Native Plant Production in Chile. Is It Possible to Achieve Restoration Goals by 2035?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Availability of Plants and Species to Achieve Restoration Challenges
3.2. Diagnosing Nursery Production Factors that Limit Native Plant Production
3.3. Increasing the Pace and Scope of Restoration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Grassi, G.; House, J.; Federici, S.; den Elzen, S.; Penman, J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [Google Scholar]
- Bastin, J.F.; Finegold, Y.; García, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar]
- Strassburg, B.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Junqueira, A.B.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [PubMed]
- Bannister, J.R.; Vidal, O.J.; Teneb, E.; Sandoval, V. Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Austral Ecol. 2012, 37, 500–509. [Google Scholar]
- Williams, K.J.; Ford, A.; Rosauer, D.F.; De Silva, N.; Mittermeier, R.; Bruce, C.; Larsen, F.W.; Margules, C. Biodiversity Hotspots, 1st ed.; Springer Publishers: London, UK, 2011; pp. 295–310. [Google Scholar]
- Mittermeier, R.; Robles, P.; Hoffmann, M.; Pilgrim, J.; Brooks, T.; Mittermeier, C.; Lamoreux, J.; Da Fonseca, G. Hostspot Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions, 1st ed.; Cemex: Mexico City, Mexico, 2004; pp. 9–53. [Google Scholar]
- CONAF. Nota Informativa 01. Estrategia Nacional de Cambio Climático y Recursos Vegetacionales. 2015. Available online: https://www.conaf.cl/wp-content/files_mf/1443623122NotaInformativaN%C2%B01.pdf (accessed on 13 October 2020).
- Ministerio del Medio Ambiente. Estrategia Nacional de Biodiversidad 2017–2030. Available online: https://mma.gob.cl/wp-content/uploads/2018/03/Estrategia_Nac_Biodiv_2017_30.pdf (accessed on 7 February 2020).
- Ministerio del Medio Ambiente. Plan de Adaptación al Cambio Climático en Biodiversidad. Available online: https://mma.gob.cl/wp-content/uploads/2015/02/Plan_Adaptacion_CC_Biodiversidad_2.pdf (accessed on 7 February 2020).
- CONAF. Estrategia Nacional de Cambio Climático y Recursos Vegetacionales 2017–2025 Chile (ENCCRV). Available online: https://www.conaf.cl/cms/editorweb/ENCCRV/ENCCRV-3a_Edicion-17mayo2017.pdf (accessed on 07 February 2020).
- CONAF. Política forestal 2015–2035. Available online: https://www.conaf.cl/wp-content/files_mf/1462549405politicaforestal201520351.pdf (accessed on 07 February 2020).
- CONAF. Análisis de la Afectación y Severidad de los Incendios Forestales Ocurridos en Enero y Febrero de 2017 Sobre los Usos de Suelo y los Ecosistemas Naturales Presentes Entre las Regiones de Coquimbo y Los Ríos de Chile; Informe Técnico; Corporación Nacional Forestal: Santiago, Chile, 2017; pp. 8–22. [Google Scholar]
- Heilmayr, R.; Echeverría, C.; Lambin, E.F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 2020, 3, 701–709. [Google Scholar]
- Bannister, J.R.; Vargas-Gaete, R.; Ovalle, J.F.; Acevedo, M.; Fuentes-Ramírez, A.; Donoso, P.J.; Promis, A.; Smith-Ramírez, C. Major bottlenecks for the restoration of natural forests in Chile. Restor. Ecol. 2018, 26, 1039–1044. [Google Scholar]
- Chazdon, R.L.; Guariguata, M.R. Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica 2016, 48, 716–730. [Google Scholar]
- Grossnickle, S.C.; Ivetić, V. Direct seeding in reforestation—A field performance review. Reforesta 2017, 4, 94–142. [Google Scholar]
- Palma, C.P.; Laurance, S.G.W. A review of the use of direct seeding and seedling plantings in restoration: What do we know and where should we go? Appl. Veg. Sci. 2015, 18, 561–568. [Google Scholar]
- de Souza, D.C.; Engel, V.L. Direct seeding reduces costs, but it is not promising for restoring tropical seasonal forests. Ecol. Eng. 2018, 116, 35–44. [Google Scholar]
- Ceccon, E.; González, E.; Martorell, C. Is direct seeding a biologically viable strategy for restoring forests ecosystems? Evidences from a meta-analysis. Land Degrad. Dev. 2015, 27, 511–520. [Google Scholar]
- Pérez, D.R.; González, F.; Ceballos, C.; Oneto, M.E.; Aronson, J. Direct seeding and outplanting in drylands of Argentinian Patagonia: Estimated costs, and prospects for large-scale restoration and rehabilitation. Restor. Ecol. 2019, 27, 1105–1116. [Google Scholar]
- Gregorio, N.; Herbohn, J.; Harrison, S.; Smith, C. A systems approach to improving the quality of tree seedlings for agroforestry, tree farming and reforestation in the Philippines. Land Use Policy 2015, 47, 29–41. [Google Scholar]
- Gregorio, N.; Herbohn, J.; Harrison, S.; Pasa, A.; Ferraren, A. Regulating the quality of seedlings for forest restoration: Lessons from the National greening program in the Philippines. Small-Scale For. 2017, 16, 83–102. [Google Scholar]
- Harrison, S.; Gregorio, N.; Herbohn, J. A critical overview of forestry seedling production policies and practices in relation to smallholder forestry in developing countries. Small Scale For. 2008, 7, 207–233. [Google Scholar]
- Dumroese, R.K.; Landis, T.D.; Pinto, J.R.; Haase, D.L.; Wilkinson, K.W.; Davis, A.S. Meeting forest restoration challenges: Using the target plant concept. Reforesta 2016, 1, 37–52. [Google Scholar]
- Landis, T.D. The target plant concept—A history and brief overview. In National Proceedings: Forest and Conservation Nursery Associations—2010; Proceedings, RMRS-P-65; Riley, L.E., Haase, D.L., Pinto, J.R., Eds.; Tech. Coords.; US Department of Agriculture Forest Service, Rocky Mountain Research Station: Ft Collins, CO, USA, 2011; pp. 61–66. [Google Scholar]
- Haase, D.L.; Davis, A.S. Developing and supporting quality nursery facilities and staff are necessary to meet global forest and landscape restoration needs. Reforesta 2017, 4, 69–93. [Google Scholar]
- CONAF. Guía Básica De Buenas Prácticas Para Plantaciones Forestales De Pequeños Y Medianos Propietarios; Corporación Nacional Forestal: Santiago, Chile, 2013; pp. 23–48. [Google Scholar]
- CONAF. Listado de Viveros Forestales. 2016. Available online: https://www.conaf.cl/wp-content/files_mf/1468589508BD_Censo_Viveros_Forestales_2016.xlsx (accessed on 7 February 2020).
- CONAF. Listado de Viveros Forestales. 2017. Available online: https://www.conaf.cl/wp-content/files_mf/15263061591496683118BD_Censo_Viveros_Forestales_2017_actMAY08.xlsx (accessed on 7 February 2020).
- CONAF. Listado de Viveros Forestales. 2018. Available online: https://www.conaf.cl/wp-content/files_mf/1548256797ListadoViverosForestales2018.xlsx (accessed on 7 February 2020).
- CONAF. Listado de Viveros Forestales. 2019. Available online: https://www.conaf.cl/wp-content/files_mf/1562274595BDCensoViverosForestales2019Nacional.xlsx (accessed on 7 February 2020).
- Quiroz, I.; Gutiérrez, B. Propuesta Reglamento Para Semillas y Plantas Forestales, 1st ed.; Instituto Forestal: Santiago, Chile, 2012. [Google Scholar]
- Mathers, H.M.; Lowe, S.B.; Scagel, C.; Struve, D.K.; Case, L.T. Abiotic factor influencing root growth of woody nursery plants in container. HortTechnology 2007, 17, 151–162. [Google Scholar]
- Takoutsing, B.; Tchoundjeu, Z.; Degrande, A.; Asaah, E.; Gyau, A.; Nkeumoe, F.; Tsobeng, A. Assessing the quality of seedlings in small-scale nurseries in the highlands of Cameroon: The use of growth characteristics and quality thresholds as indicators. Small Scale For. 2014, 13, 65–77. [Google Scholar]
- Bayala, J.; Dianda, M.; Wilson, J.; Ouedraogo, S.J.; Sanon, K. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso West Africa. New For. 2009, 38, 309–322. [Google Scholar]
- Andivia, E.; Fernández, M.; Vázquez-Piqué, J. Assessing the effect of late-season fertilization on Holm oak plant quality: Insights from morpho-nutritional characterizations and water relations parameters. New For. 2014, 45, 149–163. [Google Scholar] [CrossRef]
- Ovalle, J.F.; Arellano, E.C.; Ginocchio, R. Trade-Offs between drought survival and rooting strategy of two south American Mediterranean tree species: Implications for dryland forest restoration. Forests 2015, 6, 3733–3747. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, J.F.; Arellano, E.C.; Oliet, J.A.; Becerra, P.; Ginocchio, R. Linking nursery nutritional status and water availability post-planting under intense summer drought: The case of a South American Mediterranean tree species. iForest 2016, 9, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.; Acevedo, M.; González, M.; Dumroese, R.K.; Cartes, E.; Quiroz, I. Field establishment techniques for guindo santo, an endemic species for central Chile. Tree Plant. Notes 2019, 62, 35–43. [Google Scholar]
- Acevedo, M.; Álvarez, C.; Cartes, E.; Dumroese, R.K.; Gonzalez, M. Production and establishment techniques for the restoration of Nothofagus alessandrii, an endangered keystone species in a Mediterranean forest. New For. 2019, 51, 159–174. [Google Scholar] [CrossRef]
- González, M.; Ríos, D.; Peña-Rojas, K.; García, E.; Acevedo, M.; Cartes, E.; Sánchez-Olate, M. Efecto de la concentración de fósforo y calcio sobre atributos morfo-fisiológicos y potencial de crecimiento radical en plantas de Aextoxicon punctatum producidas a raíz cubierta en la etapa de endurecimiento. Bosque 2020, 41, 137–146. [Google Scholar] [CrossRef]
- INFOR. Informe Línea base. In Proyecto “Agente de Difusión y Extensión Tecnológica para Pymes y Propietarios Forestales de la Región del Biobío”; INNOVA BIO-BIO CORFO: Santiago, Chile, 2014. [Google Scholar]
- Cartes, E.; Acevedo, M.; González, M.; Álvarez, C.; Mena, P.; García, E. Manual de Manejo de Riego y Fertilización en Viveros de Plantas a Raíz Cubierta. Manual N°51, 1st ed.; Instituto Forestal: Santiago, Chile, 2018; pp. 49–81. [Google Scholar]
- Acevedo, M.; Rubilar, R.; Dumroese, R.K.; Ovalle, J.F.; Sandoval, S.; Chassin-Trubert, R. Nitrogen loading of Eucalyptus globulus seedlings: Nutritional dynamics and influence on morphology and root growth potential. New For. 2021, 52, 31–46. [Google Scholar] [CrossRef]
- Monsalve, J.; Escobar, R.; Acevedo, M.; Sánchez, M.; Coopman, R. Efecto de la concentración de nitrógeno sobre atributos morfológicos, potencial de crecimiento radical y estatus nutricional en plantas de Eucalyptus globulus producidas a raíz cubierta. Bosque 2009, 30, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Landis, T.D. Irrigation and water management. In The Container Tree Nursery Manual; Landis, T.D., Tinus, R.W., McDonald, S.E., Barnett, J.P., Eds.; U.S Department of Agriculture, Forest Service: Washington, DC, USA, 1989; Volume 4, pp. 69–118. [Google Scholar]
- Coopman, R.; Escobar, R. Capítulo 5. Riego. In Manual de Viverización Eucalyptus globulus a Raíz Cubierta, 1st ed.; Escobar, R., Ed.; Centro Tecnológico de la Planta Forestal. Instituto Forestal: Santiago, Chile, 2007; pp. 147–162. [Google Scholar]
- Dumroese, R.K.; Pinto, J.R.; Jacobs, D.F.; Davis, A.S.; Horiuchi, B. Subirrigation reduces water use, nitrogen loss, and moss growth in a container nursery. Nativ. Plants J. 2006, 7, 253–261. [Google Scholar]
- Schmal, J.L.; Dumroese, R.K.; Davis, A.S.; Pinto, J.R.; Jacobs, D.F. Subirrigtion for production of native plants in nurseries—Concepts, current knowledge, and implementation. Nativ. Plants J. 2011, 12, 81–93. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Page-Dumroese, D.S.; Salifu, K.F.; Jacobs, D.F. Exponential fertilization of Pinus monticola seedlings: Nutrient uptake efficiency, leaching fractions, and early out planting performance. Can. J. For. Res. 2005, 35, 2961–2967. [Google Scholar] [CrossRef] [Green Version]
- Stowe, D.C.; Lamhamedi, M.S.; Carles, S.; Fecteau, B.; Margolis, H.A.; Renaud, M.; Bernier, P.Y. Managing irrigation to reduce nutrient leaching in containerized white spruce seedling production. New For. 2010, 40, 185–204. [Google Scholar] [CrossRef]
- INN. Norma Chilena Oficial. NCh 2957/0. Of2006. In Material de Propagación de Uso Forestal, 1st ed.; Instituto Nacional de Normalización: Santiago, Chile, 2006. [Google Scholar]
- Simpson, D.G.; Ritchie, G.A. Does RGP predict field performance? A debate. New For. 1996, 13, 249–273. [Google Scholar]
- Oliet, J.; Puértolas, J.; Planelles, R.; Jacobs, D.F. Nutrient loading of forest tree seedlings to promote stress resistance and field performance: A Mediterranean perspective. New For. 2013, 44, 649–669. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Peñuelas, J.L.; Nicolás-Paragón, J.L.; Benito, L.F.; Domínguez-Lerena, S. Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New For. 2013, 44, 733–751. [Google Scholar] [CrossRef]
- Fernández, M.; Marcos, C.; Tapias, R.; Ruiz, F.; López, G. Nursery fertilisation affects the frost-tolerance and plant quality of Eucalyptus globulus Labill. Cuttings. Ann. For. Sci. 2007, 64, 865–873. [Google Scholar] [CrossRef] [Green Version]
- León-Lobos, P.; Bustamante-Sánchez, M.A.; Nelson, C.R.; Alarcón, D.; Hasbún, R.; Way, M.; Pritchard, H.W.; Armesto, J.J. Lack of adequate seed supply is a major bottleneck for effective ecosystem restoration in Chile: Friendly amendment to Bannister et al. (2018). Restor. Ecol. 2020, 28, 277–281. [Google Scholar] [CrossRef]
- Álvarez, C.; Acevedo, M.; González, M.; Cartes, E.; Bannister, J. Albinism detection among Persea lingue and Cryptocarya alba regeneration, from Cayumanque Mountain, Biobío Region, Chile. Gayana Bot. 2017, 74, 296–298. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, C.B.; Holvorcem, C.G.D.; Lyrio, C.H.; De Menezes, P.D. COOPLANTAR: A Brazilian initiative to integrate forest restoration with job and income generation in rural areas. Ecol. Restor. 2010, 28, 199–207. [Google Scholar] [CrossRef]
- Moreira da Silva, A.P.; Schweizer, D.; Rodrigues-Marques, H.; Cordeiro-Teixeira, A.M.; Nascente dos Santos, T.V.M.; Sambuichi, R.H.R.; Badari, C.G.; Gaudare, U.; Brancalion, P.H.S. Can current native tree seedling production and infrastructure meet an increasing forest restoration demand in Brazil? Restor. Ecol. 2017, 25, 509–515. [Google Scholar] [CrossRef]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; van Ruijven, J.; et al. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef] [PubMed]
2016 | 2017 | 2018 | 2019 | Total | Average | Trend (%) | |
---|---|---|---|---|---|---|---|
Native | |||||||
Number of seedlings | |||||||
Tree | 9,618,953 | 10,984,804 | 10,938,390 | 9,684,443 | 41,226,590 | 10,306,648± 756,980 | 0.7 |
Shrub | 431,084 | 744,752 | 883,556 | 1,027,296 | 3,086,688 | 771,672± 254,681 | 138 |
Others * | 464,204 | 682,973 | 278,390 | 182,138 | 1,607,705 | 401,926± 220,933 | −61 |
Total | 10,514,241 | 12,412,529 | 12,100,336 | 10,893,877 | 45,920,983 | 11,480,246 ± 918,451 | 4 |
Number of Species | |||||||
Tree | 59 | 65 | 75 | 94 | -- | 73 ± 15 | 59 |
Shrub | 44 | 52 | 72 | 104 | -- | 68 ± 27 | 136 |
Others * | 98 | 63 | 84 | 150 | -- | 99 ± 37 | 53 |
Total | 201 | 180 | 231 | 348 | -- | 240 ± 75 | 73 |
Exotic | |||||||
Number of seedlings | 72,053,797 | 67,535,380 | 118,915,285 | 158,296,526 | 416,800,988 | 104,200,247± 42,897,733 | 120 |
Number of species | 288 | 292 | 282 | 284 | -- | 287 ± 4 | −1 |
Total | 82,568,038 | 79,947,909 | 131,015,621 | 169,190,403 | 462,721,971 | 115,680,493 ± 42,707,255 | 105 |
Nursery Growing Season | ||||||
---|---|---|---|---|---|---|
Stocktypes | 1 | 2 | 3 | >4 | N.I | Total |
Pots and polybags | 1,059,216 | 1,335,589 | 818,568 | 424,783 | 52,155 | 3,690,310 |
Bareroot | 285,205 | 624,765 | 233,724 | 75,632 | -- | 1,219,326 |
Covered root * | 3,023,906 | 3,031,489 | 338,096 | 80,073 | 4,000 | 6,477,563 |
Total | 4,368,327 | 4,991,842 | 1,390,387 | 580,488 | 56,155 | 11,387,199 |
Source | Treatments | NCh * | |||||
---|---|---|---|---|---|---|---|
Monsalve et al. (2009) [46] | Applied N (mg L−1) | 50 | 100 | 150 | 200 | -- | -- |
Leaf N (%) | 1.17 | 1.36 | 1.44 | 1.64 | -- | 1.7–2.5 | |
Acevedo et al. (2021) [45] | Applied N (mg L−1) | 50 | 150 | 300 | 450 | 600 | -- |
Leaf N (%) | 1.21 | 1.48 | 1.86 | 1.99 | 2.22 | 1.7–2.5 | |
Growing season 2013–2014 | Mean | ||||||
Nur_1 | Nur_2 | Nur_3 | Nur_4 | Nur_5 | |||
Biobío region (2015) | Applied N (mg L−1) | 10 | 1.9 | 75 | 93 | 57 | 47.3 ± 40 |
Leaf N (%) | 0.87 | 0.75 | 0.66 | 0.60 | 0.58 | 0.69 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acevedo, M.; Álvarez-Maldini, C.; Dumroese, R.K.; Bannister, J.R.; Cartes, E.; González, M. Native Plant Production in Chile. Is It Possible to Achieve Restoration Goals by 2035? Land 2021, 10, 71. https://doi.org/10.3390/land10010071
Acevedo M, Álvarez-Maldini C, Dumroese RK, Bannister JR, Cartes E, González M. Native Plant Production in Chile. Is It Possible to Achieve Restoration Goals by 2035? Land. 2021; 10(1):71. https://doi.org/10.3390/land10010071
Chicago/Turabian StyleAcevedo, Manuel, Carolina Álvarez-Maldini, R. Kasten Dumroese, Jan R. Bannister, Eduardo Cartes, and Marta González. 2021. "Native Plant Production in Chile. Is It Possible to Achieve Restoration Goals by 2035?" Land 10, no. 1: 71. https://doi.org/10.3390/land10010071