Atoll Groundwater Movement and Its Response to Climatic and Sea-Level Fluctuations
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Groundwater Levels, Temperature, Specific Conductivity (Salinity) and Water Geochemistry
2.2. Electrical Resistivity Tomography (ERT) Surveys
2.3. Submarine Groundwater Discharge (SGD)
3. Results
3.1. Tidal Effect
3.2. Rainfall Effect
3.3. Large Wave and Overwash Effect
3.4. Long-Term Rainfall Effect
3.5. Sea-Level Change Effect
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pernetta, J.C. Impacts of climate change and sea-level rise on small island states. Glob. Environ. Chang. 1992, 2, 19–31. [Google Scholar] [CrossRef]
- Government of the Marshall Islands. Immediate Drought Response Plan For the Republic of the Marshall Islands Complementing the Declaration on State of Emergency. Available online: http://reliefweb.int/report/marshall-islands/immediate-drought-response-plan-republic-marshall-islands (accessed on 26 August 2017).
- Underwood, M.R.; Peterson, F.L.; Voss, C.I. Groundwater lens dynamics of Atoll Islands. Water Resour. Res. 1992, 28, 2889–2902. [Google Scholar] [CrossRef]
- Bailey, R.T.; Jenson, J.W.; Olsen, A.E. Estimating the Ground Water Resources of Atoll Islands. Water 2010, 2, 1–27. [Google Scholar] [CrossRef]
- White, I.; Falkland, T.; Perez, P.; Dray, A.; Metutera, T.; Metai, E.; Overmars, M. Challenges in freshwater management in low coral atolls. J. Clean. Prod. 2007, 15, 1522–1528. [Google Scholar] [CrossRef]
- Falkland, A.; Custodio, E.; Diaz Arenas, E.; Simler, E. Hydrology and Water Resources of Small Islands: A Practical Guide; UNESCO: Paris, France, 1991; Volume 49, ISBN 9231027530. [Google Scholar]
- Terry, J.P.; Thaman, R.R. Physical geography of Majuro and the Marshall Islands. In The Marshall Islands: Environment, History and Society in the Atolls; Faculty of Islands and Oceans, the University of the South Pacific: Suva, Fiji, 2008; pp. 1–22. [Google Scholar]
- Van der Velde, M.; Javaux, M.; Vanclooster, M.; Clothier, B.E. El Niño-Southern Oscillation determines the salinity of the freshwater lens under a coral atoll in the Pacific Ocean. Geophys. Res. Lett. 2006, 33, L21403. [Google Scholar] [CrossRef]
- Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. Small islands. Climate Change. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007; pp. 671–687. [Google Scholar]
- Barkey, B.; Bailey, R. Estimating the Impact of Drought on Groundwater Resources of the Marshall Islands. Water 2017, 9, 41. [Google Scholar] [CrossRef]
- Terry, J.P.; Falkland, A.C. Responses of atoll freshwater lenses to storm-surge overwash in the Northern Cook Islands. Hydrogeol. J. 2010, 18, 749–759. [Google Scholar] [CrossRef]
- Fletcher, B.C.H.; Richmond, B.M. Report of Findings—Climate Change in the Federated States of Micronesia: Food and Water Security, Climate Risk Management, and Adaptive Strategies; University of Hawai‘i Sea Grant College Program: Honolulu, HI, USA, 2010; pp. 1–32. [Google Scholar]
- Gingerich, S.B.; Voss, C.I.; Johnson, A.G. Seawater-flooding events and impact on freshwater lenses of low-lying islands: Controlling factors, basic management and mitigation. J. Hydrol. 2017, 551, 676–688. [Google Scholar] [CrossRef]
- Gingerich, S.B. Groundwater resources and contamination at RoiNamur Island, Kwajalein Atoll, Republic of the Marshall Islands, 1990–91. Water-Resour. Investig. Rep. 1996, 95, 1–10. [Google Scholar]
- Hunt, C.D. Ground-Water Resources and Contamination at Kwajalein Island, Republic of the Marshall Islands, 1990–91. Water Resour. Investig. Rep. 1996, 94, 1–10. [Google Scholar]
- Hejazian, M.; Gurdak, J.J.; Swarzenski, P.; Odigie, K.O.; Storlazzi, C.D. Land-use change and managed aquifer recharge effects on the hydrogeochemistry of two contrasting atoll island aquifers, Roi-Namur Island, Republic of the Marshall Islands. Appl. Geochem. 2017, 80, 58–71. [Google Scholar] [CrossRef]
- Peterson, F.L.; Gingerich, S.B. Modeling atoll groundwater systems. In Groundwater Models for Resources Analysis and Management; El-Kadi, A.I., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 275–292. [Google Scholar]
- Terry, J.P.; Chui, T.F.M.; Falkland, A. Atoll Groundwater Resources at Risk: Combining Field Observations and Model Simulations of Saline Intrusion Following Storm-Generated Sea Flooding. In Groundwater in the Coastal Zones of Asia-Pacific; Wetzelhuetter, C., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 247–270. ISBN 978-94-007-5648-9. [Google Scholar]
- Merrifield, M.A.; Merrifield, S.T.; Mitchum, G.T. An anomalous recent acceleration of global sea level rise. J. Clim. 2009, 22, 5772–5781. [Google Scholar] [CrossRef]
- Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, M.A. A shift in western tropical Pacific sea level trends during the 1990s. J. Clim. 2011, 24, 4126–4138. [Google Scholar] [CrossRef]
- Buddemeier, R.W.; Smith, S.V. Coral reef growth in an era of rapidly rising sea level: Predictions and suggestions for long-term research. Coral Reefs 1988, 7, 51–56. [Google Scholar] [CrossRef]
- Montaggioni, L.F. History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. Earth-Sci. Rev. 2005, 71, 1–75. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Reconstructing sea level from paleo and projected temperatures 200 to 2100 ad. Clim. Dyn. 2010, 34, 461–472. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Storlazzi, C.D.; Shope, J.B.; Erikson, L.H.; Hegermiller, C.A.; Barnard, P.L. Future wave and wind projections for U.S. and U.S.-affiliated pacific islands. U.S. Geol. Surv. Open-File Rep. 2015, 1001, 1–426. [Google Scholar]
- Quataert, E.; Storlazzi, C.; Van Rooijen, A.; Cheriton, O.; Van Dongeren, A. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophys. Res. Lett. 2015, 42, 6407–6415. [Google Scholar] [CrossRef]
- Albert, S.; Leon, J.X.; Grinham, A.R.; Church, J.A.; Gibbes, B.R.; Woodroffe, C.D. Interactions between sea-level rise and wave exposure on reef island dynamics in the Solomon Islands. Environ. Res. Lett. 2016, 11, 54011. [Google Scholar] [CrossRef]
- U.S. Geological Survey. National Field Manual for the Collection of Water-Quality Data; U.S. Geological Survey: Reston, VA, USA, 1998; Book 9, Chapters A1–A9.
- Swarzenski, P.W.; Simonds, F.W.; Paulson, A.J.; Kruse, S.; Reich, C. Geochemical and Geophysical Examination of Submarine Groundwater Discharge and Associated Nutrient Loading Estimates into Lynch Cove, Hood Canal, WA. Environ. Sci. Technol. 2007, 41, 7022–7029. [Google Scholar] [CrossRef] [PubMed]
- Swarzenski, P.W.; Burnett, W.C.; Greenwood, W.J.; Herut, B.; Peterson, R.; Dimova, N.; Shalem, Y.; Yechieli, Y.; Weinstein, Y. Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel. Geophys. Res. Lett. 2006, 33, L24405. [Google Scholar] [CrossRef]
- Swarzenski, P.W.; Kruse, S.; Reich, C.; Swarzenski, W.V. Multi-channel resistivity investigations of the freshwater-saltwater interface: A new tool to study an old problem. In Proceedings of the International Symposium: A New Focus on Groundwater—Seawater Interactions, Perugia, Italy, 2–13 July 2007; pp. 1–7. [Google Scholar]
- Manheim, F.T.; Krantz, D.E.; Bratton, J.F. Studying Ground Water Under Delmarva Coastal Bays Using Electrical Resistivity. Ground Water 2004, 42, 1052–1068. [Google Scholar] [CrossRef]
- Zektser, I.S.; Dzyuba, A.V. Submarine discharge into the Barents and White Seas. Environ. Earth Sci. 2014, 71, 723–729. [Google Scholar] [CrossRef]
- Swarzenski, P.W. U/Th Series Radionuclides as Coastal Groundwater Tracers. Chem. Rev. 2007, 107, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Burnett, W.C.; Dulaiova, H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J. Environ. Radioact. 2003, 69, 21–35. [Google Scholar] [CrossRef]
- Burnett, W.C.; Bokuniewicz, H.; Huettel, M.; Moore, W.; Taniguchi, M. Groundwater and pore water inpunts to the coastal zone. Biogeochemistry 2003, 66, 3–33. [Google Scholar] [CrossRef]
- Burnett, W.C.; Aggarwal, P.K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef] [PubMed]
- Dulaiova, H.; Burnett, W.C.; Chanton, J.P.; Moore, W.S.; Bokuniewicz, H.J.; Charette, M.A.; Sholkovitz, E. Assessment of groundwater discharges into West Neck Bay, New York, via natural tracers. Cont. Shelf Res. 2006, 26, 1971–1983. [Google Scholar] [CrossRef]
- Schubert, M.; Paschke, A.; Lieberman, E.; Burnett, W.C. Air–Water Partitioning of 222Rn and its Dependence on Water Temperature and Salinity. Environ. Sci. Technol. 2012, 46, 3905–3911. [Google Scholar] [CrossRef] [PubMed]
- Swarzenski, P.W.; Dulaiova, H.; Dailer, M.L.; Glenn, C.R.; Smith, C.G.; Storlazzi, C.D. A Geochemical and Geophysical Assessment of Coastal Groundwater Discharge at Select Sites in Maui and O’ahu, Hawai’i; Springer: Amsterdam, The Netherlands, 2015; Volume 7, pp. 27–46. ISBN 9789400756472. [Google Scholar]
- Gingerich, S.B. Numerical Simulation of the Freshwater Lens on Roi-Namur Island, Kwajalein Atoll, Repubic of the Marshall Islands. Master′s Thesis, University of Hawaii, Honolulu, HI, USA, 1992. [Google Scholar]
- Greskowiak, J. Tide-induced salt-fingering flow during submarine groundwater discharge. Geophys. Res. Lett. 2014, 41, 6413–6419. [Google Scholar] [CrossRef]
- Kooi, H.; Groen, J.; Leijnse, A. Modes of seawater intrusion during transgressions. Water Resour. Res. 2000, 36, 3581–3589. [Google Scholar] [CrossRef] [Green Version]
- Peterson, F.L. Hydrogeology of the Marshall Islands. In Geology and Hydrogeology of Carbonate Islands. Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1997; Volume 54, pp. 611–636. ISBN 9781627034470. [Google Scholar]
- NASA and RTS Precipitation Measurment Mission Ground Validation. Available online: https://trmm-fc.gsfc.nasa.gov/trmm_gv/data/data.html (accessed on 26 August 2017).
- Australian Bureau of Meteorology (ABM); Commonwealth Scientific and Industrial Research Organisation (CSIRO). Climate Variability, Extremes and Change in the Western Tropical Pacific: New Science and Updated Country Reports 2014; Centre for Australian Weather and Climate Research: Melbourne, Australia, 2014.
- Cheriton, O.M.; Storlazzi, C.D.; Rosenberger, K.J. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding. J. Geophys. Res. Oceans 2016, 121, 3121–3140. [Google Scholar] [CrossRef]
- Dolan, C.J.; Lyon, A.J. Calculation of Goodwill: Humanitarianism, Strategic Interests, and the U.S. Response to Typhoon Yolanda. Glob. Secur. Intell. Stud. 2016, 2. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Chu, P.-S.; Schroeder, T. ENSO and seasonal sea-level variability—A diagnostic discussion for the U.S.-Affiliated Pacific Islands. Theor. Appl. Climatol. 2007, 88, 213–224. [Google Scholar] [CrossRef]
- Becker, M.; Meyssignac, B.; Letetrel, C.; Llovel, W.; Cazenave, A.; Delcroix, T. Sea level variations at tropical Pacific islands since 1950. Glob. Planet. Chang. 2012, 80–81, 85–98. [Google Scholar] [CrossRef]
- NOAA (National Oceanic and Atmospheric Administration). Mean Sea Level Trend Kwajalein, Pacific Ocean. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=1820000 (accessed on 26 August 2017).
- Levanon, E.; Yechieli, Y.; Gvirtzman, H.; Shalev, E. Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers—Field measurements and numerical model. J. Hydrol. 2016, 551, 665–675. [Google Scholar] [CrossRef]
- Prieto, C.; Destouni, G. Quantifying hydrological and tidal influences on groundwater discharges into coastal waters. Water Resour. Res. 2005, 41, 1–12. [Google Scholar] [CrossRef]
- Moosdorf, N.; Stieglitz, T.; Waska, H.; Dürr, H.H.; Hartmann, J. Submarine groundwater discharge from tropical islands: A review. Grundwasser 2014, 20, 53–67. [Google Scholar] [CrossRef]
- Tait, D.R.; Santos, I.R.; Erler, D.V.; Befus, K.M.; Cardenas, M.B.; Eyre, B.D. Estimating submarine groundwater discharge in a South Pacific coral reef lagoon using different radioisotope and geophysical approaches. Mar. Chem. 2013, 156, 49–60. [Google Scholar] [CrossRef]
- Santos, I.R.; Erler, D.; Tait, D.; Eyre, B.D. Breathing of a coral cay: Tracing tidally driven seawater recirculation in permeable coral reef sediments. J. Geophys. Res. Oceans 2010, 115, 1–10. [Google Scholar] [CrossRef]
- Knee, K.L.; Crook, E.D.; Hench, J.L.; Leichter, J.J.; Paytan, A. Assessment of Submarine Groundwater Discharge (SGD) as a Source of Dissolved Radium and Nutrients to Moorea (French Polynesia) Coastal Waters. Estuaries Coasts 2016, 39, 1651–1668. [Google Scholar] [CrossRef]
- Cardenas, M.B.; Zamora, P.B.; Siringan, F.P.; Lapus, M.R.; Rodolfo, R.S.; Jacinto, G.S.; San Diego-McGlone, M.L.; Villanoy, C.L.; Cabrera, O.; Senal, M.I. Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, 222Rn, and salinity measurements. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Taniguchi, M.; Burnett, W.C.; Cable, J.E.; Turner, J.V. Investigation of submarine groundwater discharge. Hydrol. Process. 2002, 16, 2115–2129. [Google Scholar] [CrossRef]
- Korom, S.F. Natural denitrification in the saturated zone: A review. Water Resour. Res. 1992, 28, 1657–1668. [Google Scholar] [CrossRef]
- Burt, R.A. Ground-water chemical evolution and diagenetic processes in the upper Floridan Aquifer, southern South Carolina and northeastern Georgia. USGS Water Supply Pap. 1993, 2392, 1–76. [Google Scholar]
- Presley, T.K. Majuro Water and Sewer Company, Majuro Atoll, Republic of the Marshall Islands Effects of the 1998 Drought on the Freshwater Lens in the Laura Area, Majuro Atoll, Republic of the Marshall Islands; Scientific Investigations Report 2005-5098; Geological Survey (U.S.): Reston, VA, USA, 2005; 40p.
- Storlazzi, C.D. SERDP Project RC-2334: The Impact of Sea-Level Rise and Climate Change on Department of Defense Installations on Atolls in the Pacific Ocean. Available online: https://www.serdp-estcp.org/Program-Areas/Resource-Conservation-and-Resiliency/Infrastructure-Resiliency/Vulnerability-and-Impact-Assessment/RC-2334/RC-2334 (accessed on 26 August 2017).
- Australian Bureau of Meteorology (ABM); Commonwealth Scientific and Industrial Research Organisation (CSIRO). Current and Future Climate of the Marshall Islands; CSIRO, Australian Bureau of Meteorology: Melbourne, Australia, 2015; pp. 1–11.
- Reynolds, M.H.; Courtot, K.N.; Berkowitz, P.; Storlazzi, C.D.; Moore, J.; Flint, E. Will the effects of sea-level rise create ecological traps for Pacific island seabirds? PLoS ONE 2015, 10, e0136773. [Google Scholar] [CrossRef] [PubMed]
- PacIOOS Wave Run-Up Forecast: Kwajalein, RMI. Available online: http://www.pacioos.hawaii.edu/shoreline/runup-kwajalein/ (accessed on 26 August 2017).
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Science, P.C.C.; Program, A.P. Pacific-Australia Climate Change Science and Adaptation Planning Program Climate Variability, Extremes and Change in the Western Tropical Pacific: New Science and Updated Country Reports; Australian Bureau of Meteorology and Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2014; ISBN 9781486302888. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberle, F.K.J.; Swarzenski, P.W.; Storlazzi, C.D. Atoll Groundwater Movement and Its Response to Climatic and Sea-Level Fluctuations. Water 2017, 9, 650. https://doi.org/10.3390/w9090650
Oberle FKJ, Swarzenski PW, Storlazzi CD. Atoll Groundwater Movement and Its Response to Climatic and Sea-Level Fluctuations. Water. 2017; 9(9):650. https://doi.org/10.3390/w9090650
Chicago/Turabian StyleOberle, Ferdinand K. J., Peter W. Swarzenski, and Curt D. Storlazzi. 2017. "Atoll Groundwater Movement and Its Response to Climatic and Sea-Level Fluctuations" Water 9, no. 9: 650. https://doi.org/10.3390/w9090650
APA StyleOberle, F. K. J., Swarzenski, P. W., & Storlazzi, C. D. (2017). Atoll Groundwater Movement and Its Response to Climatic and Sea-Level Fluctuations. Water, 9(9), 650. https://doi.org/10.3390/w9090650