Valuation of Hidden Water Ecosystem Services: The Replacement Cost of the Aquifer System in Central Mexico
Abstract
:1. Introduction
2. Valuing Water Resources and Ecosystem Services in Decision-Making: A Tool for Sustainable Development
3. Case Study: Central Mexico’s Aquifers
3.1. The Aquifer System of Central Mexico
3.2. The Situation of the Water Forest as a Recharge Zone
4. Methods and Materials
- The manufactured system must replace the environmental service under study with characteristics of similar quality and magnitude.
- The manufactured system, whose cost of production is interpreted as the replacement cost of the environmental service under study, should be the least cost alternative.
- There must be a real need to build the manufactured system in the absence of the environmental service under study.
4.1. Scenario Analysis
- Scenario 1: No leak control. The full volume of extraction of the aquifer system is to be substituted with the minimum cost combination of the six supply alternatives.
- Scenario 2: Centralized control of leaks by acting on the secondary network of water distribution. These measures are able to reduce 3 m3·s−1 of total leaks and, therefore, it is assumed that this policy allows for an equivalent decrease of aquifer extraction.
- Scenario 3: Scenario 2 + decentralized control of half of domestic leaks. These actions represent a combined decrease of 7.5 m3·s−1 of total leaks and, therefore, an equivalent decrease in aquifer extraction.
- Scenario 4: Scenario 2 + decentralized control of the totality of domestic leaks. These actions decrease total leaks by 12.5 m3·s−1 and allow for an equivalent decrease in aquifer extraction.
4.2. Data
4.3. Measures for Leak Control
4.4. Costs of Leak Control
5. Results of the Scenario Analysis
6. Discussion
6.1. The Replacement Cost of Groundwater Extraction and the Economic Value of the Water Forest
6.2. Dealing with Population Growth
6.3. Relevance for Policy-Making
6.4. Methodological Aspects
7. Concluding Remarks
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Water Assessment Programme (WWAP). The United Nations World Water Development Report 2015: Water for a Sustainable World, United Nations World Water Assessment Programme; UNESCO: Paris, France, 2015. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-Operation and Development (OECD). Environmental Outlook to 2050; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Tang, Q.; Lettenmaier, D.P. 21st Century runoff sensitivities of major global river basins. Geophys. Res. Lett. 2012, 39, 92–104. [Google Scholar] [CrossRef]
- Dodds, W.K.; Perkin, J.S.; Gerken, J.E. Human Impact on Freshwater Ecosystem Services: A Global Perspective. Environ. Sci. Technol. 2013, 47, 9061–9068. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Shi, C.B.; Bi, K.X. Impacts of land cover change and socioeconomic development on ecosystem service values. Environ. Eng. Manag. J. 2014, 13, 2697–2705. [Google Scholar]
- Taylor, R.G.; Scanlon, B.; Doll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Gain, A.K.; Giupponi, C.; Wada, Y. Measuring global water security towards sustainable development goals. Environ. Res. Lett. 2016, 11, 124015. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Gleick, P.H. A Look at Twenty-first Century Water Resources Development. Water Int. 2000, 25, 127–138. [Google Scholar] [CrossRef]
- Liu, S.; Crossman, N.D.; Nolan, M.; Ghirmay, H. Bringing ecosystem services into integrated water resources management. J. Environ. Manag. 2013, 129, 92–102. [Google Scholar]
- Pahl-Wostl, C.; Jeffrey, P.; Isendahl, N.; Brugnach, M. Maturing the New Water Management Paradigm: Progressing from Aspiration to Practice. Water Resour. Manag. 2011, 25, 837–856. [Google Scholar] [CrossRef]
- Setegn, S.G.; Donoso, M.C. Sustainability of Integrated Water Resources Management, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Munoz-Pina, C.; Guevara, A.; Torres, J.M.; Brana, J. Paying for the hydrological services of Mexico’s forests: Analysis, negotiations and results. Ecol. Econ. 2008, 65, 725–736. [Google Scholar] [CrossRef]
- Val-Segura, R.; Arriaga-Medina, J. Water Resources Management and Sustainability in Mexico. In Sustainability of Integrated Water Resources Management. Water Governance, Climate and Ecohydrology; Setegn, S.G., Donoso, M.C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; p. 620. [Google Scholar]
- Perez-Verdin, G.; Sanjurjo-Rivera, E.; Galicia, L.; Hernandez-Diaz, J.C.; Hernandez-Trejo, V.; Marquez-Linares, M.A. Economic valuation of ecosystem services in Mexico: Current status and trends. Ecosyst. Serv. 2016, 21, 6–19. [Google Scholar] [CrossRef]
- Adler, I. Domestic water demand management: Implications for Mexico City. Int. J. Urban Sustain. Dev. 2011, 3, 93–105. [Google Scholar] [CrossRef]
- Tortajada, C. Water management in Mexico City Metropolitan Area. Int. J. Water Resour. Dev. 2006, 22, 353–376. [Google Scholar] [CrossRef]
- Sosa-Rodriguez, F. Impacts of Water-management Decisions on the Survival of a City: From Ancient Tenochtitlan to Modern Mexico City. Water Resour. Manag. 2010, 26, 675–687. [Google Scholar] [CrossRef]
- Kimmelman, M. Mexico City, Parched and Sinking, Faces a Water Crisis. The New York Times, 17 February 2017. [Google Scholar]
- Comisión Nacional del Agua (CONAGUA); Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Estadisticas del Agua en Mexico Edicion 2016; Comisión Nacional del Agua: Mexico, DF, Mexcio, 2016. (In Spanish) [Google Scholar]
- Sosa-Rodriguez, F. Exploring the risks of ineffective water supply and sewage disposal: A case study of Mexico City. Environ. Hazards 2010, 9, 135–146. [Google Scholar] [CrossRef]
- Caro-Borrero, A.; Corbera, E.; Neitzel, K.C.; Almeida-Lenero, L. “We are the city lungs”: Payments for ecosystem services in the outskirts of Mexico City. Land Use Policy 2015, 43, 138–148. [Google Scholar] [CrossRef]
- Estrategia Regional Para la Conservación del Bosque de Agua (ECOBA); Hoth, J. (Ed.) Fundación Gonzalo Río Arronte, I.A.P., Fundación Biosfera del Anáhuac, A.C., y Pronatura México, A.C: Mexico City, Mexico, 2012. (In Spanish) [Google Scholar]
- Angeles-Serrano, G.; Carrillo-Rivera, J.; Hernández, G. Groundwater recharge processes in the Central Region of Mexico. RMZ-Mater. Geoenviron. 2003, 50, 5–8. [Google Scholar]
- Carrera-Hernandez, J.J.; Gaskin, S.J. Spatio-temporal analysis of potential aquifer recharge: Application to the Basin of Mexico. J. Hydrol. 2008, 353, 228–246. [Google Scholar] [CrossRef]
- Lopez Ornelas, M.F. The Mexican Water Forest: Benefits of Using Remote Sensing Techniques to Assess Changes in Land Use and Land Cover. Master’s Thesis, University of San Francisco, San Francisco, CA, USA, 2016. [Google Scholar]
- Zabala, M.; Martínez, S.; Perevochtchikova, M.; Sandoval-Romero, G.; Aponte, N. Hydrochemical Assessment of Hydrological Environmental Services in the Recharge Area in the Southwest of Mexico City. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Perevochtchikova, M.; Vazquez Beltran, A. The Federal Program of Payment for Hydrological Environmental Services as an Alternative Instrument for Integrated Water Resources Management in Mexico City. Open Geogr. J. 2012, 5, 26–37. [Google Scholar] [CrossRef]
- Pérez-Campuzano, E.; Avila-Foucat, V.S.; Perevochtchikova, M. Environmental policies in the peri-urban area of Mexico City: The perceived effects of three environmental programs. Cities 2016, 50, 129–136. [Google Scholar] [CrossRef]
- ICWE. The Dublin Statement on Water and Sustainable Development. In Proceedings of the International Conference on Water and the Environment, Dublin, Ireland, 26–31 January 1992. [Google Scholar]
- Dodds, F.; Bartram, J. History of the Nexus at the Intergovernmental Level. In The Water, Food, Energy and Climate Nexus. Challenges and an Agenda for Action; Dodds, F., Bartram, J., Eds.; Taylor and Francis Inc.: Abingdon, UK, 2016; p. 265. [Google Scholar]
- UN General Assembly. United Nations Millennium Declaration, Resolution Adopted by the General Assembly; 55th Sess.: 2000–2001; UN General Assembly: New York, NY, USA, 2000. [Google Scholar]
- UN General Assembly. United Nations General Assembly Resolution on Human Right to Water and Sanitation; United Nations General Assembly Resolution; A/64/292; United Nations: New York, NY, USA, 2010. [Google Scholar]
- Meier, B.M.; Kayser, G.L.; Amjad, U.Q.; Bartram, J. Implementing an evolving human right through water and sanitation policy. Water Policy 2013, 15, 116–133. [Google Scholar] [CrossRef]
- UNEP. Global Environment Outlook GEO 5: Environment for The Future We Want; United Nations Environment Program: Nairobi, Kenya, 2012. [Google Scholar]
- UN-Water. A Compilation of Aspects on the Means of Implementation: Water and Sanitation. A Look at Goal 6 and Goal 17; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Niasse, M.; Cherlet, J. Using ecosystem services-based approaches in integrated water resources management: Perspectives from the developing world. In Water Ecosystem Services: A Global Perspective; Martin-Ortega, J., Ferrier, R.C., Gordon, I.J., Khan, S., Eds.; International Hydrology Series; Cambridge University Press: Cambridge, UK, 2015; pp. 49–56. [Google Scholar]
- Martin-Ortega, J.; Jorda-Capdevila, D.; Glenk, K.; Holstead, K.L. What defines ecosystem services-based approaches? In Water Ecosystem Services: A Global Perspective; Martin-Ortega, J., Ferrier, R.C., Gordon, I.J., Khan, S., Eds.; International Hydrology Series; Cambridge University Press: Cambridge, UK, 2015; pp. 3–9. [Google Scholar]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Kosoy, N.; Corbera, E. Payments for ecosystem services as commodity fetishism. Ecol. Econ. 2010, 69, 1228–1236. [Google Scholar] [CrossRef]
- Jax, K.; Barton, D.N.; Chan, K.M.A.; de Groot, R.; Doyle, U.; Eser, U.; Görg, C.; Gómez-Baggethun, E.; Griewald, Y.; Haber, W.; et al. Ecosystem services and ethics. Ecol. Econ. 2013, 93, 260–268. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; de Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Muradian, R. In markets we trust? Setting the boundaries of Market-Based Instruments in ecosystem services governance. Ecol. Econ. 2015, 117, 217–224. [Google Scholar]
- Silvertown, J. Have Ecosystem Services Been Oversold? Trends Ecol. Evol. 2015, 30, 641–648. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Pascual, U.; Muradian, R.; Brander, L.; Gómez-Baggethun, E.; Martín-López, B.; Verma, M.; Armsworth, P.; Christie, M.; Cornelissen, H.; Eppink, F.; et al. The economics of valuing ecosystem services and biodiversity. In The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Kumar, P., Ed.; Taylor and Francis: London, UK, 2012; pp. 183–256. [Google Scholar]
- Rode, J.; Wittmer, H.; Emerton, L.; Schroter-Schlaack, C. “Ecosystem service opportunities”: A practice-oriented framework for identifying economic instruments to enhance biodiversity and human livelihoods. J. Nat. Conserv. 2016, 33, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Kumar, P.; Brondizio, E.; Gatzweiler, F.; Gowdy, J.; de Groot, D.; Pascual, U.; Reyers, B.; Sukhdev, P. The economics of ecosystem services: From local analysis to national policies. Curr. Opin. Environ. Sustain. 2013, 5, 78–86. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Griebler, C.; Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 2015, 34, 355–367. [Google Scholar] [CrossRef]
- Grönwall, J.T.; Mulenga, M.; McGranahan, G. Groundwater, Self-Supply and Poor Urban Dwellers A Review with Case Studies of Bangalore and Lusaka; IIED: London, UK, 2010. [Google Scholar]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518 Pt B, 250–266. [Google Scholar] [CrossRef]
- Chaves, H.; Camelo, A.P.; Mendes, R. Groundwater discharge as affected by land use change in small catchments: A hydrologic and economic case study in Central Brazil. In Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations; Treidel, H., Martin-Bordes, J.L., Gurdak, J.J., Eds.; International Contributions to Hydrogeology (IAH); CRC Press: Boca Raton, FL, USA, 2011; pp. 49–62. [Google Scholar]
- Jujnovsky, J.; Ramos, A.; Caro-Borrero, Á.; Mazari-Hiriart, M.; Maass, M.; Almeida-Leñero, L. Water assessment in a peri-urban watershed in Mexico City: A focus on an ecosystem services approach. Ecosyst. Serv. 2017, 24, 91–100. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing ecosystem services as productive inputs. Econ. Policy 2007, 22, 178–229. [Google Scholar] [CrossRef]
- Barbier, E.B.; Baumgärtner, S.; Chopra, K.; Costello, C.; Duraiappah, A.; Hassan, R.; Kinzig, A.P.; Lehman, M.; Pascual, U.; Polasky, S.; et al. The valuation of ecosystem services. In Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective; Naeem, S., Ed.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Mendelsohn, R.; Olmstead, S. The Economic Valuation of Environmental Amenities and Disamenities: Methods and Applications. Annu. Rev. Environ. Resour. 2009, 34, 325–347. [Google Scholar] [CrossRef]
- Bateman, I.J.; Mace, G.M.; Fezzi, C.; Atkinson, G.; Turner, K. Economic Analysis for Ecosystem Service Assessments. Environ. Resour. Econ. 2011, 48, 177–218. [Google Scholar] [CrossRef]
- Chichilnkisky, G.; Heal, G. Economic returns from the biosphere. Nature 1998, 391, 629–630. [Google Scholar] [CrossRef]
- Heal, G. Valuing ecosystem services. Ecosystems 2000, 3, 24–30. [Google Scholar] [CrossRef]
- Postel, S.L.; Thompson, B.H. Watershed protection: Capturing the benefits of nature’s water supply services. Nat. Resour. Forum 2005, 29, 98–108. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía (INEGI). Census of Population and Housing 2010; Instituto Nacional de Estadística y Geografía: Mexcio City, Mexcio, 2012. [Google Scholar]
- Registro Público de Derechos de Agua (REPDA). Localizador de Aguas Nacionales, Zonas Federales y Descargas de Aguas Residuales; Registro Público de Derechos de Agua: Mexcio City, Mexcio, 2015. (In Spanish) [Google Scholar]
- Carrera-Hernández, J.J.; Gaskin, S.J. The Basin of Mexico aquifer system: Regional groundwater level dynamics and database development. Hydrogeol. J. 2007, 15, 1577–1590. [Google Scholar] [CrossRef]
- Burns, E. (Ed.) Repensar la Cuenca: La Gestión de los Ciclos del agua en el Valle de México; UAM-Unidad Xochimilco and USAID: Mexico City, Mexico, 2009. (In Spanish) [Google Scholar]
- Ortega, G.; Farvolden, R. Computer analysis of regional groundwater flow and boundary conditions in the basin of mexico. J. Hydrol. 1989, 110, 271–294. [Google Scholar]
- Bojorquez Tapia, L.A.; Ezcurra, E.; Mazari-Hiriart, M.; Diaz, S.; Gomez, P.; Alcantar, G.; Megarejo, D. Basin of Mexico: A History of Watershed Mismanagement. Land Stewardship in the 21st Century: The Contributions of Watershed Management. Available online: https://www.fs.fed.us/rm/pubs/rmrs_p013.pdf (accessed on 31 July 2017).
- Saavedra, Z.; Ojeda Revah, L.; López Barrera, F. Identification of threatened areas of environmental value in the Conservation Area of Mexico City, and setting priorities for their protection. Investig. Geogr. 2011, 74, 19–34. [Google Scholar]
- Edmunds, W.M.; Carrillo-Rivera, J.J.; Cardona, A. Geochemical evolution of groundwater beneath Mexico City. J. Hydrol. 2002, 258, 1–24. [Google Scholar] [CrossRef]
- Mazari-Hiriart, M.; López-Vidal, Y.; Calva, J.J. Helicobacter pylori in water systems for human use in Mexico City. Water Sci. Technol. 2001, 43, 93–98. [Google Scholar] [PubMed]
- Mazari-Hiriart, M.; Cruz-bello, G.; Bojórquez-tapia, L.A.; Juárez-Marusich, L.; Alcantar-lópez, G.; Marín, L.E.; Soto-Galera, E. Groundwater Vulnerability Assessment for Organic Compounds: Fuzzy Multicriteria Approach for Mexico City. Environ. Manag. 2006, 37, 410–421. [Google Scholar] [CrossRef] [PubMed]
- CENTRE. Water Management in the Mexico City Metropolitan Area: The Hard Way to Learn; Third World Centre for Water Management: Mexico City, Mexico, 2002. [Google Scholar]
- Herrera-Parrilla, I.; Medina-Bañuelos, R.; Camillo-Rivera, J.; Vazquez-Sánchez, E. Diagnostico del Estado Presente de las Aguas Subterraneas de la Ciudad de Mexico y Determinacion de sus Condiciones Futuras (Diagnosis of the Present State of Ground-Water in Mexico City and its Future Condition); Direccion General de Construcción y Operación Hidráulica de México DF (DGCOH,DF): Mexico City, Mexico, 1994. (In Spanish) [Google Scholar]
- National Institute of Ecology. Propuesta Para la Gestión del BOSQUE de Agua Como Región Prioritaria de Conservación (Proposal for the Management of Water Forest as priority Conservation Region); National Institute of Ecology: Mexico City, Mexico, 2010. (In Spanish) [Google Scholar]
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Regiones Terrestres Prioritarias de México. Region 108: Ajusco Chichinautzin. Regiones Terrestres Prioritarias de México; Arriaga, L., Espinoza, J.M., Aguilar, C., Martínez, E., Gómez y E. Loa, L., Eds.; CONABIO: Mexico City, Mexico, 2000. (In Spanish) [Google Scholar]
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Regiones Hidrológicas Prioritarias: Aguas Continentales y Diversidad Biológica de México. Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad. México; Arriaga, L., Aguilar, V., Alcocer, J., Eds.; CONABIO: Mexico, DF, Mexico, 2002. (In Spanish) [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Conjunto de Datos Vectoriales de la Carta de uso de Suelo y Vegetación. Escala 1:250,000. Serie II (Conjunto Nacional); Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 1997. (In Spanish) [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Conjunto de Datos Vectoriales de la Carta de uso de Suelo y Vegetación. Escala 1:250,000. Serie V (Conjunto Nacional); Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2013. (In Spanish) [Google Scholar]
- Batie, L.A.S.; Batie, S.S. Economic value of natural Coastal wetlands: A critique. Coast. Zone Manag. J. 1978, 4, 231–247. [Google Scholar]
- Leschine, T.M.; Wellman, K.F.; Green, T.H. The Economic Value of Wetlands: Wetlands’ Role in Flood Protection in Western Washington; Washington State Department of Ecology: Lacey, WA, USA, 1997; 68p.
- Bockstael, N.E.; Freeman, A.M.; Kopp, R.J.; Portney, P.R.; Smith, V.K. On measuring economic values for nature. Environ. Sci. Technol. 2000, 34, 1384–1389. [Google Scholar] [CrossRef]
- Freeman, A.M. The Measurement of Environmental and Resource Values: Theory and Methods; An RFF Press Book; Resources for the Future: Washington, DC, USA, 2003. [Google Scholar]
- Sundberg, S. Replacement costs as economic values of environmental change: A review and an application to Swedish sea trout habitats. Beijer Int. Inst. Ecol. Econ. R. Swedish Acad. Sci. 2004, 1–72. [Google Scholar]
- Dorfman, R.; Samuelson, P.A.; Solow, R.M. Linear Programming and Economic Analysis; Courier Corporation: North Chelmsford, MA, USA, 1958. [Google Scholar]
- Theussl, S.; Hornik, K. R GLPK: R/GNU Linear Programming Kit Interface; Department for Applied Informatics, Moscow Aviation Institute: Moscow, Russia, 2016. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Carrera-Hernández, J.J.; Gaskin, S.J. Water management in the Basin of Mexico: Current state and alternative scenarios. Hydrogeol. J. 2009, 17, 1483–1494. [Google Scholar] [CrossRef]
- Ramirez-Sama, C. El agua en la cuenca de mexico (Water in the basin of Mexico). In Problemas de la Cuenca del Valle de Mexico (Problems in the Basin of Mexico); Colegio de Mexico: Mexico City, Mexico, 1990; pp. 61–80. [Google Scholar]
- Maupin, M.; Kenny, J.; Huston, S.; Lovelace, J.; Barber, N.; Linsey, K. Estimated Use of Water in the United States in 2010; Circular 1405; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2014.
- Comision Nacional del Agua (CONAGUA). Estadísticas del Agua de la Región Hidrológico-Administrativa XIII; Organismo de Cuenca Aguas del Valle de México: Mexico City, Mexico, 2014. (In Spanish) [Google Scholar]
Population | Exploitation | Main Use (Fraction) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Aquifers 1 | Million | % | % Urban | Wells | % | m3·s−1 | % | Agricultural/LiveStock | Industry | Public Urban |
Chalco-Amecameca | 1.50 | 5.2 | 94 | 120 | 2 | 3.6 | 8 | 0.14 | 0.01 | 0.85 |
Cuautitlan-Pachuca | 5.50 | 19.1 | 96 | 818 | 15 | 10.3 | 22 | 0.40 | 0.10 | 0.50 |
Cuautla-Yautepec | 0.70 | 2.4 | 74 | 984 | 18 | 2.5 | 5 | 0.42 | 0.10 | 0.48 |
Cuernavaca | 0.90 | 3.1 | 91 | 324 | 6 | 6.0 | 13 | 0.02 | 0.07 | 0.91 |
Ixtlahuaca-Atlacomulco | 0.70 | 2.4 | 74 | 511 | 10 | 2.2 | 5 | 0.57 | 0.05 | 0.38 |
Tenancingo | 1.40 | 4.9 | 75 | 90 | 2 | 0.4 | 1 | 0.43 | 0.07 | 0.50 |
Tepeji del Rio | 0.60 | 2.1 | 85 | 63 | 1 | 0.2 | 0 | 0.23 | 0.44 | 0.33 |
Valle de Toluca | 2.40 | 8.3 | 79 | 928 | 17 | 4.1 | 9 | 0.35 | 0.25 | 0.40 |
Valle del Mezquital | 0.60 | 2.1 | 63 | 364 | 7 | 4.4 | 9 | 0.06 | 0.67 | 0.27 |
ZMCM | 14.50 | 50.4 | 99 | 1157 | 22 | 13.0 | 28 | 0.01 | 0.18 | 0.81 |
Total | 28.80 | 100 | 92 | 5359 | 100 | 46.7 | 100 | 0.20 | 0.18 | 0.62 |
Study | Recharge Flow m3 s−1 | Comments |
---|---|---|
Carrera-Hernández and Gaskin [27] | 10.9–23.8 | Recharge for the Valley of Mexico Basin. Originated in the region of Water Forest |
Angeles-Serrano [26] | 15–25 | Sierra Chichinautzin and Sierra de las Cruces |
CENTRE [76] | 20 | |
1 Herrera-Parrilla et al. [77] | 15.6 | Recharge in the Aquifer of the Metropolitan Area of Mexico City |
Capella (2006) | 17 | Sierras Chichinautzin and Sierra de las Cruces |
Land Cover | % Area in 2008–2012 1 | % Change Relative to 1985–1996 1 |
---|---|---|
Agriculture | 43 | 1.3 |
Scrublands | 0.2 | 63 |
Grasslands | 0.04 | 0 |
Induced grasslands | 9.5 | −15 |
Primary forest | 20.5 | −29.7 |
Secondary forest | 16 | 71.9 |
Cultivated forest | 1.5 | 1186 |
Urban area | 8.9 | 22.3 |
Water bodies | 0.3 | 7.3 |
Total | 100 |
Scenario | Saved Volume (m3·s−1) | Volume to Replace (m3·s−1) |
---|---|---|
1. No leak control | 0 | 46.7 |
2. Controlling leaks in the secondary distribution system | 3 | 43.7 |
3. Scenario 2 + 50% of domestic leaks | 7.5 | 39.2 |
4. Scenario 2 + 100% of domestic leaks | 12 | 34.7 |
Project | Characteristics | Maximum Capacity () /m3·s−1 | Construction Costs (Ci) /US$ Million | Annuity (Ai) /US$ Million | O and M Costs (cit) /US$·m−3 |
---|---|---|---|---|---|
1. Temascaltepec | Connects with the existing Cutzamala System. Designed capacity 7 m3·s−1 | 5.6 | 1056 | 89.5 | 0.72 |
2. Tecolutla | In the State of Veracruz, it uses the Necaxa dam. 15 m3·s−1 | 12 | 2140 | 181.5 | 0.86 |
3. Amacuzac | Utilizes the infrastructure of El Caracol, El Infiernillo, and La Villita dams. Cap. 15 m3·s−1 | 12 | 2161 | 183.3 | 0.66 |
4. Oriental-Libres | Extracts groundwater. 7 m3·s−1 | 5 | 1005 | 85.23 | 0.22 |
5. Taxhimay | Dam, usually for irrigation, conversion to public/domestic. 5 m3·s−1 | 4 | 639 | 54.2 | 0.11 |
6. Aquifer recharge | Treatment of wastewater and injection in Chichinautzin Sierra. 10 m3·s−1 | 8 | 710 | 60.2 | 0.34 |
Measures | Volume (m3·s−1) | Duration (Years) | Number of Projects | Investment (Million $) | Period of Amortization (Years) | Annuity | Unitary Cost (US$/m3) |
---|---|---|---|---|---|---|---|
Sectorization and rehabilitation | 2.5 | +26 | 1 | 163.3 | 26 | 11.3 | 0.08 |
Detection and suppression | 0.5 | 13 | 2 | 25.9 | 26 | 1.9 | 0.06 |
Total | 3 | 189.3 | 13.7 | 0.07 |
Measure | Volume (m3·s−1) | Duration (Years) | Number of Projects | Cost Per Household (US$) | Households in Mexico City | Total Cost (US$) | Unitary Cost (US$·m−3) |
---|---|---|---|---|---|---|---|
Control of 50% of domestic leaks | 4.5 | 26 | 26 | 34.2 | 2.4 million | 2132 | 0.58 |
Control of 100% of domestic leaks | 9 | 0.29 |
Supply Alternative | Max Cap. m3 s−1 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | ||||
---|---|---|---|---|---|---|---|---|---|
No Leak Control | Leak Reduction in Primary and Secondary Networks | Scenario 2 + 50% Reduction of Domestic Leaks | Scenario 2 + 100% Reduction of Domestic Leaks | ||||||
Supply (m3 s−1) | Unitary Cost (US$·m−3) | Supply (m3 s−1) | Unitary Cost (US$·m−3) | Supply (m3 s−1) | Unitary Cost (US$·m−3) | Supply (m3 s−1) | Unitary Cost (US$·m−3) | ||
Aquifer injection | 8 | 8 | 0.38 | 8 | 0.38 | 8 | 0.38 | 8 | 0.38 |
Taxhimay | 4 | 4 | 0.30 | 4 | 0.30 | 4 | 0.30 | 4 | 0.30 |
Oriental-Libres | 5.6 | 5.6 | 0.42 | 5.6 | 0.42 | 5.6 | 0.42 | 5.6 | 0.42 |
Amacuzac | 12 | 12 | 0.75 | 12 | 0.75 | 12 | 0.75 | 12 | 0.75 |
Tecolutla | 12 | 11.5 | 0.91 | 8.5 | 1.0 | 4.04 | 1.40 | 0 | 0 |
Temascaltepec | 5.6 | 5.6 | 0.81 | 5.6 | 0.81 | 5.6 | 0.81 | 5.1 | 0.83 |
Project | 47.2 | 46.7 | 0.65 | 43.7 | 0.65 | 39.2 | 0.66 | 34.7 | 0.66 |
Total cost | US $ billion | 25.2 | 23.6 | 21.2 | 18.9 |
Scenario | Description | Replaced Volume (m3 s−1) | Savings (m3 s−1) | Replacement Cost (US$ Billion) | Savings (US$ Billion) | Cost of Leak Control (US$ Billion) | Ratio |
---|---|---|---|---|---|---|---|
1 | No leak control | 46.7 | 0 | 25.2 | 0 | _ | _ |
2 | Centralized measures on primary and secondary networks | 43.7 | 3 | 23.6 | 1.6 | 0.19 | 8.4 |
3 | Scenario 2 + 50% reduction of domestic leak | 39.2 | 7.5 | 21.2 | 4 | 2.1 | 1.9 |
4 | Scenario 2 + 100% reduction of domestic leaks | 34.7 | 12 | 18.9 | 6.3 | 2.1 | 3.1 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Morales, C.A.; Mesa-Jurado, M.A. Valuation of Hidden Water Ecosystem Services: The Replacement Cost of the Aquifer System in Central Mexico. Water 2017, 9, 571. https://doi.org/10.3390/w9080571
López-Morales CA, Mesa-Jurado MA. Valuation of Hidden Water Ecosystem Services: The Replacement Cost of the Aquifer System in Central Mexico. Water. 2017; 9(8):571. https://doi.org/10.3390/w9080571
Chicago/Turabian StyleLópez-Morales, Carlos A., and Maria Azahara Mesa-Jurado. 2017. "Valuation of Hidden Water Ecosystem Services: The Replacement Cost of the Aquifer System in Central Mexico" Water 9, no. 8: 571. https://doi.org/10.3390/w9080571
APA StyleLópez-Morales, C. A., & Mesa-Jurado, M. A. (2017). Valuation of Hidden Water Ecosystem Services: The Replacement Cost of the Aquifer System in Central Mexico. Water, 9(8), 571. https://doi.org/10.3390/w9080571