Differences in the Influence of Microclimate on Pedestrian Volume According to Land-Use
Abstract
:1. Introduction
1.1. Background and Purpose
1.2. Public Spaces and Microclimatic Conditions
1.3. Previous Perspectives on Microclimatic Conditions and Environments
2. Materials and Methods
2.1. Model Classification
2.2. Analysis Method
2.3. Data Source and Data Construction
2.4. Variables
3. Results
3.1. Descriptive Statistics
3.2. Seasonal Differences in the Influence of Microclimate (Weather and Air Quality) on PV
3.3. Difference in Influences of Microclimate (Weather and Air Quality) on PV by Land-Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Whyte, W. The Social Life of Small Urban Spaces; The Conservation Foundation: New York, NY, USA, 1980; ISBN 0-89164-057-6. [Google Scholar]
- Lynch, K. Good City Form; Reprint edition; The MIT Press: Cambridge, MA, USA, 1984; ISBN 978-0-262-62046-8. [Google Scholar]
- Lenzholzer, S.; Van der Wulp, N. Thermal Experience and Perception of the Built Environment in Dutch Urban Squares. J. Urban Des. 2010, 15, 375–401. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Whitman, S.; Good, G.; Donoghue, E.R.; Benbow, N.; Shou, W.; Mou, S. Mortality in Chicago attributed to the July 1995 heat wave. Am. J. Public Health 1997, 87, 1515–1518. [Google Scholar] [CrossRef] [Green Version]
- Dhainaut, J.-F.; Claessens, Y.-E.; Ginsburg, C.; Riou, B. Unprecedented heat-related deaths during the 2003 heat wave in Paris: Consequences on emergency departments. Crit. Care 2004, 8, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Government of Korea. 2019 Abnormal Climate Report; Korea Meteorological Administration: Seoul, Korea, 2019.
- Kwon, M.Y.; Lee, J.S.; Park, S. The effect of outdoor air pollutants and greenness on allergic rhinitis incidence rates: A cross-sectional study in Seoul, Korea. Int. J. Sustain. Dev. World Ecol. 2019, 26, 258–267. [Google Scholar] [CrossRef]
- World Health Organization Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 8 August 2020).
- OECD. The Economic Consequences of Outdoor Air Pollution; OECD Publishing: Paris, France, 2016; ISBN 978-92-64-25747-4. [Google Scholar]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961; ISBN 978-0-394-42159-9. [Google Scholar]
- Ewing, R.; Cervero, R. Travel and the Built Environment. J. Am. Plann. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, K.-H.; Kwon, Y.-S. The Effects of Residential Environmental Factors on Personal Walking Probability—Focused on Seoul. J. Urban Des. Inst. Korea 2014, 15, 5–18. [Google Scholar]
- Perry, J. Climate change adaptation in the world’s best places: A wicked problem in need of immediate attention. Landsc. Urban Plan. 2015, 133, 1–11. [Google Scholar] [CrossRef]
- Gehl, J.; Svarre, B. How to Study Public Life; Illustrated edition; Island Press: Washington, DC, USA, 2013; ISBN 978-1-61091-423-9. [Google Scholar]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many Pathways from Land Use to Health: Associations between Neighborhood Walkability and Active Transportation, Body Mass Index, and Air Quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Frank, L.D.; Engelke, P. Multiple Impacts of the Built Environment on Public Health: Walkable Places and the Exposure to Air Pollution. Int. Reg. Sci. Rev. 2005, 28, 193–216. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Bartholomew, K.; Winkelman, S.; Walters, J.; Chen, D. Growing Cooler: Evidence on Urban Development and Climate Change; Urban Land Institute: Chicago, IL, USA, 2007; ISBN 978-0-87420-082-9. [Google Scholar]
- Ahn, S.-E.; Bae, H.-J.; Kwak, S.-Y.; Im, Y.-H.; Kim, M.-H.; Oh, S.-Y. Assessment of Human Health Effects of Air-Pollution Using Cohort DB and Estimation of Associated Economic Costs in Korea (II); Korea Environment Institute: Sejong, Korea, 2016; ISBN 979-11-5980-091-7.
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Kim, H. Land Use Impacts on Particulate Matter Levels in Seoul, South Korea: Comparing High and Low Seasons. Land 2020, 9, 142. [Google Scholar] [CrossRef]
- Kim, H. Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea. Int. J. Environ. Res. Public Health 2020, 17, 3999. [Google Scholar] [CrossRef]
- Carmona, M.; Tiesdell, S. Urban Design Reader; Routledge: London, UK, 2007; ISBN 978-0-7506-6531-5. [Google Scholar]
- Carr, S.; Francis, M.; Rivlin, L.G.; Stone, A.M. Public Space; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-35148-5. [Google Scholar]
- Gehl, J. Life between Buildings: Using Public Space, 6th ed.; Island Press: Washington, DC, USA, 2011; ISBN 978-1-59726-827-1. [Google Scholar]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Humpel, N.; Owen, N.; Iverson, D.; Leslie, E.; Bauman, A. Perceived environment attributes, residential location, and walking for particular purposes. Am. J. Prev. Med. 2004, 26, 119–125. [Google Scholar] [CrossRef]
- Tucker, P.; Gilliland, J. The Effect of Season and Weather on Physical Activity: A Systematic Review. Public Health 2007, 121, 909–922. [Google Scholar] [CrossRef]
- Baranowski, T.; Thompson, W.O.; Durant, R.H.; Baranowski, J.; Puhl, J. Observations on Physical Activity in Physical Locations: Ager Gender, Ethnicity, and Month Effects. Res. Q. Exerc. Sport 1993, 64, 127–133. [Google Scholar] [CrossRef]
- Bitar, A.; Fellmann, N.; Vernet, J.; Coudert, J.; Vermorel, M. Variations and determinants of energy expenditure as measured by whole-body calorimetry during puberty and adolescence. Am. J. Clin. Nutr. 1999, 69, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- Levin, S.; Jacobs, D.R.; Ainsworth, B.E.; Richardson, M.T.; Leon, A.S. Intra-Individual Variation and Estimates of Usual Physical Activity. Ann. Epidemiol. 1999, 9, 481–488. [Google Scholar] [CrossRef]
- Gordon-Larsen, P.; Mcmurray, R.; Popkin, B. Determinants of adolescent physical activity and inactivity patterns. Pediatrics 2000, 105, e83. [Google Scholar] [CrossRef] [Green Version]
- Pivarnik, J.M.; Reeves, M.J.; Rafferty, A.P. Seasonal variation in adult leisure-time physical activity. Med. Sci. Sports Exerc. 2003, 35, 1004–1008. [Google Scholar] [CrossRef]
- Plasqui, G.; Westerterp, K. Seasonal Variation in Total Energy Expenditure and Physical Activity in Dutch Young Adults. Obes. Res. 2004, 12, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, L.; Zhou, J. Neighborhood Air Quality, Respiratory Health, and Vulnerable Populations in Compact and Sprawled Regions. J. Am. Plann. Assoc. 2010, 76, 363–371. [Google Scholar] [CrossRef]
- Yan, L.; Duarte, F.; Wang, D.; Zheng, S.; Ratti, C. Exploring the effect of air pollution on social activity in China using geotagged social media check-in data. Cities 2019, 91, 116–125. [Google Scholar] [CrossRef]
- Bresnahan, B.W.; Dickie, M.; Gerking, S. Averting Behavior and Urban Air Pollution. Land Econ. 1997, 73, 340–357. [Google Scholar] [CrossRef]
- Neidell, M. Information, Avoidance Behavior, and Health. J. Hum. Resour. 2009, 44, 450–478. [Google Scholar] [CrossRef]
- Chung, J.; Kim, S.-N.; Kim, H. The Impact of PM10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea. Int. J. Environ. Res. Public. Health 2019, 16, 4833. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, N. The Impact of Fine Particular Matter Risk Perception on the Outdoor Behavior of Recreationists: An Application of the Extended Theory of Planned Behavior. J. Tour. Sci. 2017, 41, 27–44. [Google Scholar]
- Yoon, H. Effects of particulate matter (PM10) on tourism sales revenue: A generalized additive modeling approach. Tour. Manag. 2019, 74, 358–369. [Google Scholar] [CrossRef]
- National Land Planning and Utilization Act of 2019, Article 36. Available online: https://elaw.klri.re.kr/eng_mobile/viewer.do?hseq=25486&type=sogan&key=4 (accessed on 4 February 2020).
- Seoul Metropolitan Government; National Information Society Agency. 2015 Seoul Pedestrian Volume Survey Report; Seoul Metropolitan Government: Seoul, Korea, 2015; p. 81.
- Lee, I.-H. Easy Flow Regression Analysis; Hannarae Publishing: Seoul, Korea, 2014; ISBN 978-89-5566-155-2. [Google Scholar]
- Air Quality Data. Available online: https://www.airkorea.or.kr/web/autoStatistic?pMENU_NO=123 (accessed on 22 December 2020).
- AWS Weather Data. Available online: https://data.kma.go.kr/data/grnd/selectAwsRltmList.do?pgmNo=56 (accessed on 22 December 2020).
- Im, H.N.; Lee, S.; Choi, C. Empirical Analysis of the Relationship between Land Use Mix and Pedestrian Volume in Seoul, Korea. J. Korea Plan. Assoc. 2016, 51, 21. [Google Scholar] [CrossRef]
- Jang, J.-Y.; Choi, S.-T.; Lee, H.-S.; Kim, S.-J.; Choo, S.-H. A comparison analysis of factors to affect pedestrian volumes by land-use type using Seoul Pedestrian Survey data. J. Korea Inst. Intell. Transp. Syst. 2015, 14, 39–53. [Google Scholar] [CrossRef]
- Hong, S.; Lee, K.-H.; Ahn, K.-H. The Effect of Street Environment on Pedestrians’ Purchase in Commercial Street—Focused on Insa-dong and Munjeong-dong Commercial Street. J. Archit. Inst. Korea Plan. Des. 2010, 26, 229–237. [Google Scholar]
- Lee, J.; Kim, H.; Jun, C. Analysis of Physical Environmental Factors that Affect Pedestrian Volumes by Street Type. J. Urban Des. Inst. Korea 2015, 16, 123–141. [Google Scholar]
- Lee, G. The Effect of the Urban and Architectural Form Factors on Pedestrian Volume. J. Korea Acad. Ind. Coop. Soc. 2016, 17, 310–318. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide—Global Update 2005; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Lee, S.; Hong, S. The Effect of Weather and Season on Pedestrian Volume in Urban Space. J. Korea Acad. Ind. Coop. Soc. 2019, 20, 56–65. [Google Scholar] [CrossRef]
Special-Purpose Area (SPA) of Urban Area | Re-Classification in this Study | |
---|---|---|
Residential Area | Class 1 Exclusive Residential Area | Residential |
Class 2 Exclusive Residential Area | ||
Class 1 General Residential Area | ||
Class 2 General Residential Area | ||
Class 3 General Residential Area | ||
Quasi-Residential Area | Mixed-Use | |
Commercial Area | Central Commercial Area | Commercial |
General Commercial Area | ||
Neighboring Commercial Area | ||
Circulative Commercial Area | Not included in this study | |
Industrial Area | Exclusive Industrial Area | |
General Industrial Area | ||
Quasi-Industrial Area | ||
Green Area | Green Conservation Area | |
Green Production Area | ||
Green Natural Area |
Year | 2009 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|
No. of Survey Points | 10,000 | 2000 | 1000 | 1000 | 1000 |
Survey Period | Aug–Nov | Oct | Oct | Sep–Oct | Oct |
Season | Base Model (Autumn) | Hot Weather Model (Summer) | ||||||
---|---|---|---|---|---|---|---|---|
Land-Use | Total | Residential | Commercial | Mixed-Use | Total | Residential | Commercial | Mixed-Use |
Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 |
Season | Base Model (Autumn) | Hot Weather Model (Summer) | ||||||
---|---|---|---|---|---|---|---|---|
Land-Use | Total | Residential | Commercial | Mixed-Use | Total | Residential | Commercial | Mixed-Use |
Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 |
PVS points | 3516 | 2763 | 575 | 178 | 3679 | 2729 | 703 | 247 |
Included Samples | 195,564 | 155,203 | 30,579 | 9782 | 159,376 | 115,661 | 32,007 | 11,708 |
Excluded Samples | 11,118 | 9101 | 1376 | 641 | 6202 | 4466 | 1166 | 570 |
Total Samples | 206,682 | 164,304 | 31,955 | 10,423 | 165,578 | 120,127 | 33,173 | 12,278 |
Variable | Unit | Source | ||
---|---|---|---|---|
Dependent Variable | Pedestrian Volume (PV) | Person | Recombined from PVS data | |
Independent Variable | Microclimatic Factors | Particulate matter | μg/m3 | Closest AQMS |
Temperature | °C | Closest AWS | ||
Precipitation | mm | |||
Control Variable | Urban Environment | No. of Lanes | Lanes | PVS data |
Bus Stop (Nominal) | Dummy | PVS data | ||
Time | Time Periods (Nominal) | Early Morning 7:30–9:30 (Reference); Morning 9:30–11:30; Lunch Time 11:30–13:30; Afternoon 13:30–17:30; Dinner time 17:30–19:30; Evening 19:30–21:30 | Recombined from PVS data |
Model | Variables | N | Min | Max | Mean | S.D | |
---|---|---|---|---|---|---|---|
Autumn | Total (Model 1) | PV | 195,564 | 0.00 | 4670.00 | 58.94 | 104.01 |
Temperature (°C) | 195,564 | 4.60 | 25.20 | 17.69 | 3.17 | ||
Precipitation (mm) | 195,564 | 0.00 | 19.50 | 0.60 | 2.51 | ||
PM10 (μg/m3) | 195,564 | 3.00 | 180.00 | 53.73 | 29.69 | ||
No. of Lanes | 195,564 | 1.00 | 14.00 | 2.75 | 2.34 | ||
Residential (Model 2) | PV | 155,203 | 0.00 | 4670.00 | 60.66 | 109.09 | |
Temperature (°C) | 155,203 | 4.60 | 25.20 | 17.73 | 3.15 | ||
Precipitation (mm) | 155,203 | 0.00 | 19.50 | 0.56 | 2.41 | ||
PM10 (μg/m3) | 155,203 | 3.00 | 180.00 | 53.26 | 29.81 | ||
No. of Lanes | 155,203 | 1.00 | 14.00 | 2.72 | 2.29 | ||
Commercial (Model 3) | PV | 30,579 | 0.00 | 1880.00 | 52.31 | 81.53 | |
Temperature (°C) | 30,579 | 6.90 | 25.20 | 17.65 | 3.25 | ||
Precipitation (mm) | 30,579 | 0.00 | 19.50 | 0.69 | 2.70 | ||
PM10 (μg/m3) | 30,579 | 5.00 | 180.00 | 55.33 | 29.44 | ||
No. of Lanes | 30,579 | 1.00 | 14.00 | 2.95 | 2.58 | ||
Mixed-Use (Model 4) | PV | 9782 | 0.00 | 1145.00 | 52.44 | 80.44 | |
Temperature (°C) | 9782 | 4.90 | 24.50 | 17.19 | 3.18 | ||
Precipitation (mm) | 9782 | 0.00 | 19.50 | 1.01 | 3.30 | ||
PM10 (μg/m3) | 9782 | 7.00 | 180.00 | 56.06 | 28.26 | ||
No. of Lanes | 9782 | 1.00 | 10.00 | 2.65 | 2.24 | ||
Summer | Total (Model 5) | PV | 159,376 | 0.00 | 3305.00 | 65.49 | 83.32 |
Temperature (°C) | 159,376 | 17.60 | 35.80 | 27.66 | 2.82 | ||
Precipitation (mm) | 159,376 | 0.00 | 114.00 | 4.64 | 16.97 | ||
PM10 (μg/m3) | 159,376 | 1.00 | 170.00 | 32.02 | 23.16 | ||
No. of Lanes | 159,376 | 1.00 | 18.00 | 3.21 | 2.53 | ||
Residential (Model 6) | PV | 115,661 | 0.00 | 3305.00 | 56.68 | 73.24 | |
Temperature (°C) | 115,661 | 17.60 | 35.80 | 27.68 | 2.85 | ||
Precipitation (mm) | 115,661 | 0.00 | 114.00 | 4.70 | 17.35 | ||
PM10 (μg/m3) | 115,661 | 1.00 | 170.00 | 31.81 | 23.74 | ||
No. of Lanes | 115,661 | 1.00 | 14.00 | 3.28 | 2.47 | ||
Commercial (Model 7) | PV | 32,007 | 0.00 | 2021.00 | 96.17 | 111.74 | |
Temperature (°C) | 32,007 | 17.60 | 35.70 | 27.57 | 2.73 | ||
Precipitation (mm) | 32,007 | 0.00 | 114.00 | 4.53 | 15.87 | ||
PM10 (μg/m3) | 32,007 | 1.00 | 170.00 | 32.43 | 21.22 | ||
No. of Lanes | 32,007 | 1.00 | 18.00 | 3.03 | 2.72 | ||
Mixed-Use (Model 8) | PV | 11,708 | 0.00 | 667.00 | 68.72 | 63.33 | |
Temperature (°C) | 11,708 | 17.60 | 35.80 | 27.65 | 2.72 | ||
Precipitation (mm) | 11,708 | 0.00 | 101.00 | 4.40 | 16.03 | ||
PM10 (μg/m3) | 11,708 | 1.00 | 170.00 | 32.91 | 22.40 | ||
No. of Lanes | 11,708 | 1.00 | 9.00 | 3.05 | 2.54 |
Season | Variables | Land-Use | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Residential | Commercial | Mixed-Use | |||||||
N | Ratio | N | Ratio | N | Ratio | N | Ratio | |||
Autumn | Time Periods | Evening | 28,282 | 14.5% | 22,436 | 14.5% | 4409 | 14.4% | 1437 | 14.7% |
Dinner Time | 28,497 | 14.6% | 22,617 | 14.6% | 4447 | 14.5% | 1433 | 14.6% | ||
Afternoon | 55,058 | 28.2% | 43,719 | 28.2% | 8605 | 28.1% | 2734 | 27.9% | ||
Lunch Time | 27,237 | 13.9% | 21,650 | 13.9% | 4228 | 13.8% | 1359 | 13.9% | ||
Morning | 28,130 | 14.4% | 22,259 | 14.3% | 4460 | 14.6% | 1411 | 14.4% | ||
Early Morning | 28,360 | 14.5% | 22,522 | 14.5% | 4430 | 14.5% | 1408 | 14.4% | ||
Sum | 195,564 | 100% | 155,203 | 100% | 30,579 | 100.0% | 9782 | 100% | ||
Bus Stop | Yes | 44,782 | 22.9% | 36,030 | 23.2% | 6801 | 22.2% | 1951 | 19.9% | |
No | 150,782 | 77.1% | 119,173 | 76.8% | 23,778 | 77.8% | 7831 | 80.1% | ||
Sum | 195,564 | 100% | 155,203 | 100% | 30,579 | 100% | 9782 | 100% | ||
Summer | Time Periods | Evening | 23,081 | 14.5% | 16,787 | 14.5% | 4581 | 14.3% | 1713 | 14.6% |
Dinner Time | 23,093 | 14.5% | 16,814 | 14.5% | 4579 | 14.3% | 1700 | 14.5% | ||
Afternoon | 45,534 | 28.6% | 33,038 | 28.6% | 9150 | 28.6% | 3346 | 28.6% | ||
Lunch Time | 22,108 | 13.9% | 16,011 | 13.8% | 4497 | 14.1% | 1600 | 13.7% | ||
Morning | 22,750 | 14.3% | 16,468 | 14.2% | 4608 | 14.4% | 1674 | 14.3% | ||
Early Morning | 22,810 | 14.3% | 16,543 | 14.3% | 4592 | 14.3% | 1675 | 14.3% | ||
Sum | 159,376 | 100% | 115,661 | 100% | 32,007 | 100% | 11,708 | 100% | ||
Bus Stop | Yes | 42,668 | 26.8% | 31,454 | 27.2% | 8422 | 26.3% | 2792 | 23.8% | |
No | 116,708 | 73.2% | 84,207 | 72.8% | 23,585 | 73.7% | 8916 | 76.2% | ||
Sum | 159,376 | 100% | 115,661 | 100.0% | 32,007 | 100% | 11,708 | 100% |
Variables | Model 1 (Autumn) | Model 5 (Summer) | |||
---|---|---|---|---|---|
Coeff. | p | Coeff. | p | ||
Constant | 3.91824 | 0.000 | 3.76358 | 0.000 | |
Time Periods | Evening | 0.30858 | 0.000 | 0.47794 | 0.000 |
Dinner time | 0.10690 | 0.000 | 0.30533 | 0.000 | |
Afternoon | 0.02142 | 0.021 | 0.32405 | 0.000 | |
Lunch Time | 0.25899 | 0.000 | 0.41073 | 0.000 | |
Morning | 0.01689 | 0.062 | 0.11042 | 0.000 | |
Early Morning | 0 (Reference) | 0 (Reference) | |||
Urban Environment | Bus Stop (Yes) | −0.00286 | 0.626 | 0.05452 | 0.000 |
Bus Stop (No) | 0 (Reference) | 0 (Reference) | |||
No. of Lanes | 0.01450 | 0.000 | 0.07695 | 0.000 | |
Microclimatic Factors | Temperature | 0.00513 | 0.000 | −0.00545 | 0.000 |
Precipitation | −0.00465 | 0.000 | −0.00167 | 0.000 | |
PM10 | −0.00153 | 0.000 | 0.00000 | 0.972 | |
3334.515 (p < 0.001) | 11,407.321 (p < 0.001) | ||||
LL | −992,765.232 | −821,387.819 | |||
deviation/df | 1.262 | 0.853 |
Variables | Model 2 Residential Area | Model 3 Commercial Area | Model 4 Mixed-Use Area | ||||
---|---|---|---|---|---|---|---|
Coeff. | p | Coeff. | p | Coeff. | p | ||
Constant | 3.92832 | 0.000 | 3.94739 | 0.000 | 3.58198 | 0.000 | |
Time Periods | Evening | 0.31018 | 0.000 | 0.30174 | 0.000 | 0.26791 | 0.000 |
Dinner time | 0.10481 | 0.000 | 0.12829 | 0.000 | 0.06400 | 0.105 | |
Afternoon | 0.01640 | 0.120 | 0.06919 | 0.002 | −0.03028 | 0.443 | |
Lunch Time | 0.26105 | 0.000 | 0.27039 | 0.000 | 0.18838 | 0.000 | |
Morning | 0.01814 | 0.075 | 0.02142 | 0.340 | −0.02463 | 0.539 | |
Early Morning | 0 (Reference) | 0 (Reference) | 0 (Reference) | ||||
Urban Environment | Bus Stop (Yes) | 0.00314 | 0.632 | −0.05042 | 0.001 | −0.09332 | 0.001 |
Bus Stop (No) | 0 (Reference) | 0 (Reference) | 0 (Reference) | ||||
No. of Lanes | 0.01849 | 0.000 | −0.00059 | 0.810 | 0.03296 | 0.000 | |
Microclimatic Factors | Temperature | 0.00602 | 0.000 | −0.00447 | 0.058 | 0.01378 | 0.001 |
Precipitation | −0.00226 | 0.050 | −0.00970 | 0.000 | −0.00924 | 0.009 | |
PM10 | −0.00174 | 0.000 | −0.00036 | 0.064 | 0.00014 | 0.704 | |
2910.574 | 388.982 | 201.496 | |||||
LL | −792,159.891 | −151,682.669 | −48,507.269 | ||||
deviation/df | 1.296 | 1.113 | 1.114 |
Variables | Model 6 Residential Area | Model 7 Commercial Area | Model 8 Mixed-Use Area | ||||
---|---|---|---|---|---|---|---|
Coeff. | P | Coeff. | P | Coeff. | P | ||
Constant | 3.63535 | 0.000 | 3.84847 | 0.000 | 4.05857 | 0.000 | |
Time Periods | Evening | 0.45605 | 0.000 | 0.50604 | 0.000 | 0.53870 | 0.000 |
Dinner time | 0.28118 | 0.000 | 0.32527 | 0.000 | 0.37557 | 0.000 | |
Afternoon | 0.29414 | 0.000 | 0.33432 | 0.000 | 0.38621 | 0.000 | |
Lunch Time | 0.40823 | 0.000 | 0.37429 | 0.000 | 0.42744 | 0.000 | |
Morning | 0.11437 | 0.000 | 0.07526 | 0.001 | 0.13180 | 0.000 | |
Early Morning | 0 (Reference) | 0 (Reference) | 0 (Reference) | ||||
Urban Environment | Bus Stop (Yes) | 0.05136 | 0.000 | 0.03296 | 0.028 | 0.02300 | 0.330 |
Bus Stop (No) | 0 (Reference) | 0 (Reference) | 0 (Reference) | ||||
No. of Lanes | 0.07866 | 0.000 | 0.09101 | 0.000 | 0.04890 | 0.000 | |
Microclimatic Factor | Temperature | −0.00524 | 0.000 | 0.00319 | 0.233 | −0.01019 | 0.029 |
Precipitation | −0.00226 | 0.000 | −0.00034 | 0.384 | −0.00093 | 0.154 | |
PM10 | −0.00039 | 0.006 | 0.00048 | 0.100 | −0.00119 | 0.009 | |
7898.681 | 3370.060 | 486.098 | |||||
LL | −579,695.856 | −176,635.814 | −61,074.999 | ||||
deviation/df | 0.808 | 0.835 | 0.670 |
Season | Land-Use | Model | Temperature | Precipitation | PM10 |
---|---|---|---|---|---|
Autumn | Total | Model 1 | 0.00513 | −0.00465 | −0.00153 |
Residential | Model 2 | 0.00602 | −0.00226 | −0.00174 | |
Commercial | Model 3 | −0.00970 | |||
Mixed-Use | Model 4 | 0.01378 | −0.00924 | ||
Summer | Total | Model 5 | −0.00545 | −0.00167 | |
Residential | Model 6 | −0.00524 | −0.00226 | −0.00039 | |
Commercial | Model 7 | ||||
Mixed-Use | Model 8 | −0.01019 | −0.00119 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Hong, S. Differences in the Influence of Microclimate on Pedestrian Volume According to Land-Use. Land 2021, 10, 37. https://doi.org/10.3390/land10010037
Kim H, Hong S. Differences in the Influence of Microclimate on Pedestrian Volume According to Land-Use. Land. 2021; 10(1):37. https://doi.org/10.3390/land10010037
Chicago/Turabian StyleKim, Heechul, and Sungjo Hong. 2021. "Differences in the Influence of Microclimate on Pedestrian Volume According to Land-Use" Land 10, no. 1: 37. https://doi.org/10.3390/land10010037