Effect of permafrost on the formation of soil organic carbon pools and their physical–chemical properties in the Eastern Swiss Alps. Catena 2013, 110, 70–85. [Google Scholar] [CrossRef]
- Musa, A.; Liu, Y.; Wang, A. Characteristics of soil freeze–thaw cycles and their effects on water enrichment in the rhizosphere. Geoderma 2016, 264, 132–139. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Lehrsch, G.A.; McCool, D.K. Freezing and thawing processes. In Encyclopedia of Soils in the Environment; Elsevier: Oxford, UK, 2005; pp. 104–110. [Google Scholar]
- Iwata, Y.; Nemoto, M.; Hasegawa, S. Influence of rain, air temperature, and snow cover on subsequent spring-snowmelt infiltration into thin frozen soil layer in northern Japan. J. Hydrol. 2011, 401, 165–176. [Google Scholar] [CrossRef]
- Chen, H.S.; Sun, Z.B. Design of a comprehensive land surface model and its validation part I. model description. Chin. J. Atmos. Sci. 2004, 6, 801–819. [Google Scholar]
- Bonnaventure, P.P.; Lewkowicz, A.G.; Kremer, M. A Permafrost Probability Model for the Southern Yukon and Northern British Columbia, Canada. Permafr. Periglac. Process. 2012, 23, 52–68. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; Mckenzie, J.M.; Macquarrie, K.T.B. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw with conduction and advection. Adv. Water Res. 2014, 70, 172–184. [Google Scholar] [CrossRef]
- Xiang, X.H.; Wu, X.L.; Wang, C.H. Influences of climate variation on thawing–freezing processes in the northeast of Three-River Source Region China. Cold Reg. Sci. Technol. 2013, 86, 86–97. [Google Scholar] [CrossRef]
- Yang, M.; Yao, T.; Gou, X. The soil moisture distribution, thawing–freezing processes and their effects on the seasonal transition on the Qinghai–Xizang (Tibetan) Plateau. J. Asian Earth Sci. 2003, 21, 457–465. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Wu, Q.B.; Lu, N. Groundwater in the Tibet Plateau, western China. Geophys. Res. Lett. 2008, 35, 80–86. [Google Scholar] [CrossRef]
- Ge, S.; Mckenzie, J.; Voss, C. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys. Res. Lett. 2011, 38, 3138–3142. [Google Scholar] [CrossRef]
- Shiklomanov, D.N.I.; Nelson, F.E. Active-layer mapping at regional scales: A 13-year spatial time series for the Kuparuk region, north-central Alaska. Permafr. Periglac. Process. 2002, 13, 219–230. [Google Scholar] [CrossRef]
- Liu, W.H.; Xie, C.W.; Zhao, L. Simulating the active layer depth and analyzing its influence factors in permafrost of the Mahan Mountain, Lanzhou. J. Glaciol. Geocryol. 2015, 37, 1443–1452. [Google Scholar]
- Zhang, W.; Zhou, J.; Wang, G.X. Monitoring and modeling the influence of snow cover and organic soil on the active layer of permafrost on the Tibetan Plateau. J. Glaciol. Geocryol. 2013, 35, 528–540. [Google Scholar]
- Chang, J.; Wang, G.X.; Li, C.J. Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau. Sci. China Earth Sci. 2015, 45, 481–493. [Google Scholar] [CrossRef]
- Xing, X.G.; Zhao, W.G.; Ma, X.Y. Temporal stability of soil salinity in root zone of cotton under drip irrigation with plastic mulch. Trans. Chin. Soc. Agric. Mach. 2015, 46, 146–153. [Google Scholar]
- Wang, W.H.; Wang, Q.J. Scale-dependency of spatial variability of soil Air permeability on typical oasis croplands at middle reaches of Heihe river. Trans. Chin. Soc. Agric. Mach. 2014, 45, 179–183. [Google Scholar]
- Xiao, X.; Liu, G.; Li, B.G. Finite element analysis of effect of soil pores on measurement of specific heat with the Dual-Probe Heat-Pulse method. Acta Pedol. Sin. 2013, 50, 1138–1142. [Google Scholar]
- Fu, Q.; Hou, R.J.; Wang, Z.L. Soil moisture thermal interaction effects under snow cover during freezing and thawing period. Trans. CSAE 2015, 31, 101–107. [Google Scholar]
- Wang, E.L.; Zhang, A.Q.; Bao, T.E. Variability analysis of freezing depth mode of vertical buried pipes with different materials in cold area. J. Hydraul. Eng. 2017, 48, 86–95. [Google Scholar]
- Calonne, N.; Flin, F.; Morin, S. Numerical and experimental investigations of the effective thermal conductivity of snow. Geophys. Res. Lett. 2011, 38, 537–545. [Google Scholar] [CrossRef]
- Guo, L.P.; Li, L.H.; Xu, J.R. Responses of snow depth and seasonal frozen ground temperature to enhanced air temperature in Kunges Valley, Tianshan Mountains. Res. Sci. 2012, 34, 636–643. [Google Scholar]
- Li, W.P.; Fan, J.H.; Sha, Y.K. Soil Temperature Variation and Thaw-freezing Cycle in the Alpine Cold Steppe, Northern Tibetan Plateau. J. Mt. Sci. 2014, 32, 407–416. [Google Scholar]
- Liu, G.S.; Wang, G.X.; Sun, X.Y. The response of soil moisture in swamp meadow in the source regions of the Yangtze River to artificially warming. J. Glaciol. Geocryol. 2015, 37, 668–675. [Google Scholar]
- Fan, J.H.; Lu, D.Y.; Wang, X.D. The freezing-thawing processes and soil moisture-energy distribution in permafrost active layer, Northern Tibet. J. Mt. Sci. 2014, 32, 385–392. [Google Scholar]
Soil Depth (cm) | Bare Land | Natural Snow | Compacted Snow | Thick Snow | ||||
---|---|---|---|---|---|---|---|---|
Field Capacity (%) | Soil Dry Density (g·cm−3) | Field Capacity (%) | Soil Dry Density (g·cm−3) | Field Capacity (%) | Soil Dry Density (g·cm−3) | Field Capacity (%) | Soil Dry Density (g·cm−3) | |
5 | 30.54 | 1.34 | 33.46 | 1.38 | 34.52 | 1.39 | 31.57 | 1.41 |
10 | 30.21 | 1.25 | 32.64 | 1.35 | 32.51 | 1.34 | 29.21 | 1.42 |
15 | 33.21 | 1.31 | 32.57 | 1.42 | 31.24 | 1.35 | 29.36 | 1.47 |
20 | 31.28 | 1.22 | 32.18 | 1.43 | 33.24 | 1.32 | 31.24 | 1.55 |
40 | 32.61 | 1.32 | 31.16 | 1.46 | 30.71 | 1.36 | 28.54 | 1.57 |
60 | 29.46 | 1.33 | 29.87 | 1.49 | 31.19 | 1.40 | 31.24 | 1.59 |
100 | 32.94 | 1.35 | 33.61 | 1.49 | 32.76 | 1.57 | 33.12 | 1.63 |
140 | 31.75 | 1.48 | 30.19 | 1.52 | 30.91 | 1.59 | 32.71 | 1.59 |
180 | 33.21 | 1.38 | 32.16 | 1.54 | 32.16 | 1.54 | 29.54 | 1.60 |
Treatment Method | Initial Freezing Period (15 December 2014) | Freezing Stability Period (30 January 2015) | Thawing Period (15 March 2015) | ||||||
---|---|---|---|---|---|---|---|---|---|
Snow Temperature (°C) | Snow Water Content (%) | Snow Density (g/cm3) | Snow Temperature (°C) | Snow Water Content (%) | Snow Density (g/cm3) | Snow Temperature (°C) | Snow Water Content (%) | Snow Density (g/cm3) | |
Natural snow | −8.9 | 18.6 | 0.118 | −12.9 | 24.2 | 0.137 | −7.8 | 28.6 | 0.110 |
Compacted snow | −9.5 | 26.4 | 0.174 | −11.3 | 36.5 | 0.212 | −6.3 | 38.3 | 0.189 |
Thick snow | −8.8 | 20.3 | 0.122 | −10.5 | 25.0 | 0.140 | −5.9 | 27.1 | 0.117 |
Soil Layer Depth (cm) | Soil Freezing Rate (cm/day) | |||
---|---|---|---|---|
Bare Land | Natural Snow | Compacted Snow | Thick Snow | |
0–10 | 0.91 | 0.71 | 0.67 | 0.63 |
10–20 | 1.11 | 1.43 | 1.43 | 0.67 |
20–30 | 1.25 | 1.25 | 1.25 | 0.91 |
30–40 | 1.43 | 1.43 | 1.11 | 0.77 |
40–50 | 1.67 | 1.67 | 1.43 | 0.91 |
50–60 | 2.00 | 1.25 | 1.25 | 1.25 |
60–70 | 1.67 | 1.11 | 1.00 | 1.11 |
70–80 | 1.43 | 1.00 | 1.11 | 0.67 |
80–90 | 1.11 | 1.25 | 0.71 | 0.40 |
90–100 | 1.11 | 0.91 | 0.50 | 0.33 |
100–110 | 0.71 | 0.67 | - | - |
110–120 | 0.67 | 0.45 | - | - |
120–130 | 0.45 | - | - | - |
Soil Depth /cm | Bare Land | Natural Snow | Compacted Snow | Thick Snow | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R (°C) | Cv (%) | D (°C) | R (°C) | Cv (%) | D (°C) | R (°C) | Cv (%) | D (°C) | R (°C) | Cv (%) | D (°C) | |
Δ(10−5)/5 | 0.65 | 12.138 | 0.361 | 0.64 | 11.578 | 0.298 | 0.63 | 11.967 | 0.276 | 0.59 | 14.134 | 0.328 |
Δ(15−10)/5 | 0.63 | 11.142 | 0.298 | 0.55 | 12.127 | 0.273 | 0.58 | 15.647 | 0.342 | 0.44 | 11.197 | 0.259 |
Δ(20−15)/5 | 0.57 | 9.142 | 0.218 | 0.46 | 11.345 | 0.256 | 0.56 | 8.431 | 0.224 | 0.32 | 7.342 | 0.238 |
Δ(40−20)/20 | 0.36 | 9.534 | 0.182 | 0.35 | 8.564 | 0.198 | 0.53 | 6.286 | 0.203 | 0.29 | 7.854 | 0.214 |
Δ(60−40)/20 | 0.48 | 5.782 | 0.183 | 0.23 | 5.335 | 0.167 | 0.48 | 4.973 | 0.138 | 0.27 | 5.342 | 0.127 |
Δ(100−60)/40 | 0.34 | 4.934 | 0.158 | 0.18 | 3.245 | 0.137 | 0.34 | 2.946 | 0.131 | 0.12 | 2.947 | 0.111 |
Δ(140−100)/40 | 0.20 | 2.645 | 0.061 | 0.13 | 1.672 | 0.059 | 0.20 | 1.754 | 0.067 | 0.13 | 1.824 | 0.061 |
Δ(180−140)/40 | 0.06 | 0.891 | 0.017 | 0.07 | 0.624 | 0.013 | 0.06 | 0.534 | 0.016 | 0.06 | 0.542 | 0.013 |
Soil Depth (cm) | Bare Land | Natural Snow | Compacted Snow | Thick Snow | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R (%) | Cv (%) | D (%) | R (%) | Cv (%) | D (%) | R (%) | Cv (%) | D (%) | R (%) | Cv (%) | D (%) | |
Δ(10−5)/5 | 2.39 | 12.634 | 1.263 | 2.37 | 8.345 | 1.387 | 2.54 | 9.046 | 1.164 | 2.92 | 12.241 | 1.441 |
Δ(15−10)/5 | 1.66 | 8.614 | 1.187 | 2.08 | 11.234 | 1.274 | 3.15 | 10.895 | 1.442 | 3.68 | 9.342 | 1.017 |
Δ(20−15)/5 | 1.77 | 5.431 | 0.952 | 1.62 | 6.534 | 0.986 | 4.05 | 6.734 | 0.948 | 4.69 | 6.345 | 0.814 |
Δ(40−20)/20 | 0.60 | 4.214 | 0.723 | 0.47 | 4.537 | 0.787 | 0.59 | 3.279 | 0.568 | 1.12 | 5.435 | 0.517 |
Δ(60−40)/20 | 0.35 | 2.217 | 0.692 | 0.53 | 2.298 | 0.718 | 0.72 | 2.975 | 0.507 | 0.80 | 2.178 | 0.529 |
Δ(100−60)/40 | 0.28 | 1.136 | 0.401 | 0.47 | 1.796 | 0.527 | 0.42 | 1.379 | 0.396 | 0.44 | 1.375 | 0.384 |
Δ(140−100)/40 | 0.20 | 0.964 | 0.363 | 0.19 | 0.867 | 0.460 | 0.33 | 1.124 | 0.247 | 0.35 | 0.768 | 0.254 |
Δ(180−140)/40 | 0.11 | 0.274 | 0.121 | 0.20 | 0.386 | 0.143 | 0.31 | 0.375 | 0.130 | 0.18 | 0.274 | 0.127 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Hou, R.; Li, T.; Yan, P.; Ma, Z. The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover. Water 2017, 9, 370. https://doi.org/10.3390/w9060370
Fu Q, Hou R, Li T, Yan P, Ma Z. The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover. Water. 2017; 9(6):370. https://doi.org/10.3390/w9060370
Chicago/Turabian StyleFu, Qiang, Renjie Hou, Tianxiao Li, Peiru Yan, and Ziao Ma. 2017. "The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover" Water 9, no. 6: 370. https://doi.org/10.3390/w9060370
APA StyleFu, Q., Hou, R., Li, T., Yan, P., & Ma, Z. (2017). The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover. Water, 9(6), 370. https://doi.org/10.3390/w9060370